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Abstract. We describe the parallelization of an efficient algorithm for balanced
truncation that allows to reduce models with state-space dimension up to O(10°).
The major computational task in this approach is the solution of two large-
scale sparse Lyapunov equations, performed via a coupled LR-ADI iteration with
(super-)linear convergence. Experimental results on a cluster of Intel Xeon proces-
sors illustrate the efficacy of our parallel model reduction algorithm.

1 Introduction

Consider the continuous linear time-invariant (LTI) dynamical system in state-space
form:
i(t) = Az(t) + Bu(t), t>0, =x(0)=2°,
y(t) = Ca(t) + Du(t), t>0,

where A € R"*™ B € R**™ C € RPX" D ¢ RP*™ and 20 € R"™ is the initial state

of the system. Also, the number of states, n, is known as the state-space dimension (or

the order) of the system, and the associated transfer function matrix (TFM) is defined

by G(s) = C(sI — A)~!B + D. Hereafter, we assume that the spectrum of the state

matrix, A, is contained in the open left half plane, implying that the system is stable.
The model reduction problem requires finding a reduced-order LTI system,

(1.1)

i(t) = Ae(t) + Ba(t), t>0, &(0)=2i°,

R R 1.2
§(t) = Ci(t) + Da(t), 120, (-2

of order 7, r < n, and associated TEM G(s) = C(sI — A)~'B + D which approxi-
mates G(s). The reduced-order model can then replace the original high-order system
in subsequent calculations including, e.g., the design of controllers [19], thus saving
valuable hardware resources.
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Model reduction of moderately large linear systems (n in the hundreds) arises, e.g.,
in control of large flexible mechanical structures or large power systems [S/ZI8ITTI20].
Problems of such dimension can be reduced using libraries such as SLICOTH or the
MATLAB control-related toolboxes on current desktop computers. Larger problems can
still be reduced by using the methods in PLiCMRH on parallel computers [3/4]]. Never-
theless, the applicability of these methods is ultimately limited as they do not exploit
the usual sparse structure of the state matrix A and thus present a computational cost
of O(n?) floating-point arithmetic operations (flops) and require storage for O(n?) real
numbers.

Therefore, a different approach is necessary for very large sparse systems, with
state-space dimension as high as O(105)-O(106), such as those arising, among others,
in weather forecast, circuit simulation and VLSI design, as well as air quality simulation
(see, e.g., [2I6/13114]). The model reduction method considered in this paper is based
on the so-called state-space truncation and requires, at a first stage, the solution of two
large sparse Lyapunov equations whose coefficient matrix is the state matrix of the
system. A low-rank iteration is employed for this purpose which only involves
sparse numerical computations such as the solution of linear systems and matrix-vector
products. The reduced-order system is then obtained using a slightly modified version
of the balanced truncation (BT) method [4/21]], and only requires dense linear algebra
operations on much smaller data matrices.

Although there exist several other approaches for model reduction (see [2/12] and
the references therein), those are specialized for certain problem classes and often lack
properties such as error bounds or preservation of stability, passivity, or phase informa-
tion. A complete comparison between the numerical properties of SVD-based methods
(as BT) and Krylov subspace methods can be found in [2].

The paper is structured as follows. In Section [2] we briefly review the method for
model reduction of sparse linear systems, based on the BT method and low-rank solvers
for the Lyapunov equations arising in state-space truncation. In Section 3l we describe a
few parallelization and implementation details of our model reduction algorithm. Finally,
the efficacy of the algorithm is reported in Section[d, and some concluding remarks follow
in Section

2 Model Reduction of Sparse Linear Systems

2.1 The Square-Root BT Method
BT model reduction [[18l23124/25]] belongs to the family of absolute error methods which

aim at minimizing || Ay |lee = ||G — G||oe. Here |G| denotes the £ or Hao-norm
of a stable, rational matrix function defined as
[Glloo = SUp omax(G(9w)), (2.3)
weR

where 7 := v/—1and Omax (M) stands for the largest singular value of M.

