Skip to main content

Image Deformation Using Velocity Fields: An Exact Solution

  • Conference paper
  • 958 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3656))

Abstract

In image deformation, one of the challenges is to produce a deformation that preserves image topology. Such deformations are called “homeomorphic”. One method of producing homeomorphic deformations is to move the pixels according to a continuous velocity field defined over the image. The pixels flow along solution curves. Finding the pixel trajectories requires solving a system of differential equations (DEs). Until now, the only known way to accomplish this is to solve the system approximately using numerical time-stepping schemes. However, inaccuracies in the numerical solution can still result in non-homeomorphic deformations. This paper introduces a method of solving the system of DEs exactly over a triangular partition of the image. The results show that the exact method produces homeomorphic deformations in scenarios where the numerical methods fail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajcsy, R., Kocacic, S.: Multiresolution elastic matching. Computer Vision, Graphics and Image Processing 46, 1–12 (1989)

    Article  Google Scholar 

  2. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 567–585 (1989)

    Article  MATH  Google Scholar 

  3. Christensen, G.E.: Deformable shape models for anatomy. PhD thesis, Washington University, St. Louis, Missuori (1994)

    Google Scholar 

  4. Christensen, G.E., Rabbit, R.D., Mill, M.I.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5, 1435–1447 (1996)

    Article  Google Scholar 

  5. Beg, M.F., Miller, M., Trouv’e, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Journal of Computer Vision 61, 139–157 (2005)

    Article  Google Scholar 

  6. Christensen, G.E., Joshi, S.C., Miller, M.I.: Volumetric transformation of brain anatomy. IEEE Transactions on Medical Imaging 16, 864–877 (1997)

    Article  Google Scholar 

  7. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing 95, 1357–1370 (2000)

    Article  MathSciNet  Google Scholar 

  8. Nagle, R.K., Saff, E.B.: Fundamentals of Differential Equations, 2nd edn. Benjamin Cummings (1989)

    Google Scholar 

  9. Burden, R.L., Faires, J.D.: Numerical Analysis, 4th edn. PWS-Kent (1989)

    Google Scholar 

  10. Haberman, R.: Elementary Applied Partial Differential Equations. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  11. Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. Computer Graphics 26, 65–70 (1992)

    Article  Google Scholar 

  12. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44, 625–632 (2000)

    Article  Google Scholar 

  13. Pajevic, S., Aldroubi, A., Basser, P.J.: A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance 154, 85–100 (2002)

    Article  Google Scholar 

  14. Poupon, C., Clark, C.A., Frouin, V., Regis, J., Bloch, I., Bihan, D.L., Mangin, J.F.: Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. NeuroImage 12, 184–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orchard, J. (2005). Image Deformation Using Velocity Fields: An Exact Solution. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_55

Download citation

  • DOI: https://doi.org/10.1007/11559573_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29069-8

  • Online ISBN: 978-3-540-31938-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics