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Abstract. Learning curves for Gaussian process (GP) regression can
be strongly affected by a mismatch between the ‘student’ model and the
‘teacher’ (true data generation process), exhibiting e.g. multiple over-
fitting maxima and logarithmically slow learning. I investigate whether
GPs can be made robust against such effects by adapting student model
hyperparameters to maximize the evidence (data likelihood). An approx-
imation for the average evidence is derived and used to predict the op-
timal hyperparameter values and the resulting generalization error. For
large input space dimension, where the approximation becomes exact,
Bayes-optimal performance is obtained at the evidence maximum, but
the actual hyperparameters (e.g. the noise level) do not necessarily reflect
the properties of the teacher. Also, the theoretically achievable evidence
maximum cannot always be reached with the chosen set of hyperparame-
ters, and maximizing the evidence in such cases can actually make gen-
eralization performance worse rather than better. In lower-dimensional
learning scenarios, the theory predicts—in excellent qualitative and good
quantitative accord with simulations—that evidence maximization elim-
inates logarithmically slow learning and recovers the optimal scaling of
the decrease of generalization error with training set size.

1 Introduction

Gaussian processes (GPs) are by now a popular alternative to feedforward net-
works for regression, see e.g. [1,12,13,4, 5,6, [7, 8,9, [10, [11]. They make prior as-
sumptions about the problem to be learned very transparent, and—even though
they are non-parametric models—inference is straightforward. Much work has
been done to understand the learning behaviour of GPs as encoded in the learn-
ing curve, i.e. the average generalization performance for a given number of
training examples [5, [7, 8, 19, 110, 12, [13]. This has mostly focused on the case
where the ‘student’ model exactly matches the true ‘teacher’ generating the data.
In practice, such a match is unlikely. In [11] I showed that much richer behaviour
then results, with learning curves that can exhibit multiple overfitting maxima,
or decay logarithmically slowly if the teacher is less smooth than the student as-
sumes. An intriguing open question was whether these adverse effects of model
mismatch can be avoided by adapting the student model during learning. This
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is the issue I address in the present paper, focusing on the adaptation of model
(hyper-)parameters by maximization of the data likelihood or evidence.

In its simplest form, the regression problem is this: We are trying to learn
a function 6, which maps inputs x (real-valued vectors) to (real-valued scalar)
outputs 6, (). A set of training data D consists of n input-output pairs (z', y');
the training outputs y' may differ from the ‘clean’ teacher outputs 6, (z') due to
corruption by noise. Given a test input x, we are then asked to come up with a
prediction é(:c), plus error bar, for the corresponding output 6(z). In a Bayesian
setting, one does this by specifying a prior P(#) over hypothesis functions and
a likelihood P(D|) with which each 6 could have generated the training data,;
from these the posterior distribution P(8|D) «x P(D|0)P(f) can be deduced.
For a GP, the prior is defined directly over input-output functions 6. Any 6 is
uniquely determined by its output values 6(x) for all « from the input domain,
and for a GP, these are assumed to have a joint Gaussian distribution (hence
the name). The means are usually set to zero so that the distribution is fully
specified by the covariance function (0(x)0(x’)) = C(z,z"). The latter transpar-
ently encodes prior assumptions about the function to be learned. Smoothness,
for example, is controlled by the behaviour of C'(z, 2’) for ' — x: The Ornstein-
Uhlenbeck (OU) covariance function C(z, z") = aexp(—|z —2’|/I) produces very
rough (non-differentiable) functions, while functions sampled from the radial
basis function (RBF) prior with C(z,2’) = aexp|—|r — 2’|?/(21?)] are infinitely
often differentiable. Here [ is a length scale parameter, corresponding directly
to the distance in input space over which significant variation in the function
values is expected, while a determines the prior variance.

A summary of inference with GPs is as follows (for details see e.g. [14, [15]).
The student assumes that outputs y are generated from the ‘clean’ values of a
hypothesis function §(x) by adding Gaussian noise of z-independent variance o2.
The joint distribution of a set of training outputs {y'} and the function values
0(z) is then also Gaussian, with covariances given (under the student model) by

(y'y™) = O, a™) + 026 = Kim,  (y'0(2)) = C(a’,2) = (k(2)) (1)

Here I have defined an n x n matrix K and an z-dependent n-component vector
k(). The posterior distribution P(#|D) is obtained by conditioning on the {y'};
it is again Gaussian and has mean and variance

(O@)op = 0(z) = k(z)" Ky (2)
([0(x) = 0(2)])ojp = Clx,z) — k(z)" K~ 'k(x) 3)

From the student’s point of view, this solves the inference problem: the best
prediction for 6(z) on the basis of the data D is (z), with a (squared) error bar
given by (3.

The squared deviation between the prediction and the teacher is [0(z) —
0.(x)])?; the average generalization error (which, as a function of n, defines the
learning curve) is obtained by averaging this over the posterior distribution of
teachers, all datasets, and the test input x:

e = ({{[6(z) = 0<(@))o. D) D)a (4)
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Of course the student does not know the true posterior of the teacher; to estimate
€, she must assume that it is identical to the student posterior, giving

&= (({[f(x) — 6(2)]*)o1p)D)a (5)

This generalization error estimate € coincides with the true error € if the student
model matches the true teacher model and then gives the Bayes error, i.e. the
best achievable average generalization performance for the given teacher.

The evidence or data likelihood is P(D) = [dOP(D|0)P(), i.e. the average
of the likelihood P(DI|f) = [, (270?)1/2 exp[—(y' — 0(z'))?/(20?)] over the
prior. Since the prior over the #(z!) is a zero mean Gaussian with covariance
matrix C(z!,2™), the integral can be done analytically and one finds

1

1 1 1
E==-InP(D)=—=1In(27) — TKly - —In|K
nn() 2n(7r) -y y 2nn|| (6)

2
The (normalized log-) evidence E depends, through K, on all student model
hyperparameters, i.e. 02 and any parameters specifying the covariance function.
I will analyse the model selection algorithm which chooses these parameters,
for each data set D, by maximizing E. For one particular hyperparameter the
maximum can in fact be found analytically: if we write C(z,2’) = aC(z,2’) and
02 = ad?, then the second term in (@) scales as 1/a and the third one gives the
a-dependent contribution (1/2)1na; maximizing over a gives a = n~'yTK 'y
and

1 1 1 ~ 1 .
mng = 75111(27r/n) ~3~ 5ln(yTK*1y) ~ o In |K|

Note that the value of a does not affect the student’s predictions (2]), but only
scales the error bars ().

2 Calculating the Evidence

A theoretical analysis of the average generalization performance obtained by
maximizing the evidence for each data set D is difficult because the optimal
hyperparameter values fluctuate with D. However, a good approximation—at
least for not too small n—can be obtained by neglecting these fluctuations,
and considering the hyperparameter values that maximize the average E of the
evidence over all data sets D of given size n produced by the teacher. To perform
the average, I assume in what follows that the teacher is also a GP, but with
a possibly different covariance function C,(x,2’) and noise level o2. For fixed
training inputs, the average of y'y™ is then (K.)p, = Ci (2!, 2™) + 026, and
inserting into (Bl gives

_ 1 1 1
o ~5 In(270?) (trK, K1) — %ﬂn lo?K]|) (7)

n

where the remaining averages are over the distribution of all possible sets of
training inputs. To tackle these, it is convenient to decompose (using Mercer’s
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theorem) the covariance function into its eigenfunctions ¢;(z) and eigenvalues
A;, defined w.r.t. the input distribution so that (C(z, 2’)¢i(z)) s = Aigs(x) with
the corresponding normalization (¢;(z)@;(x))s = 6;5. Then

C(z,2') =Y Aigi(z)¢i(2), and similarly C.(z,2') =Y A7 ¢i(x)¢i(2') (8)
1=1 i=1

For simplicity I assume here that the student and teacher covariance functions
have the same eigenfunctions (but different eigenvalues). This is not as restrictive
as it may seem; several examples are given below.

Introducing the diagonal eigenvalue matrix (A);; = A;6;; and the ‘design
matrix’ (®); = ¢;(2'), one now has K = 02 + ®A®PT and similarly for K,.
In the second term of (7)) we need tr K, K~!; the Woodbury formula gives the
required inverse as K=! = 07 2[I — 0 2®G®7T|, where § = (A~! + 02T ®) 1.
A little algebra then yields

trK.K ' = 020 2tr(I- A7'G) + tr A,ATY T — A71G) +noZo2  (9)

and the training inputs appear only via the matrix G. A similar reduction is
possible for the third term of (7). The eigenvalues of the matrix 0 2K = I +
o 2®APT are easily seen to be the same as the nontrivial (# 1) ones of I +
o 2A®T®, so that In |0 ?K| = In [I+0 2A®T ®|. If we generalize the definition
of Gto G = (A" +vI+ 0 28T®)~! and also define T'(v) = In|(A~! +v)G|,
then T'(c0) = 0 and so

Injo K| =In I+ 0 2A®T®| = T(0) — T(0) = / dv [tr (A~ +v)" ! —tr G
0

(10)
Eqs. @I0) show that all the averages required in () are of the form (tr MG)
with some matrix M. We derived an accurate approximation for such averages
in [5, [10, [11], with the result (tr MG) = tr MG where

n
Gl=A14(v+—"-—1 11

0% +g(n,v) ()
and the function g(n,v) is determined by the self-consistency equation g = tr G.
Using this approximation and ([@QI0) in (7)) gives, after a few rearrangements,
lo2+trALATIG 1 [

3T oty aal, VWO el (2

_ 1
E= ~3 In(2mo?) —

where in the second term G and g are evaluated at v = 0. This approximation for
the average (normalized log-) evidence is the main result of this paper. The true
E is known to achieve its maximum value when the student and teacher model
are exactly matched, since the deviation from this maximum is essentially the
KL-divergence between the student and teacher distributions over data sets. Re-
markably, this property is preserved by the approximation ([I2)): a rather lengthy
calculation shows that it has a stationary point w.r.t. variation of A and o2
(which numerically always turns out to be maximum) at A = A, and 02 = o2

-
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3 Examples

If the eigenvalue spectra A and A, are known, the approximation (I2) for the
average evidence can easily be evaluated numerically and maximized over the hy-
perparameters. As in the case of the unaveraged evidence (@), the maximization
over the overall amplitude factor a can be carried out analytically. The resulting
generalization performance can then be predicted using the results of [11].

As a first example scenario, consider inputs x which are binary vector
with d components z, € {—1,1}, and assume that the input distribution is
uniform. I consider covariance functions for student and teacher that depend on
the product z - ' only; this includes the standard choices (e.g. OU and RBF)
which are functions of the Euclidean distance |z — 2], since |z —2'|* = 2d—2z-2'.
All these covariance functions have the same eigenfunctions [17], so our above
assumption is satisfied. The eigenfunctions are indexed by subsets p of {1,2...d}
and given explicitly by ¢,(z) = [],c, Za- The corresponding eigenvalues depend

only on the size s = |p| of the subsets and are therefore (¢)-fold degenerate;
letting e = (1,1...1) be the ‘all ones’ input vector, they can be written as
As = (C(z,e)¢p,(x))z. From this the eigenvalues can easily be found numerically
for any d, but here I focus on the limit of large d where all results can be obtained
in closed form. If we write C(z,z") = f(x - 2'/d), the eigenvalues become, for
d — oo, Ay = d=°f)(0) where f*)(z) = (d/dz)*f(z). The contribution to
C(z,z) = f(1) from the s-th eigenvalue block is then A\, = (¢)As — f(*)(0)/s!,
consistent with f(1) = 3°%0, f()(0)/s!. Because of their scaling with d, the A,
become infinitely separated for d — oo. For training sets of size n = O(d%),
one then sees in ([II) that eigenvalues with s > L contribute as if n = 0, since
As > n/(0? + g); these correspond to components of the teacher that have
effectively not yet been learned [11]. On the other hand, eigenvalues with s < L
are completely suppressed and have been learnt perfectly. A hierarchical learning
process thus results, where different scalings of n with d—as defined by L—
correspond to different ‘learning stages’. Formally, one can analyse the stages
separately by letting d — oo at a constant ratio o = n/( %) of the number
of examples to the number of parameters to be learned at stage L; note that
(4) = O(d") for large d. A replica calculation along the lines of Ref. [16] shows
that the approximation (IZ)) for the average evidence actually becomes ezact in
this limit. Fluctuations in E across different data sets also tend to zero so that
considering E rather than E introduces no error.

Intriguingly, the resulting exact expression for the evidence at stage L turns
out to depend only on two functions of the student hyperparameters. Setting
fr = .1 As (so that fo = f(1)), they are fr41 + 02 and Ar. The learning
curve analysis in [11] showed that these correspond, respectively, to the student’s

! This assumption simplifies the determination of the eigenfunctions and eigenvalues.
For large d, one expects distributions with continuously varying « and the same
first- and second-order statistics to give similar results [16]. A case where this can
be shown explicitly is that of a uniform distribution over input vectors x of fixed
length, which gives spherical harmonics as eigenfunctions.
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Fig. 1. Illustration of choice of optimal length scale in a scenario with large input space
dimension d, for an OU student learning an RBF teacher with length scale [. = 0.55.
Evidence maximization gives the optimality criterion A\, = A} for learning stage L.
At stage L = 1, this has two solutions for the student length scale I, marked by the
arrows, while at stage L = 2 no solutions exist.

assumed values for the effective level of noise and for the signal to be learnt in the
current stage. Independently of the number of training examples «, the evidence
as calculated above can be shown to be maximal when these two parameters
match the true values for the teacher, and it follows from the results of [11] that
the resulting generalization error is then optimal, i.e. equal to the Bayes error.
This implies in particular that overfitting maxima cannot occur.

A first implication of the above analysis is that even though evidence maxi-
mization can ensure optimal generalization performance, the resulting hyperpa-
rameter values are not meaningful as estimates of the underlying ‘true’ values
of the teacher. Consider e.g. the case where the student assumes an OU co-
variance function, i.e. C(x,z') = exp[—|z — '|/(Id"/?)] and therefore f(z) =
exp[—v/2 — 2z/l], but the teacher has an RBF covariance function, for which
Ci(z,2") = exp|—|r — 2'|?/(212d)] and f.(z) = exp[—(1 — 2)/I?]. The length
scales have been scaled by d'/? here to get sensible behaviour for d — co. Then
one has, for example,

No=e VA =2o/(VED), N =eTVEL N =N/

For a given teacher length scale [, the optimal value of the student length scale [
determined from the criterion Ay, = A} will therefore generally differ from /., and
actually depend on the learning stage L. Similarly, the optimal student noise level
will not be identical to the true teacher noise level. At stage L = 1, for example,
the optimal choice of length scale implies Ay = A; but then fo =1 — g — \;
will differ from f3 and the optimality condition fo + 02 = f5 + o2 tells us that
o? £ o2,
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A second interesting feature is that, since the Ay and f;, depend in a com-
plicated way on the hyperparameters, the optimality conditions A7, = A} and
frii+o%= Jii1+ o2 may have more than one solution, or none at all, depend-
ing on the situation. An example is shown in Fig. [l For a noise free (02 = 0)
RBF teacher with [, = 0.55, one has A\j = 0.121 and at learning stage L = 1
there are two very different optimal assignments for the student length scale,
[ =0.639 and | = 4.15 (marked by arrows in Fig. [[) which achieve A;(I) = A}.
The corresponding optimal noise levels are also very different at 0 = 0.0730 and
0? = 0.674, respectively. At stage L = 2, on the other hand, A3 = 0.2004 and
there is no value of the student length scale ! for which A3(I) = Aj. One finds
that the evidence is in this case maximized by choosing [ as large as possible.
With [ large, all A\; for ¢ > 0 are very small, and the student’s assumed effective
noise-to-signal ratio (f3 + 02)/A2 becomes large. The results of [11] imply that
the generalization error will decay extremely slowly in this case, and in fact not
at all in the strict limit [ — oo. Here we therefore have a case where strongly sub-
optimal performance results from evidence maximization, for the reason that the
‘ideal’” evidence maximum cannot be reached by tuning the chosen hyperparame-
ters. In fact evidence maximization performs worse than learning with any fixed
set of hyperparameters! Including a tunable overall amplitude factor a for the
student’s covariance function and noise level would, for the example values used
above, solve this problem, and in fact produce a one-parameter family of optimal
assignments of a, [ and 2. One might expect this to be the generic situation but
even here there are counter-examples: the optimality conditions demand equality
of the student’s effective noise-to-signal ratio, k1, = (fr+1+ 02)/Ar with that of
the teacher. But k, is independent of the amplitude factor a and > fri1/\r,
and the latter ratio may be bounded above zero, e.g. f3/Ao > 3 for any [ for
an OU student. For sufficiently low x7 there is then no choice of [ for which
KL = KJ .

In the second example scenario, I consider continuous-valued input vectors,
uniformly distributed over the unit interval [0, 1]; generalization to d dimensions
(x € [0,1]%) is straightforward. For covariance functions which are stationary, i.e.
dependent on x and z’ only through z—2’, and assuming periodic boundary con-
ditions (see [10] for details), one then again has covariance function-independent
eigenfunctions. They are indexed by integers@ q, with ¢g(x) = €2™9%; the cor-
responding eigenvalues are A, = [dz C(0,z)e”?"%. For the (‘periodified’ ver-
sion of the) RBF covariance function C(x,2') = aexp|—(z — 2')?/(21?)], for
example, one has A, x exp(—g?/2), where § = 27lg. The OU case C(z,2') =
aexp(—|z — a’| /1), on the other hand, gives A, o< (14 ¢*)~1, thus A, o< ¢=2 for
large q. I also consider below covariance functions which interpolate in smooth-
ness between the OU and RBF limits. E.g. the MB2 (modified Bessel or Matern
class) covariance C(z,x') = e~*(1+b), with b = |z —1'|/l, yields functions which
are once differentiable [13, [15]; its eigenvalues A, o (1 + ¢°)~2 show a faster as-
ymptotic power law decay, A4 o< ¢~*, than those of the OU covariance function.

2 Since A, = A_,, one can assume g > 0 if all A, for ¢ > 0 are taken as doubly
degenerate.
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Fig. 2. Evidence maximization for a teacher with MB2 covariance function, [, = 02 =

0.1, and inputs z uniformly distributed over [0, 1]. Bold lines: simulation averages over
20 to 50 independent sequences of training examples, thin lines: theory. Left: Hyperpa-
rameters a, [, 02 and generalization error e vs. number of training examples n for OU
student; the more slowly decaying generalization error €sxea for a fixed student model
with | = ¢ = 0.1, a = 1 is also shown. For the MB2 (middle) and RBF (right) stu-
dents, 6 is close to constant at o = ¢2 in both theory and simulation and not shown.
Dashed lines indicate the Bayes-optimal scaling of the asymptotic generalization error,
e ~ n~3/* which with evidence maximization is obtained even in the cases with model
mismatch (OU and RBF).

Writing the asymptotic behaviour of the eigenvalues generally as A, o< ¢", and
similarly A7 oc g7, one has 7 = 2 for OU, r = 4 for MB2 and, due to the faster-
than-power law decay of its eigenvalues, effectively » = oo for RBF. For the case
of a fixed student model |11], the generalization error € then generically decays
as a power law with n for large n. If the student assumes a rougher function than
the teacher provides (r < r,), the asymptotic power law exponent € n-(r=1/r
is determined by the student alone. In the converse case, the asymptotic decay
is € o n=™~1/" and can be very slow, actually becoming logarithmic for an
RBF student (r — o). For r = r,, the fastest decay for given r, is obtained, as
expected from the properties of the Bayes error.

The predictions for the effect of evidence maximization, based on ([I2)), are
shown in Fig. 2] for the case of an MB2 teacher (r. = 4) being learned by a
student with OU (r = 2), MB2 (r = 4) and RBF (r = c0) covariance functions.
Simulation results, obtained by averaging over 20 to 50 data sets for each n, are
also shown. The most striking feature is that the theory predicts that in all three
cases the generalization error now decays with the optimal power law scaling
€ ~n~(r==1/m = p=3/4: the simulations are consistent with this. In particular,
for the RBF student the logarithmically slow learning has been eliminated. For
the case of the MB2 student, the theory predicts that the optimal values of the
student hyperparameters are constant and identical to those of the teacher; this
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Fig. 3. Effects of evidence maximization for an OU student learning an RBF teacher,
for input space dimension d = 1. Shown is a sample from one of the runs for n =
50 summarized in Fig. 2 Inset: Training data (circles) and Bayes optimal prediction
function. Main graph: Difference between the prediction of the OU student and the
Bayes-optimal prediction, for hyperparameters set equal to those of the teacher (02 =
[ =0.1, a = 1, thin line). Evidence maximization gives a larger [ and thus a smoother
student prediction that differs less from the Bayes-optimal prediction (bold line).

is as expected since then the models match exactly. The simulations again agree,
though for small n the effects of our approximation of averaging the evidence
over data sets and only then maximizing it become apparent.

For the OU student, inspection of the simulation results shows that the ev-
idence maximum can, for some data sets, result in either one of two extreme
hyperparameter assignments: 02 = 0, in which case the rough OU covariance
function takes all noise on the teacher’s underlying smooth target function as
genuine signal, or [ very large so that the covariance function is essentially con-
stant and the student interprets the data as a constant function plus noise.
Instances of the first type reduce the average of the optimal o2-values, a trend
which the theory correctly predicts, but have a much stronger effect on the av-
erage optimal [ through the rare occurrence of large values; our theory based on
neglecting fluctuations cannot account for this. For larger n, where theory and
simulation agree well, the optimal length scale [ increases with n. This makes
intuitive sense, since it effectively reduces the excessive roughness in the func-
tions from the student’s OU prior to produce a better match to the smoother
teacher MB2 covariance function. An example of this effect is shown in Fig. B
For the RBF student, the opposite trend in the variation of the optimal length
scale [ is seen: as n increases, [ must be reduced to prevent the student from
over-smoothing features of the rougher teacher.



208 P. Sollich
4 Conclusion

In summary, the theory presented above shows that evidence maximization goes
a long way towards making GP regression robust against model mismatch. The
exact results for input spaces of large dimension d — oo show that evidence
maximization yields the (Bayes-)optimal generalization performance, as long as
the true evidence maximum is achievable with the chosen hyperparameters. The
optimal hyperparameter values are not, however, meaningful as estimates of
the corresponding teacher parameters. The analysis also shows that evidence
maximization has its risks, and does not always improve generalization perfor-
mance: in cases where the ideal evidence maximum cannot be reached by tuning
the available hyperparameters, evidence maximization can perform worse than
learning with any fixed set of hyperparameters.

In the low-dimensional scenarios analysed, the theory predicts correctly that
the optimal decay of the generalization error with training set size is obtained
even for mismatched models, mainly by appropriate adaptation of the covariance
function length scale. Our approximation of optimizing the evidence on average
rather than for each specific data set performs worse for small data set sizes
here, but predicts simulation results for larger n with surprising quantitative
accuracy.

As an issue for further work, it would be interesting to derive the asymptotic
decay of the generalization error analytically from (I2]). One puzzling issue is
the increase of the length scale seen for an OU student in Fig. 2l One might
argue naively that this increase cannot continue indefinitely because eventually
the student covariance function would degenerate into a constant; the length
scale should level off for sufficiently large n to prevent this. On the other hand,
small deviations from a truly constant covariance function will be amplified by
the presence of a large amount of data confirming that the target function is not
a constant, and this suggests that a true divergence of the optimal length scale
with n could occur.

A closer analysis of the effect of increasing d would also be worthwhile. For
example, the fact that for d — oo continuous ranges of optimal hyperparameter
assignments can occur suggests that large fluctuations in the optimal values
should be seen if scenarios with large but finite d are considered.

Finally, it will be interesting to understand how the above results for GP
regression relate to work on density estimation using GP priors. There it has
also been suggested that the decay of the estimation error with the number of
available data points can be made largely independent of model mismatch by
optimal hyperparameter tuning |18, [19, [20, [21, 22, 123, 124, [25].
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