3 Available from http://www.slicot.net
4 Available from http://spine.act.uji.es/ plicmr.html
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BT methods are strongly related to the controllability Gramian W, and the observ-
ability Gramian W, of the system[II] given by the solutions of the two dual Lyapunov
matrix equations:

AW, + W, AT + BBT =0, ATW,+W,A+CTC =0. (2.4)

As the state matrix A is assumed to be stable, W, and W, are positive semidefinite
and therefore can be factored as W, = STS and W, = RT R, where S and R are the
corresponding Cholesky factors.

Efficient Lyapunov solvers that exploit the sparsity of the coefficient matrix A and
provide full-rank factors S and R that can replace S and R in subsequent computations
are described in the next subsection.

Consider now the singular value decomposition (SVD) of the product

2

2

SRT =uxvT = U, U,] (Vi va", (2.5)

where U and V' are orthogonal matrices, and X' = diag (01,09, ...,0,) is a diagonal
matrix containing the singular values o7, . .., o, of SR, which are called the Hankel
singular values of the system.

Both common versions of BT, the square-root (SR) and balancing-free square-root
(BFSR) BT algorithms, allow an adaptive choice of the state-space dimension r of the
reduced-order model as they provide a realization G which satisfies

[Aalloo = |G — é”oo <2 Z aj. (2.6)

j=r+1

Besides, if 0, > 0,41 = 0, then r is the state-space dimension of a minimal realization
of the system.
SR BT methods determine the reduced-order model of order r as

A=TAT,, B=T,B, C=CT,, D=D, 2.7
with the projection matrices 7; and 7). given by
T, =2"*V'R and T,=STU 5,2 (2.8)

BFSR BT algorithms often provide more accurate reduced-order models in the pres-
ence of rounding errors.These algorithms obtain 7; and 7). from the following two QR
factorizations,

R

STU, = [Py Py ; R™Vi = [Q1 Q1]

R,
, 2.9
. (2.9)

where the columns of P;, Q1 € R"™ " form orthonormal bases for range(7;.),
range(T}), respectively, and Rs, R, € R"*" are upper triangular. The reduced sys-
tem is then given by [2.7]and the projection matrices

T =(QP)'Qf, T.=Pr. (2.10)
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2.2 Low Rank Solution of Lyapunov Equations

In this subsection we revisit the Lyapunov solvers introduced in [17/22]). These iterative
algorithms benefit from the frequently encountered low-rank property of the constant
terms in[2.4]to provide low-rank approximations to a Cholesky or full-rank factor of the
solution matrix. These approximations can reliably substitute S'and R in the computation
of 2.5l 2-8] and

Specifically, given an “I-cyclic” set of (complex) shift parameters {p1,p2,...},
pr = ag + Bk g, such that p, = pg, the cyclic low-rank alternating direction implicit
(LR-ADI) iteration proposed in [22] can be reformulated as follows:

Vo=(A+pil,) B, So = v~2 a1 Vp,

. ) @2.11)
Vitr = Vi — (A + pi41Ln) ™ Vi, Skp1 = [Sk , ’Yka+1} ,

where v, = \/ak+1/ak, Ok = Pk+1 + Pk, P being the conjugate of py, and I,, denotes
the identity matrix of order n. On convergence, after ky,,x iterations, a low-rank matrix
S, of order n X kyaxm is computed such that SkST approximates W, = STS. An
analogous iteration involving A7 provides a low-rank approximation Ry of R.

