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Abstract. The weighted sum of squared differences cost function is of-
ten minimized to align two images with overlapping fields of view. If
one image is shifted with respect to the other, the cost function can be
written as a sum involving convolutions. This paper demonstrates that
performing these convolutions in the frequency domain saves a signifi-
cant amount of processing time when searching for a global optimum. In
addition, the method is invariant under linear intensity mappings. Ap-
plications include medical imaging, remote sensing, fractal coding, and
image photomosaics.

1 Introduction

One of the most common error metrics used in scientific applications is the
sum of squared differences (SSD). In image processing, the SSD cost function
is frequently used to asses the degree of similarity between two images. Im-
age registration, in particular, often uses this metric when judging what spatial
transformation brings two images of the same scene into alignment. It has been
shown that for images differing only by additive Gaussian noise, the SSD cost
function is the optimal choice [1]. Any problem that seeks to minimize the SSD
is called a “least-squares” problem.

Another common error metric is cross-correlation [2]. One of the reasons for
its popularity is the fact that its computation is equivalent to a convolution and
can therefore be evaluated efficiently in the frequency domain (see section 2.1
below). Without this speedup, performing image registration would be too slow,
particularly for 3D datasets or for large images (bigger than 1024 x 1024) such
as those common in X-ray imaging and remote sensing. This method is common
practice in medical image registration [3,4].

In many image registration applications, only a small portion of each image is
used to register the images. For example, one might have two overlapping aerial
photographs, as in Fig. 1. If you can outline a window of the overlap in one of the
photos, then finding the correct alignment of the two photos can be achieved by
shifting one image over the other and evaluating the error norm in that window.
The offset that gives the optimum norm value is called the optimal registration,
and should correspond to the correct position. This windowed registration is
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(a) Source Image (b) Target Image

Fig. 1. Overlapping aerial photographs. A region of the overlap is outlined in the target
image.

equivalent to a weighted registration problem, where all the pixels outside the
windowed region have a weight of zero.

It is sometimes necessary to cast the intensities of an image down to a scale
that has a limited range. For example, suppose the intensity values of two over-
lapping images have to be mapped to the range [0,255]. The way the cast is
typically done is to create a linear map such that the lowest intensity in the
image maps to 0, and highest to 255. If the intensity ranges of two overlapping
images is different, the intensity remappings will be different. This intensity cast-
ing causes corresponding pixels in the two images to have different intensities.
The mismatch confuses the cross-correlation and SSD cost functions, and can
lead to an incorrect registration result.

This paper proposes a method to efficiently compute the weighted SSD cost
function by representing it as a combination of convolutions. Also, the optimal
linear intensity remapping is determined with little additional effort.

2 Theory

2.1 Correlation Coefficient

When it comes to comparing images or functions, a common metric to mea-
sure the degree to which functions are similar is the Pearson’s cross-correlation,
defined as [2]

Cla) = A L@l —aydz
VI P @yde [ g2 (x)da

In this context, C(a) measures the correlation between the function f(x) and
the shifted function g(x — a). For example, if g is equal to f, then C'(a) achieves
its maximum value when a is zero (corresponding to no shift). This measure has
been used in automatic alignment algorithms in medical imaging [3,5,6].

(1)
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It is well known that the operation of convolution can be carried out by a
multiplication in the frequency domain. The convolution of two functions, f(x)
and g(x), is defined as

(f*9)a / f(@)gla - z)dz (2)

That is, the function g is flipped about x = 0 and shifted along the negative
x-axis by a distance a. To turn the numerator of (1) into a convolution, we define
a new function g(x) that is equal to g(—x). Then, we replace g(x —a) in (1) with
g(a — x). Now the numerator of (1) is a convolution between f(x) and g(x).

Consider the Fourier transform of the convolution, F{(f x g)(a)}. It is not
difficult to show that the Fourier transform of a convolution is equivalent to the
component-wise product of the two Fourier transforms (see Appendix B of [7]).
That is, F{(f x g)(a)} = F{f(z)}(s) - F{g(a — ) }(s). Thus, the numerator of
the cross-correlation function can be evaluated for all values of a by taking the
Fourier transform of each of f and g, multiplying the two sets of coefficients, and
then applying the inverse Fourier transform to the result. Finding the maximum
of this function with respect to a is simply a matter of scanning the evaluated
function C(a) for its maximum value. Note that if f and g are real-valued, then
C(a) will also be real-valued.

