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Abstract. We give a new algorithm for the genotype phasing problem.
Our solution is based on a hidden Markov model for haplotypes. The
model has a uniform structure, unlike most solutions proposed so far
that model recombinations using haplotype blocks. In our model, the
haplotypes can be seen as a result of iterated recombinations applied on
a few founder haplotypes. We find maximum likelihood model of this
type by using the EM algorithm. We show how to solve the subtleties
of the EM algorithm that arise when genotypes are generated using a
haplotype model. We compare our method to the well-known currently
available algorithms (PHASE, HAP, GERBIL) using some standard and new
datasets. Our algorithm is relatively fast and gives results that are always
best or second best among the methods compared.

1 Introduction

The DNA differences between individuals of the same species are typically on
single nucleotide locations in which more than only one nucleotide (allele) occurs
in the population. Such differences, due to point mutations, and their sites are
called single nucleotide polymorphisms (SNPs). SNPs can be used as genetic
markers that can be utilized, for example, in finding disease causing mutations.
For a diploid species, when an SNP is typed (observed) for an individual, the
following problem arises: There are two near-identical copies of each chromosome
of a diploid organism, but the common techniques for SNP typing do not provide
the allele information separately for each of the two copies. Instead, they just
give genotype information, i.e., for each SNP an unordered pair of allele readings
is found, one from each copy. The alleles coming from the same chromosome copy
are called a haplotype, while a genotype combines alleles from the two copies.
So a genotype {A, C}, {T, T}, {G, T} could result from two haplotype pairs:
(ATG, CTT) and (ATT, CTG).

A genotype with two identical alleles in a site is called homozygote, while a
genotype with two different alleles is called heterozygote in that site. Given a
set of genotypes, the problem of finding the corresponding two haplotypes for
each genotype is called phasing or resolving the genotypes. Resolving is done



simultaneously for all genotypes, based on some assumptions on how the haplo-
types have evolved. The first approach to resolve haplotypes was Clark’s method
[1] based on a greedy resolution rule. Clark’s method is sometimes referred to
as parsimony-based, but pure parsimony was investigated later in [2]. In pure
parsimony one asks for finding a smallest set of haplotypes able to resolve all the
genotypes. Different probabilistic approaches, still without recombination, have
been proposed by e.g. [3-6]. Yet another combinatorial method was proposed
by Gusfield [7], aiming at finding a set of resolving haplotypes that admits a
perfect phylogeny. Gusfield’s method works on genotype blocks within which no
recombination is allowed; the block structure has to be uncovered separately.
Greenspan and Geiger [8] were able to combine block finding and haplotype res-
olution by using a Bayesian network model. Very recently, Kimmel and Shamir
[9, 10] gave another such method, with improved phasing results.

In this paper we describe an approach to the phasing problem based on
looking at the haplotypes as a result of recombinations applied on some small
number of underlying founder haplotypes. This can be formalized as a simple
hidden Markov model. The model has transitions along each founder and be-
tween the founders. A haplotype is generated along the transition paths: at each
state of the model some allele is emitted, according to the emission probability
distribution of the state. Transitions are taken according to the associated dis-
tributions, the transitions between different founders (i.e., transitions with low
probability) indicating recombination events.

To solve the phasing problem for a given set of genotypes, we learn a maxi-
mum likelihood hidden Markov model from the genotype data, and then for each
genotype in the data we find a resolving pair of haplotypes that has the highest
probability in this model. In practice we use the EM algorithm for estimating
the parameters of the model and the Viterbi algorithm for finding the resolving
haplotype pairs. We need to modify the standard versions of these algorithms
[11], as the data does not contain haplotypes but unphased genotypes.

We have tested the method on some real datasets and compared its per-
formance to the state-of-art phasing softwares PHASE [5] (version 2.1.1), HAP
[12] (version 3.0), and GERBIL [10]. A prototype implementation of our method,
called HIT (a Haplotype Inference Technique), gives results that are always best
or second best among the methods compared, when the phasing accuracy is
measured by using the switch distance [13]. PHASE is the strongest competitor
but it is clearly slower than our method.