The performance of iteration 2.11] strongly depends on the selection of the shift pa-
rameters. In practice, the set {p1, pa2, ..., p;} should be chosen so that it is closed under
complex conjugation. In case the eigenvalues of A are real, the optimal parameters can
be computed explicitly [27]. Otherwise, an optimal solution is not known. A heuristic
procedure is proposed in [22]] to compute the parameters by approximating the eigenval-
ues of A and A~! of largest magnitude. The procedure is based on an Arnoldi iteration
involving A and A~!. For further details on the convergence of the LR-ADI iteration
and the properties of the heuristic selection procedure, see [22].

It should be emphasized that the methods just described for solving2.4and2.3lsignif-
icantly differ from standard methods used in the MATLAB toolboxes or SLICOT [26].
First, the proposed LR-ADI iteration for the solution of the dual Lyapunov equation
exploits the sparsity in the coefficient matrix. Besides, as we are using low-rank ap-
proximations to the full-rank or Cholesky factors, the computation of the SVD in[2.3lis
usually much more efficient: instead of a computational cost of O(n?) when using the
Cholesky factors, this approach leads to an O(k2,., - m - p - n) cost where, in model
reduction, often m, p < n; see [4]]. This latter advantage is shared by the routines in our
dense parallel model reduction library PLICMR [4]]. However, PLiCMR routines do not
exploit the sparsity of the coefficient matrix.

3 Parallel Implementation

3.1 Implementation Details

Iteration 2.11] can be stopped when the contribution of the columns added to §k+1 is
negligible; thus, in practice, we stop the iteration when ||y Vi11]]1 is “small”.

The use of direct linear system solvers (based, e.g., on the LU or Cholesky
factorization) is appealing as the same coefficient matrix is involved in iterations k
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and k£ + [. Therefore, the computed factorization can be re-used several times provided
sufficient workspace is available to store the factors. Also, many direct sparse solvers
that include an initial phase of symbolic factorization only need to perform this phase
once, as all linear systems share the same sparsity pattern.

Notice that even in case all data matrices are real, the LR-ADI iteration will involve
complex arithmetic in case any of the shifts is complex. Special care must be taken so that
all shifts are real in case all eigenvalues of A are real as that reduces the computational
cost of the iteration significantly.

3.2 Parallelization

The LR-ADI iteration and the computation of the acceleration shifts basically require
linear algebra operations such as matrix-vector products (in the Arnoldi procedure for
computation of the shifts for the iteration) and the solution of linear systems (also in the
computation of the shifts, and in the LR-ADI iteration). Our approach for dealing with
these matrix operations is based on the use of parallel linear algebra libraries. (For an
extensive list of those, visit

http://www.netlib.org/utk/people/JackDongarra/la-sw.html.)

Specifically, in case sparse matrices are involved, the matrix-vector products are
computed as a series of “usaxpy” (y = y + « - x) operations, with each process in
the parallel system performing, approximately, an equal amount of these operations.
Although beneficial, no attempt to balance the computational load is done here as the
contribution of the matrix-vector products to the cost of the model reduction algorithm
is a minor one: in practice, the number of matrix-vector products is proportional to the
number of different shifts, and much smaller than the number of linear systems that need
to be solved (one per iteration). Besides, the cost of a matrix-vector productis in general
much lower than that of solving a linear system.

Sparse linear systems can be solved in our parallel codes by using appropriate kernels
from MUMPS or SuperLU [19]]. In both cases, the analysis phase (corresponding to a
symbolic factorization) is performed only once for the iteration, and the factorization
phase is only performed during the first [ iterations.

In case the coefficient matrix is banded we use the linear system solvers in ScaLA-
PACK. We also implemented our own parallel routine for the banded matrix-vector
product as this is not available in the library.

Our parallel codes can also deal with dense linear systems using the kernels in
ScaLAPACK. However, in such case the methods in PLICMR (see [4] for an overview)
are preferred as the Lyapunov equation solvers used there have quadratic convergence
rate as opposed to the (super-)linear convergence of the ADI method at a comparable
cost of the remaining computational stages.