One of the problems with the correlation coefficient cost function is that it
cannot be used as a measure for weighted registration problems. For weighted
registration problems, we turn to the sum of squared differences (SSD) cost
function.

2.2 Weighted Sum of Squared Differences

Given the functions f(x) and g(x — a) as before, the weighted sum of squared
differences (SSD) registration of ¢ to f, with weighting function w, corresponds
to the value of a that minimizes

Ly (a) = / [£(z) - 9(z - a)] w(z - a)dz . 3)

The weighting function, w, is greater than or equal to zero over its entire domain.
For example, w could be a piecewise constant function that is zero everywhere
except in a region where the registration is to operate — there its value is 1.
Then, minimizing (3) is the same as moving w in concert with g, and limiting
the domain of the SSD calculation to only the region where w is non-zero. By
expanding the square brackets in (3), we get

/f a—x)dx+/g(a—x)w(a—x)dx
72/f gla — z)w(a — x)dx , (4)

where g is defined as before, and w is defined similarly. As with the evalua-
tion of the cross-correlation function, the weighted SSD cost function includes
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convolution-like terms. The first integral is a convolution between f? and w, and
changes with different values of a. We will denote it e;(a). The second integral
is a constant with respect to a since the weighting function moves with g. We
will denote this value as ez. Combining g and w so that their product g(z)w(z)
equals h(z), the last integral of (4) becomes the convolution [ f(z)h(a — z)dz.
We will denote this last integral as e3(a). Thus, the weighted SSD cost function
for a given displacement a is

Ly (a) = e1(a) + e — 2e3(a) . (5)

2.3 Intensity Remapping

In addition to finding the best match over all shifts, we can also find the best
match over all linear intensity remappings. That is, we wish to find the optimal
shift in conjunction with the optimal contrast and brightness adjustment to
make the corresponding parts of the two images as similar as possible. This
is analogous to replacing the intensity g(x) with sg(z) 4+ ¢ for some constants
s and t. Naturally, the optimal s and ¢ will depend on the shift, a. With an
intensity-remapped g, the weighted SSD error measure can be written

La(a,s) = [ £(@) =5 gla — @) — 6wl ) (6)

Now the problem becomes a minimization over a, s and ¢. In particular, for
every value of a, we wish to find the corresponding optimal values for s and ¢.
The optimal values can still be found efficiently since the convolution integrals
that arise can still be evaluated in the frequency domain. Writing F', G and W
instead of f(z), g(z — a) and w(xz — a), respectively, we expand the brackets in
(6) to get,

Lr(a, s, t):/ F2W + s°G*W — 2sFGW + *W — 2tFW — 2tsGWdz (7)
= e1(a) + s%eq — 2ses(a) + t?ey — 2tes(a) + 2tseg . (8)

Notice that (8) implies that e1, e3 and e5 are functions of a, while eq, e4 and eg are
constants (since g and w shift with each other). Only the integrals that involve f
with g or w change with respect to a. For any given value of a, (8) is a paraboloid
in s and ¢ that opens upward. The minimum value of the paraboloid can be
determined analytically by solving a simple 2 x 2 linear system of equations.
Hence, for a fixed a-value, the optimal s- and ¢-values are given by

s 1 €4 —€g es
M= I )
Although the theory derived here is for 1D functions, it can easily be gen-

eralized to higher dimensions. For the remainder of this paper, we will focus on
2D images.
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2.4 Algorithmic Complexity

All the above analysis involving the Fourier transform also carries over to the
discrete Fourier transform (DFT). The discrete 2D analog for (3) is

Lw(a) = Z Z (fid = Gia—b) Wi-aj—b - (10)

N
i=1 j=1

In this section, we compare the cost (measured in floating point operations,
or flops) of computing the optimal solution for (10) by the direct computation
method, to the cost of evaluating (10) by performing convolution in the frequency
domain.

