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Abstract. Most earlier studies of DHTs under churn have
either depended on simulations as the primary investigation
tool, or on establishing bounds for DHTs to function. In this
paper, we present a complete analytical study of churn using
a master-equation-based approach, used traditionally in non-
equilibrium statistical mechanics to describe steady-state or
transient phenomena. Simulations are used to verify all the-
oretical predictions. We demonstrate the application of our
methodology to the Chord system. For any rate of churn and
stabilization rates, and any system size, we accurately predict
the fraction of failed or incorrect successor and finger point-
ers and show how we can use these quantities to predict the
performance and consistency of lookups under churn. We also
discuss briefly how churn may actually be of different ’types’
and the implications this will have for the functioning of DHTs
in general.

1 Introduction

Theoretical studies of asymptotic performance bounds of
DHTs under churn have been conducted in works like [6, 2].
However, within these bounds, performance can vary substan-
tially as a function of different design decisions and config-
uration parameters. Hence simulation-based studies such as
[5, 8, 3] often provide more realistic insights into the perfor-
mance of DHTs. Relying on an understanding based on sim-
ulations alone is however not satisfactory either, since inthis
case, the DHT is treated as a black box and is only empirically
evaluated, under certain operation conditions. In this paper we
present an alternative theoretical approach to analyzing and un-
derstanding DHTs, which aims for an accurate prediction of
performance, rather than on placing asymptotic performance
bounds. Simulations are then used to verify all theoreticalpre-
dictions.

Our approach is based on constructing and working with
master equations, a widely used tool wherever the mathemati-
cal theory of stochastic processes is applied to real-worldphe-
nomena [7]. We demonstrate the applicability of this approach
to one specific DHT: Chord [9]. For Chord, it is natural to de-
fine the state of the system as the state of all its nodes, where
the state of an alive node is specified by the states of all its
pointers. These pointers (either fingers or successors) arethen
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in one of three states: alive and correct, alive and incorrect or
failed. A master equation for this system is simply an equa-
tion for the time evolution of the probability that the system is
in a particular state. Writing such an equation involves keep-
ing track of all the gain/loss terms which add/detract from this
probability, given the details of the dynamics. This approach
is applicable to any P2P system (or indeed any system with a
discrete set of states).

Our main result is that, for every outgoing pointer of a Chord
node, we systematically compute the probability that it is in
any one of the three possible states, by computing all the gain
and loss terms that arise from the details of the Chord proto-
col under churn. This probability is different for each of the
successor and finger pointers. We then use this information to
predict both lookup consistency (number of failed lookups)as
well as lookup performance (latency) as a function of the pa-
rameters involved. All our results are verified by simulations.

The main novelty of our analysis is that it is carried out en-
tirely from first principlesi.e. all quantities are predicted solely
as a function of the parameters of the problem: the churn rate,
the stabilization rate and the number of nodes in the system.It
thus differs from earlier related theoretical studies where quan-
tities similar to those we predict, were either assumed to be
given[10], or measurednumerically [1].

Closest in spirit to our work is the informal derivation in
the original Chord paper [9] of the average number of time-
outs encountered by a lookup. This quantity was approximated
there by the product of the average number of fingers used in
a lookup times the probability that a given finger points to a
departed node. Our methodology not only allows us to de-
rive the latter quantity rigorously but also demonstrates how
this probability depends on which finger (or successor) is in-
volved. Further we are able to derive an exact relation relating
this probability to lookup performance and consistency accu-
rately at any value of the system parameters.

2 Assumptions & Definitions

Basic Notation. In what follows, we assume that the reader is
familiar with Chord. However we introduce the notation used
below. We useK to mean the size of the Chord key space and
N the number of nodes. LetM = log2K be the number of fin-
gers of a node andS the length of the immediate successor list,
usually set to a value= O(log(N)). We refer to nodes by their
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keys, so a noden implies a node with keyn ∈ 0 · · · K − 1. We
usep to refer to the predecessor,s for referring to the successor
list as a whole, andsi for the ith successor. Data structures of
different nodes are distinguished by prefixing them with a node
key e.g.n′.s1, etc. Letfini.startdenote the start of theith fin-
ger (Where for a noden, ∀i ∈ 1..M, n.fini.start = n+2i−1)
andfini.nodedenote the actual node pointed to by that finger.

Steady State Assumption.λj is the rate of joins per node,
λf the rate of failures per node andλs the rate of stabilizations
per node. We carry out our analysis for the general case when
the rate of doing successor stabilizationsαλs, is not necessarily
the same as the rate at which finger stabilizations(1 − α)λs

are performed. In all that follows, we impose the steady state
conditionλj = λf . Further it is useful to definer ≡ λs

λf
which

is the relevant ratio on which all the quantities we are interested
in will depend, e.g,r = 50 means that a join/fail event takes
place every half an hour for a stabilization which takes place
once every36 seconds.

Parameters. The parameters of the problem are hence:K,
N , α andr. All relevant measurable quantities should be en-
tirely expressible in terms of these parameters.

Chord Simulation. We use our own discrete event simula-
tion environment implemented in Java which can be retrieved
from [4]. We assume the familiarity of the reader with Chord,
however an exact analysis necessitates the provision of a few
details. Successor stabilizations performed by a noden onn.s1
accomplish two main goals:i) Retrieving the predecessor and
successor list of ofn.s1 and reconciling withn’s state. ii)
Informingn.s1 thatn is alive/newly joined. A finger stabiliza-
tion picks one finger at random and looks up its start. Lookups
do not use the optimization of checking the successor list be-
fore using the fingers. However, the successor list is used asa
last resort if fingers could not provide progress. Lookups are
assumed not to change the state of a node. For joins, a new
nodeu finds its successorv through some initial random con-
tact and performs successor stabilization on that successor. All
fingers ofu that havev as an acceptable finger node are set tov.
The rest of the fingers are computed as best estimates fromv′s
routing table. All failures are ungraceful. We make the simpli-
fying assumption that communication delays due to a limited
number of hops is much smaller than the average time interval
between joins, failures or stabilization events. However,we do
not expect that the results will change much even if this were
not satisfied.

Averaging. Since we are collecting statistics like the proba-
bility of a particular finger pointer to be wrong, we need to re-
peat each experiment100 times before obtaining well-averaged
results. The total simulation sequential real time for obtaining
the results of this paper was about1800 hours that was par-

allelized on a cluster of14 nodes where we hadN = 1000,
K = 220, S = 6, 200 ≤ r ≤ 2000 and0.25 ≤ α ≤ 0.75.

3 The Analysis
3.1 Distribution of Inter-Node Distances
During churn, the inter-node distance (the difference between
the keys of two consecutive nodes) is a fluctuating variable.An
important quantity used throughout the analysis is the pdf of
inter-node distances. We define this quantity below and state
a theorem giving its functional form. We then mention three
properties of this distribution which are needed in the ensuing
analysis. Due to space limitations, we omit the proof of this
theorem and the properties here and provide them in [4].

Definition 3.1 LetInt(x) be the number of intervals of length
x, i.e. the number of pairs of consecutive nodes which are sep-
arated by a distance ofx keys on the ring.

Theorem 3.1 For a process in which nodes join or leave with
equal rates (and the number of nodes in the network is almost
constant) independently of each other and uniformly on the
ring, The probability (P (x) ≡ Int(x)

N ) of finding an interval
of lengthx is:
P (x) = ρx−1(1− ρ) whereρ = K−N

K
and1− ρ = N

K

The derivation of the distributionP (x) is independent of any
details of the Chord implementation and depends solely on the
join and leave process. It is hence applicable to any DHT that
deploys a ring.

Property 3.1 For any two keysu and v, wherev = u + x,
let bi be the probability that the first node encountered inbe-
tween these two keys is atu + i (where0 ≤ i < x− 1). Then
bi ≡ ρi(1− ρ). The probability that there is definitely atleast
one node betweenu andv is: a(x) ≡ 1− ρx. Hence the condi-
tional probability that the first node is at a distancei given that
there is atleast one node in the interval isbc(i, x) ≡ b(i)/a(x).

Property 3.2 The probability that a node and atleast one
of its immediate predecessors share the samekth finger is
p1(k) ≡ ρ

1+ρ(1 − ρ2
k−2). This is∼ 1/2 for K >> 1 and

N << K.Clearly p1 = 0 for k = 1. It is straightforward
(though tedious) to derive similar expressions forp2(k) the
probability that a node and atleast two of its immediate pre-
decessors share the samekth finger,p3(k) and so on.

Property 3.3 We can similarly assess the probability that the
join protocol (see previous section) results in further replica-
tion of thekth pointer. That is, the probability that a newly
joined node will choose thekth entry of its successor’s finger
table as its ownkth entry ispjoin(k) ∼ ρ(1− ρ2

k−2−2) + (1−

ρ)(1 − ρ2
k−2−2) − (1 − ρ)ρ(2k−2 − 2)ρ2

k−2−3. The function
pjoin(k) = 0 for smallk and1 for largek.
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Figure 1: Theory and Simulation forw1(r, α), d1(r, α), I(r, α)

Figure 2: Changes inW1, the number of wrong (failed or out-
dated)s1 pointers, due to joins, failures and stabilizations.