2 A Hidden Markov Model for Recombinant Haplotypes

We consider m SNP markers from the same chromosome, numbered 1,...,m
from left to right in the physical order of appearance along the chromosome.
Let A; be the set of possible alleles (values) of marker j. Then a haplotype is a
sequence in Ay X ...X A,,. A genotype is an unphased haplotype pair and can be
defined as a sequence in A} x ... x Aj , where each A} = A; x A;. A genotype g
is homozygous at marker j, if g; = (z,y) and = =y, and heterozygous if x # y.



We use the encoding A; = {1,2} where 1 and 2 refer, respectively, to the most
frequent and the second frequent allele of the SNP j.

Our hidden Markov model (HMM) model is a pair M = (S, 0) where S is
the set of states and 8 = (7,¢) consists of the state transition probabilities T,
and the allele emission probabilities €. The set of states S = {so} US1U...USy,
consists of disjoint sets .S, the states at marker j. The transition probabilities
T(sj_1, ;) are defined for all s;_1 € S;_1 and s; € Sj, i.e., only transitions from
states in S;_; to states in S; are allowed for all j = 1,...,m. The transition
probabilities from each fixed s; form a probability distribution, i.e., their sum
equals 1. Each state s; € S; has a probability distribution emitting the alleles in
Aj, i.e., probability e(s;,a) of emitting a € A;. We restrict our consideration to
the case that all sets S; contain the same number K of states. The parameter
K, called the number of the founders of M and the number m of the markers
determine the topology of the HMM. The initial state sg is a dummy state from
which the HMM does not emit any letter. Any path from the dummy state to a
state in S,, generates a haplotype in A1 X...x A,,, with a probability determined
as the product of the transition and emission probabilities along the path.

Our HMM can also handle missing data. We assume that the unobserved
values are missing at random, i.e., the fact that a value is unobserved provides no
information about the underlying allele; if a data point is missing, the probability
of emitting is considered to be 1.

The connection to the idea of the founder sequences is as follows: The cur-
rent haplotype sequences are seen as results of iterated recombinations on the
haplotypes of some ancient founder population whose offspring the observed pop-
ulation is. The current sequences should therefore be built of fragments of the
founder sequences, and some such preserved fragments should be seen in several
current sequences. Our model M represents the current sequences, based on K
founders. A high transition probability 7(s;_1,s;) suggests that states s;_1 and
s; refer to the same haplotype, i.e., there is a conserved piece of some founder.
A low transition probability suggests a cross-over (recombination) between the
two states.

A HMM with similar topology appears in [14,15]. Our HMM can also be
seen as a probabilistic generalization of the combinatorial approach of [16] to
parse haplotypes with respect An example of our model is given in Figure 1.

3 HMM Estimation and Haplotype Reconstruction

In this section we show how, given a set of unphased genotypes, the popular
expectation-maximization algorithm can be efficiently applied to maximum like-
lihood estimation of the parameters of the hidden Markov model. We also show
how the estimated HMM can be used for haplotype reconstruction.

3.1 The EM algorithm for Maximum Likelihood Estimation

We use the maximum likelihood principle to fit our hidden Markov model to
the observed genotype data G we want to phase. That is, for a fixed number of
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Fig. 1. An example HMM for m = 8 markers and K = 4 founders. The states are
represented as boxes, the jth column of four states corresponding to the jth marker.
The black area within each state encodes the emission probability of allele 1 from that
state (each marker has only two alleles). The thickness of each transition line encodes
the corresponding transition probability

founders, we search for the parameters 6 = (7,¢) so as to maximize the likelihood
P(G | 6). This estimation problem is known to be hard in general HMMs, and
this seems to be the case also in our application. Therefore we resort to the
commonly adopted family of expectation-maximization (EM) algorithms, which
are guaranteed to converge to a local optimum [17].

The generic EM algorithm approaches an intractable optimization problem
by completing the original data with auxiliary hidden data. Then the expected
log-likelihood of the complete data — where the expectation is with respect to the
distribution of the hidden data given the current parameter values — is maximized
in an iterative fashion. Usually the choice of the hidden data is natural and
direct from the problem. For the standard HMMs the hidden data contains the
unobserved hidden states.