Suppose f and g are N x N images. The direct method to evaluate (10)
involves simply evaluating the double-sum for every valid shift (a, b). For a single
value of (a,b), evaluating the double-sum requires adding together N2 terms, and
each term requires one subtraction and two multiplications (since squaring is a
multiplication). Thus, at 3 flops per term, the double-sum takes (3N? + N2 — 1)
flops to evaluate. Since there are N2 values of (a, b), evaluating (10) for all values
of (a,b) takes (4N* — N?) flops.

However, evaluating (10) by calculating the convolutions in the frequency
domain (via the form in (4)) takes O(N?log N) flops. This is because the Fast
Fourier Transform (FFT) of an N x N image takes at most 4N?log, N com-
plex operations (a complex multiplication followed by a complex addition) [8].
Each complex operation requires 8 flops, so the FFT takes at most 32N log, N
flops. To find the minimum of (4), a total of 5 FFTs need to be performed:
FFTs of f, f2, w, h, and an inverse FFT to transform the measure back to the
spatial domain. This brings the total number of flops to perform the FFTs to
160N?log, N. Other than the FFTs, the remaining tasks are all O(N?). These
tasks include evaluating the middle term in (4), and performing the element-by-
element multiplication of the Fourier transforms.

In many applications, the weighting function w is zero for a large portion of
the domain. To analyze this situation, assume that w is non-zero over a domain
of size M x M, where M < N. Then, the sum in (10) has only M? terms, and
hence the cost of evaluating it directly for a single value of a is (3M? + M? — 1)
flops, and the cost of evaluating it directly for all values of a is (4N?M? — N?)
flops, or O(N2M?).

Unfortunately, the Fourier method is not any cheaper to evaluate when M <
N; the cost is the same as if w were nonzero everywhere. However, the Fourier
method is still cheaper than the direct method if M? > log N.

The above complexity analysis is for the simple weighted SSD cost function
that does not include any intensity remapping. However, similar results are ob-
tained for the more complicated intensity remapping method. In (8), the terms
e1(a), es(a) and e5(a) all involve convolutions.
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3 Methods

We implemented both the direct method and the Fourier method in the C++
programming language. All the Fourier transforms were done using the FFTW
library [9]. Image data was stored in contiguous memory to improve the cache
coherency (i.e. to cut down on the number of cache misses). The direct method
evaluates the error norm for only those shifts that have the entire window (non-
zero part of w) completely inside f.

On a set of satellite images from Intermap Technologies Inc. (Englewood,
Colorado), we timed how long each method took to find the optimal shift and
intensity remapping parameters. The timings were run on a 2.4 GHz Intel Pen-
tium 4 machine with 2 gigabytes of RAM.

The images were shrunken to various sizes to get a more complete picture
of their performance on different scales. Figure 1 shows the two images that
were used, and the window for comparison. For the largest set of images, f had
dimensions 3008 x 3780, g and w had dimensions 3078 x 3845, and the window
had dimensions 490 x 2460. The four scaled-down sets of images had roughly %,

1 1 1 . . .
7» 5 and 5= the number of pixels in each image.

4 Results and Discussion

In all tests, both methods successfully determined the optimal translation and
intensity remapping parameters. Figure 2 shows the absolute difference image of
the two images merged using the optimal shift. The region of overlap is nearly
zero, indicating that the match is excellent.

The timing results are summarized in Fig. 3(a). The figure is a log-log plot
graphing the number of pixels in f (the source image) against the running time
in seconds. Note that f, g and w were all scaled equally for each execution. The
straight line of the direct method indicates that there is a power-law relationship
between the scale of the problem (in terms of number of pixels in f) and the
running time. The fact that the slope of the line is approximately 2 (with respect
to the logarithm of the axis labels) fits with the algorithmic complexity derived
earlier. In particular, it says that the computation time is proportional to the
square of the number of pixels in f (where f is N x N).