3.2 Successor Pointers

In order to get a master-equation description which keeps all
the details of the system and is still tractable, we make the
ansatz that the state of the system is the product of the states
of its nodes, which in turn is the product of the states of all
its pointers. As we will see this ansatz works very well. Now
we need only consider how many kinds of pointers there are
in the system and the states these can be in. Consider first the
successor pointers.

Let wk(r, α), dk(r, α) denote the fraction of nodes hav-
ing awrongkth successor pointer or afailed one respectively
andWk(r, α), Dk(r, α) be the respectivenumbers. A failed
pointer is one which points to a departed node and awrong
pointer points either to an incorrect node (alive but not correct)
or a dead one. As we will see, both these quantities play a role
in predicting lookup consistency and lookup length.

By the protocol for stabilizing successors in Chord, a node

Change inW1(r, α) Rate of Change
W1(t+∆t) = W1(t) + 1 c1 = (λj∆t)(1− w1)
W1(t+∆t) = W1(t) + 1 c2 = λf (1− w1)

2∆t
W1(t+∆t) = W1(t)− 1 c3 = λfw

2
1∆t

W1(t+∆t) = W1(t)− 1 c4 = αλsw1∆t
W1(t+∆t) = W1(t) 1− (c1 + c2 + c3 + c4)

Table 1: Gain and loss terms forW1(r, α): the number of
wrong first successors as a function ofr andα.

periodically contacts its first successor, possibly correcting it
and reconciling with its successor list. Therefore, the number
of wrongkth successor pointers are not independent quantities
but depend on the number of wrong first successor pointers.
We consider onlys1 here.

We write an equation forW1(r, α) by accounting for all the
events that can change it in a micro event of time∆t. An illus-
tration of the different cases in which changes inW1 take place
due to joins, failures and stabilizations is provided in figure 2.
In some casesW1 increases/decreases while in others it stays
unchanged. For each increase/decrease, table 1 provides the
corresponding probability.

By our implementation of the join protocol, a new nodeny,
joining between two nodesnx andnz, has itss1 pointer always
correct after the join. However the state ofnx.s1 before the join
makes a difference. Ifnx.s1 was correct (pointing tonz) before
the join, then after the join it will be wrong and thereforeW1

increases by1. If nx.s1 was wrong before the join, then it will
remain wrong after the join andW1 is unaffected. Thus, we
need to account for the former case only. The probability that
nx.s1 is correct is1− w1 and from that follows the termc1.

For failures, we have4 cases. To illustrate them we use
nodesnx, ny, nz and assume thatny is going to fail. First,



if both nx.s1 andny.s1 were correct, then the failure ofny

will make nx.s1 wrong and henceW1 increases by1. Sec-
ond, ifnx.s1 andny.s1 were both wrong, then the failure ofny

will decreaseW1 by one, since one wrong pointer disappears.
Third, if nx.s1 was wrong andny.s1 was correct, thenW1 is
unaffected. Fourth, ifnx.s1 was correct andny.s1 was wrong,
then the wrong pointer ofny disappeared andnx.s1 became
wrong, thereforeW1 is unaffected. For the first case to happen,
we need to pick two nodes with correct pointers, the probabil-
ity of this is(1−w1)

2. For the second case to happen, we need
to pick two nodes with wrong pointers, the probability of this
is w2

1. From these probabilities follow the termsc2 andc3.
Finally, a successor stabilization does not affectW1, unless

the stabilizing node had a wrong pointer. The probability of
picking such a node isw1. From this follows the termc4.

Hence the equation forW1(r, α) is:

dW1

dt
= λj(1−w1) + λf (1− w1)

2 − λfw
2
1 − αλsw1

Solving forw1 in the steady state and puttingλj = λf , we get:

w1(r, α) =
2

3 + rα
≈

2

rα
(1)

This expression matches well with the simulation results as
shown in figure 1.d1(r, α) is then≈ 1

2w1(r, α) since when
λj = λf , about half the number of wrong pointers are incorrect
and about half point to dead nodes. Thusd1(r, α) ≈

1
rα which

also matches well the simulations as shown in figure 1. We can
also use the above reasoning to iteratively getwk(r, α) for any
k.