In our case it is natural to treat the hidden state sequences, two per genotype,
as the hidden data. This is, in essence, the choice that has been made in a number
of related applications of EM to the haplotype reconstruction problem; e.g., [8—
10]. While this approach works nicely when a state is deterministically related
to an allele, computational problems will arise as soon as emission parameters
are included in the model [9]. In such a case Kimmel and Shamir [9,10] use a
(multivariate) numerical maximization routine within each EM iteration.

We propose an alternative instantiation of the EM algorithm that yields ef-
ficient closed-form expressions for the maximizing parameter values within each
EM iteration. The idea is simple: in the hidden data we include not only the hid-
den states but also indicators which for any pair of states and the corresponding
observed pair of alleles determine which one of the two states emitted the first
allele in the pair, the second allele being emitted by the other state. We next
provide some technical details.

3.2 Hidden Data and the Maximization Step

Let G = {g1,...,9n} be a set of n genotypes over m markers. We suppose the
topology (the state space S) of our HMM M = (S, 6) is fixed and we wish to



find parameter values § = (7,¢) that maximize the probability of the genotype
data, P(G|6).

In this setting, the EM algorithm is as follows. Starting from some initial
values 0(9) the algorithm iteratively improves the current values (") by setting

0+ = argmax > P(Z|G,6"))In P(G, Z|6), (1)
0
Z

where Z runs through a chosen set of additional (hidden) data. In words, the
new parameter values are obtained by maximizing the expected log-likelihood of
the complete data. For a large enough r the increment in the likelihood becomes
negligible and the algorithm terminates.

We choose the hidden data Z such that the complete likelihood P(G, Z | 6)
factorizes into a product of individual transition and emission probabilities, as
described below. This is the key to obtain a computationally efficient evaluation
of (1). Recall that our HMM M = (5, 0) defines a probability distribution over
singleton haplotypes. A genotype is obtained as a pair of two independent hap-
lotypes, each generated by M along a path through some m states of M. From
this generative model we extract the hidden data Z as the the combination of
(a) the two state sequences per observed genotype and (b) the alleles emitted
from the states.

The paths are given by an n x m x 2 matrix T = (¢;;) of states of M. The
entry t;;rx € S; gives the state from which the jth allele for the first (k = 1)
or the second (k = 2) haplotype for building g¢; is to be emitted. The emitted
allele from the possible alternatives that are consistent with g; is indicated by
an n X m x 2 matrix U = (uy;x). The entries of U are selector variables that
take values in {1,2}. Recall that g; consists of observed genotypes gi1, ..., gim
over the m markers, each genotype being a pair g;; = (gi;1, gij2) of alleles; note
that we do not know which of the two alleles comes from which of the two
underlying haplotypes. Here we only have arbitrarily fixed the order of the two
observations. Element w;j;, of U specifies the jth allele of the first (k = 1) or of
the second (k = 2) haplotype for building g;: if u;jx = 1 then the allele is g;;1
and if u;;r = 2 then the allele is g;;2. Both alleles must always be used, so we
require that {uijl, U,ijg} = {17 2}

The point in introducing the hidden data Z = (T, U) is that the complete
likelihood factorizes into

n m

P(G,T,U|0) = (%)HH I T mti—ve tisn)etije, giju,,y) -

i=1j=1k=1,2

Here the coefficient (1/2)" appears, since all the 2™ values for U are a priori
equally likely (independently of #). Thus, the expected log-likelihood is

m

Y P(T,U|G,0")InP(G,T,U|0) => Aj(r)+ > Bj(e) —nln2,

U j=1 j=1



where

Aj(r)=>" P(T,U|G,0") In7(ti(j— 1)k, tiji)
i=1k=1,2T,U

= Z P(T,U|G79(T))lng(tij,gijuijk).
i=1 k=1,2T,U

Furthermore, each A; only depends on the transition probability parameters for
transitions from a state in S;_; to a state in S;. Similarly B; only depends
on the emission probability parameters for states in S;. Thus, the maximizing
parameter values can be found separately for each A; and B;.

Standard techniques of constrained optimization (e.g., the general Lagrange
multiplier method [18] or the more special Kullback-Leibler divergence mini-
mization approach [17]) now apply. For the transition probabilities 7(a, b), with
a € Sj_1,b €S, we obtain the update equation

7+ (g, p) _CZ > Pty = a tijn = b G,0T), (2)

i=1 k=1,2

where c is the normalization constant of the distribution 7("+(a,-). That is,
T(T“)(a, b) is proportional to the expected number of transitions from a to b.
Note that the hidden data U plays no role in this expression. Similarly, for the
emission probabilities (b, y), with b € S;,y € A;, we obtain

e b,y) =D Y Pltije = b, giju,,, =y|G.0"), (3)

i=1 k=1,2

where ¢ is the normalization constant of the distribution e("*1(b,.). That is,
8(T+1)(b,y) is proportional to the expected number of emissions from b to y.
Note that the variable u;;i is free meaning that the expectation is over both its
possible values.

3.3 Computation of the Maximization Step

We next show how the well-known forward—backward algorithm of hidden
Markov Models [11] can be adapted to evaluation of the update formulas (2)
and (3).

Let a; and b; be states in S;. For a genotype ¢; € G, let L(a;, b;) denote the
(left or backward) probability of emitting the initial segment g;1 ... g;;—1) and
ending at (aj,b;) along the pairs of paths of M that start from sg. It can be
shown that

L(Cl(), b()) =1 and
L(aji1,bj41) = Y Plgijlaj,bj,e)L(az,b;)7(aj, aj1)7(bj biy1)  (4)

llj7bj



where

1 1
P(gijlaj,bj,e) = 55(%,9@‘3‘1)5(%9@‘]‘2) + 58(ajagij2)g(ijgijl)'
(Recall that here we treat g; as an ordered pair, though the ordering of the alleles
is arbitrary.) Then the probability of the genotype g; is obtained as P(g;|6) =
b L(am, bym)P(gim | @m, bm,€) and the probability of the entire data set is
P(G10) =[],,cc P(gi0). Note that for each g; we have its own L(-, ).
Direct evaluation of (4) would use O(|G| 3_; [S; |*) = O(nmK*) time in total.
By noting that

Laji1,bj11) = Y 7(aj,a;41) Y L(aj,b;)P(gij| aj, bj, €)7(bs, bj1)

a; bJ

and by storing the sum ij L(aj,b;)7(bj,b;y1) for each a; and b, 41 the running
time reduces to O(nmK3). The space requirement is O(mK?).

We call L(-,-) the forward (or left) table. Similarly, we define the backward
(or right) table R(-, -). For a genotype g; € G, let L(a;,b;) denote the probability
of emitting the end segment g;(;y1)-..gim along the pairs of paths of M that
visit (aj, bJ)

We are now ready to show how formulas (2) and (3) can be evaluated. We
consider the latter formula; the former is handled similarly. First notice that it
is sufficient to consider evaluation of

P(tijrk = b, Gijuy = y|G,00) = P(tij), = b, Gijuije = y,9i|9(r))/P(9¢ 1)

We already described a way to compute the denominator. The numerator can
be written as

1
Z Z I(gijuijk = y)§L(aj7 b)s(aj, Gijusji )E(b, gij(g—uijk))R(aj’ b) )

aj uijr=1,2

where I(-) is the 0, 1-valued indicator function. Note that both w;;; and 3 — u,jx
take values in {1,2}. For update (3) a similar forward—backward expression is
found. Thus, the total time complexity of an EM iteration is the above given
O(nmK3).

3.4 Initialization and Model Training

As the EM algorithm is guaranteed to find only a local optimum, it is important
to find a good initial configuration of the model parameters. Our initialization
routine greedily finds a promising region in the parameter space. It consists of
three steps.

First, we fix the transition probabilities and emission probabilities without
looking at the data, as follows. Let s;1,..., sk be the states in S;. For the first
transition we set 7(sg,s1;) = 1/K for { =1,..., K. Then for each j = 1,...,m,



we set 7(s(j—1)1,51r) to 1 —p, if I = 1’, and to p/(K — 1) otherwise. The emission
probabilities for s; € S; are initialized by setting e(s;,b) = 1 — v for a selected
major allele b specific to s;, and e(s;,a) = v/(|A,]|—1) for the other alleles a # b.