Fig. 2. Difference image of registered images.
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Fig. 3. Computation time and peak memory usage for the direct method and the
Fourier method. For each run, each of the images f, g and w were resized using the
same scale factor. Note that all axes are plotted in log scale.

The graph for the Fourier method is not as easy to interpret. However, the
graph is consistent with the complexity class derived above: O(N?log N).

To get a better feel for the meaning of Fig. 3(a), let us consider some example
timings. For the smallest dataset, in which f and g are roughly 615 x 760 and
the window is 96 x 480, the Fourier method took 1.36 seconds and the direct
method took 83.7 seconds. For the largest images, in which f and g are roughly
3008 x 3780 and the window is 490 x 2460, the Fourier method took 88 seconds
and the direct method took 46,873 seconds (just over 7 hours).

It should be noted that the prime factorization of the dimensions of f play
a role in the speed of the Fourier method. The FFT is a divide-and-conquer
algorithm and is most efficient when the length of the data can be factored into
a product of small prime numbers. The above experiments represent a rather
optimistic scenario, in which the dimensions of f have lots of small prime fac-
tors: 3008 = (2)5(47), and 3780 = (2)2(3)3(5)(7). However, the slow-down is
not terribly significant for less fortunate image dimensions. If f has dimensions
3019 x 3796 (3019 is a prime number, and 3296 = (2)?(13)(73)), the Fourier
method takes 168 seconds, slower by a factor of approximately 2.

The memory use by the two methods is also quite different. Figure 3(b) is
a log-log plot showing the peak memory usage (in megabytes), again with the
number of pixels in f on the horizontal axis. Both methods show a straight line
with a slope of roughly 1 (with respect to the log of the axis labels). Hence, as
we might expect, the memory requirements go up linearly with the number of
pixels. However, the Fourier method used about eight times as much memory
as the direct method (using over 1.5 gigabytes to process the largest image set).
The reason for this is that the images have to be stored as complex numbers
(single-precision). Another reason is that the Fourier method has to compute
and store el, e3 and €5 in their entirety before evaluating Lr(a, s, t). The direct
method can calculate these values one trial shift at a time. Furthermore, the
direct method does not need to store all of g and w, only the parts corresponding
to where w is non-zero. Our implementation takes advantage of this shortcut.
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5 Conclusions and Future Work

When registering two images that are translated with respect to each other,
the SSD cost function involves a convolution term. Variants of the problem,
including the addition of a weighting factor and linear intensity remapping, still
yield convolution terms. The computational advantage of evaluating these terms
in the frequency domain is very substantial. In our experiments, the Fourier
method was at least 60 times faster (in some cases over 500 times faster) than the
direct method. The trade-off is the mount of memory required by the methods;
the Fourier method used about eight time as much memory as the direct method.

In most imaging applications, the original data to be aligned is real-valued
(i.e. the imaginary part is zero). For real-valued data, the FFT can be done
faster by taking advantage of the symmetry in the Fourier coefficients. Indeed,
the FFTW library has methods to compute the FFT of a real-valued dataset,
outputting a half-size set of Fourier coefficients (avoiding the redundancy caused
by the symmetry). Adapting the Fourier method described in this paper to take
advantage of this efficiency is trivial.

It should be noted that the direct method has some advantages. For example,
the cost function can be evaluated for a subset of trial shifts, while the Fourier
method is an inherently global operation. Thus, if the approximate registration
is known, it might be more effective to directly evaluate the cost function for
sample shifts around that initial guess rather than performing a global search
using the Fourier method. However, for the direct method to be faster on the
largest image set, fewer than 0.2% of the possible shifts could be sampled. More
than that and the Fourier method would be faster.

The SSD error measure is not necessarily the best cost function for registering
images. Which error norm is best will depend on a number of factors, such as
the type of noise present in the images. Some examples of other norms are the
L' norm, total variation [10], and robust estimators [11,12]. It may be feasible
to expand these error norms using a Taylor series. The convolution terms in the
Taylor series could then be evaluated in the frequency domain. The problem
is that more terms makes the Fourier method more expensive, and it is not
clear which error norms will still be faster using this approach. More work to
investigate other norms is needed.
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