After the LR-ADI iteration is completed, the model reduction algorithm proceeds
to compute the product of SkRE as in and the reduced-order model using 2.8 or
As both Si, and Ry, are full dense factors, their product and the SVD are
computed using the kernels in ScaLAPACK. The SVD of a matrix with complex entries
is not available in ScaLAPACK. This difficulty is circumvented by collecting the product
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S, R{ into a single node and computing its SVD using the serial routine from LAPACK.
We exploit here that the size of the resulting matrix is order of Ky axm X kpaxp Which,
in general, is much smaller than n X n.

Once the projection matrices 7; and 7, have been computed, it only remains to
apply these matrices to form the reduced-order system (7;AT,.,T; B, CT,, D). These
matrix products are performed by taking into account the characteristics of matrices A,
B, and C' which can be sparse, banded, or dense. In the former two cases, the product
is computed as a series of matrix-vector products, while in the latter case we rely again
on the corresponding ScaLAPACK routine.

4 Experimental Results

All the experiments presented in this section were performed on a cluster of n,, = 32
nodes using IEEE double-precision floating-point arithmetic (¢ ~ 2.2204 x 10~'6). Each
node consists of an Intel Xeon processor at 2.4 GHz with 1 GByte of RAM. We employ
a BLAS library specially tuned for this processor that achieves around 3800 Mflops
(millions of flops per second) for the matrix product (routine DGEMM) [[13]]. The nodes
are connected via a Myrinet multistage network and the MPI communication library is
specially developed and tuned for this network. The performance of the interconnection
network was measured by a simple loop-back message transfer resulting in a latency of
18 psec. and a bandwidth of 1.4 Gbit/sec.

Our benchmark for model reduction of sparse systems consists of three scalable
models and serves to illustrate the benefits gained from applying model reduction via BT
combined with parallelism to large-scale systems. This is by no means a comparison of
the efficacy of the direct linear system solvers in MUMPS, SuperLU, and ScaLAPACK.
In order to avoid it, we report results using a different solver and problem size for each
example.

As in all our experiments both SR and BFSR BT algorithms delivered closely similar
results, we only report data for the first algorithm.

Example 1. This example models the heat diffusion in a (1-dimensional) thin rod with a
single heat source [3]]. The system is parameterized by a scalar « that we set to o = 0.1
in our experiments. The spatial domain is discretized into segments of length i = n_lH
and centered differences are used to approximate the diffusion operator. A heat point is
assumed to be located at 1/3 of the length of the rod and the temperature is recorded at
2/3 of the length.

In this case, a model of state-space dimension n = 10,000 was reduced to order
r = 85 using the sparse direct solvers in SuperL.U 2.0 (distr.) and [ = 50 different shifts
for the LR-ADI iteration. Only 16 nodes of the parallel system were used resulting in
the following execution times (expressed in minutes and seconds) for each one of the
stages of the algorithm:

Comp. shifts LR-ADIiter. Comp. SVD+SR Total
11.74” (11.3%) 1’ 28” (86.1%) 2.49” (2.4%) 1’42~

Thus, the computation of the reduced-order model required slightly more than 1.5
minutes. This is clearly a low temporal cost that we may be willing to pay for the great
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benefits obtained from using the reduced-order model in the subsequent computations
needed for simulation, optimization, or control purposes.

These results also show that the most expensive part of the model reduction procedure
was the LR-ADI iteration, which required about 86% of the total time. Notice that, as
[ = 50, this phase requires the computation of 50 matrix (LU) factorizations, while the
computation of the shifts only requires one factorization. Convergence was achieved for
this example after 128 iterations producing full-rank approximations of the Cholesky
factors, Sj, and Ry, of order 128 x n. Thus, the SVD computation only involved a square
matrix of order 128 requiring around 2.5 sec.

The reduced-order system obtained with our method satisfies the absolute error
bound ||G — G| & 1.91 x 10716, showing that it is possible to reduce the order of the
system from n = 10, 000 to 85 without a significative difference between the behavior
of the original and the reduced-order models. Actually, the reduced-order model can be
seen as a numerically minimal realization of the LTI system.