Lookup ConsistencyBy the lookup protocol, a lookup is
inconsistent if the immediate predecessor of the sought key
has an wrongs1 pointer. However, we need only consider the
case when thes1 pointer is pointing to an alive (but incorrect)
node since our implementation of the protocol always requires
the lookup to return an alive node as an answer to the query.
The probability that a lookup is inconsistentI(r, α) is hence
w1(r, α) − d1(r, α). This prediction matches the simulation
results very well, as shown in figure 1.

3.3 Failure of Fingers

We now turn to estimating the fraction of finger pointers which
point to failed nodes. As we will see this is an important quan-
tity for predicting lookups. Unlike members of the successor
list, alive fingers even if outdated, always bring a query closer
to the destination and do not affect consistency. Thereforewe
consider fingers in only two states, alive or dead (failed).

Letfk(r, α) denote the fraction of nodes having theirkth fin-
ger pointing to a failed node andFk(r, α) denote the respective
number. For notational simplicity, we write these as simplyFk

Figure 4: Changes inFk, the number of failedfink pointers,
due to joins, failures and stabilizations.

Fk(t+∆t) Rate of Change
= Fk(t) + 1 c1 = (λj∆t)pjoin(k)fk
= Fk(t)− 1 c2 = (1− α) 1

M
fk(λs∆t)

= Fk(t) + 1 c3 = (1− fk)
2[1− p1(k)](λf∆t)

= Fk(t) + 2 c4 = (1− fk)
2(p1(k)− p2(k))(λf∆t)

= Fk(t) + 3 c5 = (1− fk)
2(p2(k)− p3(k))(λf∆t)

= Fk(t) 1− (c1 + c2 + c3 + c4 + c5)

Table 2: Some of the relevant gain and loss terms forFk, the
number of nodes whosekth fingers are pointing to a failed
node fork > 1.

andfk. We can predict this function for anyk by again esti-
mating the gain and loss terms for this quantity, caused by a
join, failure or stabilization event, and keeping only the most
relevant terms. These are listed in table 2.

A join event can play a role here by increasing the number
of Fk pointers if the successor of the joinee had a failedkth

pointer (occurs with probabilityfk) and the joinee replicated
this from the successor (occurs with probabilitypjoin(k) from
property 3.3).

A stabilization evicts a failed pointer if there was one to be-
gin with. The stabilization rate is divided byM, since a node
stabilizes any one finger randomly, every time it decides to sta-
bilize a finger at rate(1− α)λs.

Given a noden with an alivekth finger (occurs with prob-
ability 1 − fk), when the node pointed to by that finger fails,
the number of failedkth fingers (Fk) increases. The amount
of this increase depends on the number of immediate predeces-
sors ofn that were pointing to the failed node with theirkth

finger. That number of predecessors could be0, 1, 2,.. etc. Us-
ing property 3.2 the respective probabilities of those cases are:
1− p1(k), p1(k)− p2(k), p2(k) − p3(k),... etc.
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Solving forfk in the steady state, we get:

fk =

[

2P̃rep(k) + 2− pjoin(k) +
r(1−α)

M

]

2(1 + P̃rep(k))

−

√

[

2P̃rep(k) + 2− pjoin(k) +
r(1−α)

M

]2
− 4(1 + P̃rep(k))2

2(1 + P̃rep(k))

(2)

whereP̃rep(k) = Σpi(k). In principle its enough to keep
even three terms in the sum. The above expressions match very
well with the simulation results (figure 3).

3.4 Cost of Finger Stabilizations and Lookups

In this section, we demonstrate how the information about the
failed fingers and successors can be used to predict the cost
of stabilizations, lookups or in general the cost for reaching
any key in the id space. By cost we mean the number of hops
needed to reach the destinationincluding the number of time-
outs encountered en-route. For this analysis, we consider time-
outs and hops to add equally to the cost. We can easily gener-
alize this analysis to investigate the case when a timeout costs
some factorn times the cost of a hop.

DefineCt(r, α) (also denotedCt) to be the expected cost for
a given node to reach some target key which ist keys away
from it (which means reaching the first successor of this key).
For example,C1 would then be the cost of looking up the adja-
cent key (1 key away). Since the adjacent key is always stored
at the first alive successor, therefore if the first successoris alive
(occurs with probability1 − d1), the cost will be1 hop. If the
first successor is dead but the second is alive (occurs with prob-
ability d1(1 − d2)), the cost will be 1 hop + 1 timeout =2 and
theexpectedcost is2× d1(1− d2) and so forth. Therefore, we

haveC1 = 1−d1+2×d1(1−d2)+3×d1d2(1−d3)+ · · · ≈
1 + d1 = 1 + 1/(αr).