Second, we select the major alleles in a greedy manner based on the observed
data. We traverse the sets S; from left to right and assign to the states in S; the
major alleles that locally maximize the likelihood of the initial segments of G
up to marker j. This is done by simply trying all |4;|¥ possible choices. Using
dynamic programming the pass takes time O(nmK32%) for SNP markers. We
then make another pass from left to right and again choose the locally optimal
major alleles but now in the context of the current solution on both sides of S;.

Finally, the probability distributions are perturbed a bit by multiplying each
parameter value by eX, where X is drawn uniformly from [—7, 1], independently
for each parameter, and 7 is a noise parameter. The perturbed distributions
are obtained by normalizing the perturbed values. The constants p, v, and n
are specified by the user. In our tests, reported in Section 4, we used p = 0.1,
v =0.01, and n = 0.8.

Starting from the perturbed initial model, we then apply the EM algorithm
to find a maximum likelihood HMM for the genotype data G. In practice, we
repeat this training scheme several times, and then pick the highest likelihood
HMM as the final model from which the haplotypes for G are read, as will be
described in Section 3.5.

Another parameter to be fixed is the number of founders, K. Our experiments
show that too small a K gives poor results, but as long as K is sufficiently large
(for our test data typically K should be at least 5) varying K has a rather small
effect on the quality of haplotyping result.

3.5 Reading the Haplotypes from a HMM

We reconstruct from a trained HMM M = (S, 6) the haplotypes of each g € G
as follows. First we find for g the Viterbi path from M, that is, a pair (p,p’) of
paths through M such that emitting g from (p,p’) has the highest probability
among all path pairs (¢, ¢’), i.e.,

P(g,p,p'|0) = glﬁ;;P(g,mq’I@)-

This can be done by a variant of (4) followed by standard trace-back. Then
generate from p a haplotype h and from p’ a haplotype h’ such that they together
give genotype g and P(h | p,0)P(h' | p/,0) is largest possible. This is simple
local maximization at heterozygous markers of g. Haplotypes {h,h'} are the
reconstructed haplotypes for g according to our method.

4 Test Results

We have implemented the presented phasing method in a prototype program HIT
(Haplotype Inference Technique). In this section, we report the results we have
obtained on a few real datasets. We compare the performance of HIT against
HAP version 3.0 [12], PHASE version 2.1.1[5], and GERBIL [10].



4.1 Datasets

We tested our method on five real datasets. Daly’s et al. [19] commonly used
benchmark dataset is a sample from a European-derived population and spans
a 500-kb region on human chromosome 5q31 which contains a genetic risk factor
for Crohn disease. From that area there are genotypes for 103 SNP markers,
collected from 129 trios (of mother, father, and child). The trios were used to
infer the true haplotypes for the 129 genotypes of the children.

The second dataset is a fragment of the data provided recently by Hinds et
al. [20]. This data consists of 71 haplotype pairs over 1,586,383 SNPs that cover
the entire human genome. We took the haplotypes for the SNPs 1,000-1,199 of
chromosome 2. We notice that these haplotypes were inferred from genotypes
with some version of HAP [12].

The rest three datasets are genotype samples over 68 SNP markers from three
datasets from Finland [21]. We call these datasets Populationl (32 haplotypes),
Population2 (108 haplotypes), and Population3 (108 haplotypes).

The latter four datasets were available in a haplotyped form. For our tests
we constructed the input genotypes simply by merging the two haplotypes of
each individual.

4.2 Switch Distance

We measure the quality of haplotyping results using the commonly adopted
switch distance [13]. Switch distance between two pairs of haplotypes {h,h'}
and {f, f'} is the minimum number of phase shifts needed to turn {h,h’} into
{f, f'}. For example if the true haplotypes for a genotype are {111111,222222},
then the switch distance is 1 to {111222,222111} and 5 to {121212,212121}.

Unfortunately, the basic switch distance is undefined when no phase shifts
can transform a haplotype pair into another pair. This may happen when the
data has missing values or genotyping errors. For example, suppose the observed
genotype is {1,2}{1,2}{—, —}{1,2}{1, 2}, where a “—” stands for a missing al-
lele. Then it is possible that our model gives haplotypes {112111, 222222}, thus
imputing the missing values. However, if the underlying true pair of haplotypes
is {111111, 222222}, the distance between these haplotype pairs is not defined.

In such a situation one needs a generalized switch distance. Define
errors({h,h'},{f, f'}) as the minimum number of allele substitutions to {f, '}
that are needed to make the switch distance defined, and let J be the markers
where no changes are needed. Then our generalized switch distance is defined as
Sd/({hv h/}v {fv f/}) = BTTOTS({}L, h’/}a {fv f/}) + SdJ(({h’ h/}v {f7 f/}) where sd;
is switch distance restricted on J.

Another possibility, used by some authors [13,22], is just to ignore incon-
sistent markers and report the basic switch distance on the remaining markers;
denote this distance by sd”. In our tests, we needed sd’ and sd” only for the
Daly et al. dataset [19].

The relative versions of these distances are obtained by dividing by the total
number of heterozygote sites of the genotypes minus the number of genotypes.



4.3 Comparison Results

Figure 2 shows how the performance of HIT depends on the number of founders.
We see that increasing the number of founders consistently increases the good-
ness of fit to the data, as expected. However, overfitting does not seem to impede
the performance of HIT in phasing. For example, for the Daly et al. data HIT gives
the best result consistently for K > 4.

The effect of starting the EM algorithm from slightly different initial settings
is also shown in Figure 2, indicating a fairly robust behaviour. We note that the
correlation of the achieved data likelihood and switch distance is surprisingly
small. Thus the plain likelihood is perhaps not the best criterion for choosing
the model for haplotyping.
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Fig. 2. The phasing accuracy (vertical axis) as a function of the number of founders
(horizontal axis) for five real data sets. Shown the achieved total switch distance for 25
random restarts of HIT (in increasing order of likelihood), for 2 to 9 founders. For the
Daly et al. data also shown the growth of likelihood (top left); for the other datasets
the curves behave similarly (not shown). The results for PHASE [5, 22], GERBIL [9, 10],
and HAP [12], shown as vertical lines, were obtained with their default parameter values

Table 1 summarizes the phasing accuracy of HIT when we set the number of
founders K to 7, performed 25 restarts of the EM algorithm, and used the highest
likelihood HMM for haplotyping. We note that in the Daly et al. dataset the
handling of the missing data (sd’ or sd”) has a clear effect on the results, yet the
relative differences are about the same for both measures. The fact that GERBIL



treats an allele pair where one allele is missing as completely missing data,
explains its relatively poor performance w.r.t. sd” on the Daly et al. dataset. We
note that HIT always gives the best or second best result.

Table 1. Phasing accuracy of HIT (K = 7 founders), PHASE [5, 22], GERBIL [9, 10], and
HAP [12] on five real data sets, measured using switch distance. For the Daly et al.
dataset the first and the second line show switch distance sd’’ and sd’, respectively; for
the other cases all variants coincide. The relative distances are given in parentheses

Dataset HIT PHASE GERBIL HAP

Daly et al. 80 (0.021) 86 (0.023) 86 (0.023) 89 (0.024)
Daly et al. 185 (0.049) 195 (0.052) 296 (0.079) 210 (0.056)
Hinds et al. 829 (0.093) 343 (0.097) 373 (0.11) 319 (0.090)
Populationl 82 (0.24) 73 (0.21) 86 (0.25) 90 (0.26)
Population2 219 (0.17) 202 (0.15) 262 (0.20) 234 (0.18)
Population3 194 (0.16) 194 (0.16) 257 (0.22) 225 (0.19)

Table 2 displays the running times of the compared methods. Clearly, GER-
BIL and HAP are very fast, whereas PHASE becomes rather slow for the largest
datasets. The speed of HIT (Java implementation) per EM restart is comparable
to the speed of GERBIL and HAP, but slower when tens of restarts are used. Yet,
HIT scales nicely to large datasets, opposite to PHASE.

Table 2. The running time in seconds for HIT (K = 7 founders, median over 25 EM
restarts), PHASE [5, 22|, GERBIL [9, 10], and HAP [12] on five real data sets. HAP was run
on its own server, the other programs on a Pentium IV 3.0 GHz with 1 GB of RAM.

Dataset HIT PHASE GERBIL HAP

Daly et al. 126 9290 45 25
Hinds et al. 88 71100 52 2
Populationl 9 773 19
Population2 28 5180 89
Population3 29 4520 10
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