Example 2. The matrices in this case model the temperature distribution in a 2-D surface.
The state matrix of the system presents a block tridiagonal sparse structure of order
N? and is obtained from a discretization of the Poisson’s equation with the 5-point
operator on an N x NN mesh. The input and output matrices were constructed as B =
[e{, 015 ¢ N—l)] r (with e; € RY the first column of the identity matrix) and C' =
e, 1, O1un—2, 1] (withe; € RN(N=1)) A large system of order n = 202, 500, with
a single input and a single output, was reduced in this case to order » = 30. The parallel
algorithm employed MUMPS 4.3 as the direct linear system solver, [ = 15 shifts, and
16 nodes, resulting in the following execution times:

Comp. shifts LR-ADIiter. Comp.SVD+SR Total
9.62” (0.7%) 19’ 54" (97.6%) 19.9” (1.6%) 20’ 22”

Here, obtaining the reduced-order model required about 20 minutes. This time could

be further reduced by employing more nodes of the system. In this example the most
expensive part was again the LR-ADI iteration, which required the major part of the
execution time of the procedure. Convergence was achieved after 69 iterations, producing
a reduced-order model which satisfies |G — G oo & 3.2 x 10717, From this absolute
error bound we again conclude that, for this example, it is possible to reduce the order
of the system from n = 202, 500 to 30 without a significative difference between the
behavior of the original and the reduced-order models.
Example 3. The matrices in this example model a RLC circuit of ng sections intercon-
nected in cascade resulting in a system with n = 2n, states and a single input/output [16].
The system is parameterized by scalars R = 0.1, R = 1.0, C = 0.1, and L = 0.1. The
state matrix in this example is tridiagonal.

In this third example we reduced a system of order n = 200, 000 and a single input
and output to order » = 50. Using the solver in ScaLAPACK 1.6 for banded linear
systems, | = 15 shifts for the LR-ADI iteration, and 16 nodes of the parallel system, the
model reduction algorithm required the following execution times:

Comp. shifts LR-ADI iter. Comp. SVD+SR Total
2.26” (7.4%) 5.14” (16.9%) 22.87” (75.4%) 30.33”
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The results show that scarcely more than half a minute was sufficient to reduce a
large scale system of order n = 200, 000. Convergence of the LR-ADI iteration was
achieved for this example after 57 iterations, resulting in a reduced-order system that,
for r = 50, satisfied |G — G[|oo < 4.9 x 10723,

There are two important differences between the results for Examples 2 and 3. First,
although the order of the models are of the same magnitude, the execution times for
Example 3 are much lower. This is due to the ability of the banded solvers in ScaLAPACK
to exploit the structure of the state matrix for Example 3. Second, the largest part of the
computation time lies for Example 3 in the computation of the SVD and the reduced-
order system (SVD+SR stage) while, for Example 2, it is spent in the LR-ADI iteration.
However, the execution times of the SVD+SR stage are comparable for both examples.
Thus, it is really the important reduction of the execution time of the LR-ADI iteration
which, for Example 3, produced the shift of the bulk of the computation time to the
SVD+SR stage.

5 Concluding Remarks

We have presented parallel algorithms for BT model reduction of large sparse (and dense)
linear systems of order as large as O(10°). Our model reduction algorithms employ ker-
nels from parallel linear algebra libraries such as SuperLU, MUMPS, and ScaLAPACK.
Three large-scale models are used in the experimental results to illustrate the benefits
gained from applying model reduction via BT combined with parallel execution and to
report the performance of the approach on a cluster of Intel Xeon processors.

The parallelism of our approach depends on the problem structure and the parallelism
of the underlying parallel linear algebra library (SuperLU, MUMPS, or the banded codes
in ScaLAPACK).
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