For finding the expected cost of reaching a general distance
t we need to follow closely the Chord protocol, which would
lookup t by first finding the closest preceding finger. For no-
tational simplicity, let us defineξ to be the start of the finger
(say thekth) that most closely precedest. Thust = ξ + m,
i.e. there arem keys between the sought targett and the start
of the most closely preceding finger. With that, we can write a
recursion relation forCξ+m as follows:

Cξ+m = Cξ [1− a(m)]

+ (1− fk)

[

a(m) +

m
∑

i=1

bm+1−iCi

]

+ fka(m)

[

1 +

k−1
∑

i=1

hk(i)

ξ/2i
∑

l=1

bc(l, ξ/2i)(1 + Cξi+1−l+m) + 2hk(k)

]

(3)

whereξi ≡
∑

m=1,i ξ/2
m andhk(i) is the probability that

a node is forced to use itsk − ith finger owing to the death
of its kth finger. The probabilitiesa, b, bc have already been
introduced in section 3.

The lookup equation though rather complicated at first sight
merely accounts for all the possibilities that a Chord lookup
will encounter, and deals with them exactly as the protocol dic-
tates. The first term accounts for the eventuality that thereis no
node intervening betweenξ andξ +m (occurs with probabil-
ity 1 − a(m)). In this case, the cost of looking forξ + m is
the same as the cost for looking forξ. The second term ac-
counts for the situation when a node does intervene inbetween



(with probabilitya(m)), and this node is alive (with probability
1− fk). Then the query is passed on to this node (with1 added
to register the increase in the number of hops) and then the cost
depends on the length of the distance between this node andt.
The third term accounts for the case when the intervening node
is dead (with probabilityfk). Then the cost increases by1 (for
a timeout) and the query needs to be passed back to the closest
preceding finger. We hence compute the probabilityhk(i) that
it is passed back to thek − ith finger either because the inter-
vening fingers are dead or share the same finger table entry as
thekth finger. The cost of the lookup now depends on the re-
maining distance to the sought key. The expression forhk(i) is
easy to compute using theorem3.1 and the expression for the
fk’s [4].

The cost for general lookups is hence

L(r, α) =
ΣK−1
i=1 Ci(r, α)

K

The lookup equation is solved recursively, given the coeffi-
cients andC1. We plot the result in Fig 3. The theoretical result
matches the simulation very well.

4 Discussion and Conclusion

We now discuss a broader issue, connected with churn, which
arises naturally in the context of our analysis. As we mentioned
earlier, all our analysis is performed in the steady state where
the rate of joins is the same as the rate of departures. However
this rate itself can be chosen in different ways. While we ex-
pect the mean behaviour to be the same in all these cases, the
fluctuations are very different with consequent implications for
the functioning of DHTs. The case where fluctuations play the
least role are when the join rate is “per-network” (Thenumber
of joinees does not depend on the current number of nodes in
the network) and the failure rate is “per-node” (the number of
failures does depend on the current number of occupied nodes).
In this case, the steady state condition isλj/N = λf guaran-
teeing thatN can not deviate too much from the steady state
value. In the two other cases where the join and failure rate
are both per-network or (as in the case considered in this pa-
per) both per-node, there is no such “repair” mechanism, and
a large fluctuation can (and will) drive the number of nodes
to extinction, causing the DHT to die. In the former case, the
time-to-die scales with the number of nodes as∼ N3 while in
the latter case it scales as∼ N2 [4]. Which of these ’types’ of
churn is the most relevant? We imagine that this depends on
the application and it is hence probably of importance to study
all of them in detail.

To summarize, in this paper, we have presented a detailed
theoretical analysis of a DHT-based P2P system, Chord, us-
ing a Master-equation formalism. This analysis differs from

existing theoretical work done on DHTs in that it aims not at
establishing bounds, but on precise determination of the rele-
vant quantities in this dynamically evolving system. From the
match of our theory and the simulations, it can be seen that we
can predict with an accuracy of greater than1% in most cases.

Apart from the usefulness of this approach for its own sake,
we can also gain some new insights into the system from it.
For example, we see that the fraction of dead finger pointers
fk is an increasing function of the length of the finger. Infact
for large enoughK, all the long fingers will be dead most of
the time, making routing very inefficient. This implies thatwe
need to consider a different stabilization scheme for the fingers
(such as, perhaps, stabilizing the longer fingers more oftenthan
the smaller ones), in order that the DHT continues to function
at high churn rates. We also expect that we can use this analysis
to understand and analyze other DHTs.
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