Skip to main content

A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3732))

Included in the following conference series:

  • 1399 Accesses

Abstract

A big challenge in implementing up to date simulation software for various applications is to bring together highly efficient mathematical methods on the one hand side and an efficient usage of modern computer archtitectures on the other hand. We concentrate on the solution of PDEs and demonstrate how to overcome the hereby occuring quandary between cache-efficiency and modern multilevel methods on adaptive grids. Our algorithm is based on stacks, the simplest possible and thus very cache-efficient data structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aftosmis, M.J., Berger, M.J., Adomavivius, G.: A Parallel Multilevel Method for adaptively Refined Cartesian Grids with Embedded Boundaries. AIAA Paper (2000)

    Google Scholar 

  2. Brualdi, R.A., Shader, B.L.: On sign-nonsingular matrices and the conversion of the permanent into the determinant. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and DiscreteMathematics, The Victor Klee Festschrift, Providence, RI, pp. 117–134. American Mathematical Society (1991)

    Google Scholar 

  3. Bornemann, F.A.: An adaptive multilevel approach to parabolic equations III: 2D error estimation and multilevel preconditioning. IMPACT Computational Science and Engeneering 4, 1–45 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Braess: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Chatterjee, S., Sen, S.: Chache-Efficient Matrix Transposition. In: Proceedings of HPCA-6, Toulouse, France, January 2000, pp. 195–205 (2000)

    Google Scholar 

  6. Chatterjee, S., Lebeck, A.R., Patnala, P.K., Thottethodi, M.: Recursive array layouts and fast parallel matrix multiplication. In: Proceedings of Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures, Saint-Malo, France, pp. 222–231 (1999)

    Google Scholar 

  7. Clarke, W.: Key-based parallel adaptive refinement for FEM. Bachelor thesis, Australian National Univ., Dept. of Engineering (1996)

    Google Scholar 

  8. Demaine, E.D.: Cache-Oblivious Algorithms and Data Structures. In: Lecture Notes from the EEF Summer School on Massive Data Sets, BRICS, University of Aarhus, Denmark, June 27-July 1. LNCS (2002) (to appear)

    Google Scholar 

  9. Frigo, M., Leierson, C.E., Prokop, H., Ramchandran, S.: Cache-oblivious algorithms. In: Proceedings of the 40th Annual Sympoisium on Foundations of Computer Science, New York, October 1999, pp. 285–297 (1999)

    Google Scholar 

  10. Günther, F.: Eine cache-optimale Implementierung der Finite-Elemente-Methode. Doctoral thesis, Institut für Informatik, TU München (2004)

    Google Scholar 

  11. Griebel, M.: Multilevelverfahren als Iterationsmethoden über Erzeugendensystemen. Habilitationsschrift, TU München (1993)

    Google Scholar 

  12. Griebel, M., Knapek, S., Zumbusch, G., Caglar, A.: Numerische Simulation in der Moleküldynamik. In: Numerik, Algorithmen, Parallelisierung, Anwendungen, Springer, Heidelberg (2004)

    Google Scholar 

  13. Griebel, M., Zumbusch, G.W.: Parallelmultigrid in an adaptive PDEsolver based on hashing and space-filling curves. Parallel Computing 25, 827–843 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Griebel, M., Zumbusch, G.: Hash based adaptive parallel multilevel methods with spacefilling curves. In: Rollnik, H., Wolf, D. (eds.), Germany. NIC Series, vol. 9, pp. 479–492. Forschungszentrum Jülich (2002)

    Google Scholar 

  15. Oden, J.T., Para, A., Feng, Y.: Domain decomposition for adaptive hp finite elementmethods. In: Keyes, D.E., Xu, J. (eds.) Domain decompositionmethods in scientific and engineering computing, proceedings of the 7th int. conf. on domain decomposition. Contemp. Math, vol. 180, pp. 203–214. Pennsylvania State Universitiy (1994)

    Google Scholar 

  16. Patra, A.K., Long, J., Laszloff, A.: Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations, pp. 359–363. HiPC (1999)

    Google Scholar 

  17. Pögl, M.: Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für große Probleme. Doctoral thesis, Institut für Informatik, TU München (2004)

    Google Scholar 

  18. Prokop, H.: Cache-Oblivious Algorithms. Master Thesis, Massachusetts Institute of Technology (1999)

    Google Scholar 

  19. Roberts, S., Klyanasundaram, S., Cardew-Hall, M., Clarke, W.: Akey based parallel adaptive refinement technique for finite element methods. In: Noye, B.J., Teubner, M.D., Gill, A.W. (eds.) Proc. Computational Techniques and Applications: CTAC 1997, pp. 577–584. World Scientific, Singapore (1998)

    Google Scholar 

  20. Sagan, H.: Space-Filling Curves. Springer, New York (1994)

    MATH  Google Scholar 

  21. Stevens, R.J., Lehar, A.F., Preston, F.H.: Manipulation and Presentation ofMultidimensional Image Data Using the Peano Scan. IEEE Trans. Pattern An. and Machine Intelligence PAMI-5, 520–526 (1983)

    Article  Google Scholar 

  22. Velho, L., de Miranda Gomes, J.: Digital Halftoning with Space-Filling Curves. Computer Graphics 25, 81–90 (1991)

    Article  Google Scholar 

  23. Zumbusch, G.W.: Adaptive Parallel Multilevel Methods for Partial Differential Equations. Habilitationsschrift, Universität Bonn (2001)

    Google Scholar 

  24. Zumbusch, G.W.: On the quality of space-filling curve induced partitions. Z. Angew. Math. Mech. 81, 25–28 (2001), Suppl. 1, also as report SFB 256, University Bonn, no. 674 (2000)

    Google Scholar 

  25. Weidendorfer, J., Kowarschik, M., Trinitis, C.: A Tool Suite for Simulation Based Analysis of Memory Access Behavior. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 440–447. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. http://user.it.uu.se/mikpe/linux/perfctr/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Günther, F., Mehl, M., Pögl, M., Zenger, C. (2006). A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2004. Lecture Notes in Computer Science, vol 3732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558958_106

Download citation

  • DOI: https://doi.org/10.1007/11558958_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29067-4

  • Online ISBN: 978-3-540-33498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics