Skip to main content

Extensions of the Informative Vector Machine

  • Conference paper
Book cover Deterministic and Statistical Methods in Machine Learning (DSMML 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3635))

Abstract

The informative vector machine (IVM) is a practical method for Gaussian process regression and classification. The IVM produces a sparse approximation to a Gaussian process by combining assumed density filtering with a heuristic for choosing points based on minimizing posterior entropy. This paper extends IVM in several ways. First, we propose a novel noise model that allows the IVM to be applied to a mixture of labeled and unlabeled data. Second, we use IVM on a block-diagonal covariance matrix, for “learning to learn” from related tasks. Third, we modify the IVM to incorporate prior knowledge from known invariances. All of these extensions are tested on artificial and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, J.: Learning internal representations. In: Proc. COLT, vol. 8, pp. 311–320. Morgan Kaufmann Publishers, San Francisco (1995)

    Chapter  Google Scholar 

  2. Becker, S., Thrun, S., Obermayer, K. (eds.): Advances in Neural Information Processing Systems, vol. 15. MIT Press, Cambridge (2003)

    Google Scholar 

  3. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  4. Caruana, R.: Multitask learning. Machine Learning 28(1), 41–75 (1997)

    Article  Google Scholar 

  5. Chapelle, O., Weston, J., Schölkopf, B.: Cluster kernels for semi-supervised learning. In: Becker, et al. (ed.) [2]

    Google Scholar 

  6. Cortes, C., Vapnik, V.N.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  7. Csató, L.: Gaussian Processes — Iterative Sparse Approximations. PhD thesis, Aston University (2002)

    Google Scholar 

  8. Csató, L., Opper, M.: Sparse representation for Gaussian process models. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 444–450. MIT Press, Cambridge (2001)

    Google Scholar 

  9. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall, Boca Raton (1995)

    Google Scholar 

  10. Kass, R.E., Steffey, D.: Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). Journal of the American Statistical Association 84, 717–726 (1989)

    Article  MathSciNet  Google Scholar 

  11. Lawrence, N.D., Jordan, M.I.: Semi-supervised learning via Gaussian processes. In: Advances in Neural Information Processing Systems, vol. 17. MIT Press, Cambridge (2005) (to appear)

    Google Scholar 

  12. Lawrence, N.D., Platt, J.C.: Learning to learn with the informative vector machine. In: Greiner, R., Schuurmans, D. (eds.) Proceedings of the International Conference in Machine Learning, vol. 21, pp. 512–519. Morgan Kauffman, San Francisco (2004)

    Google Scholar 

  13. Lawrence, N.D., Schölkopf, B.: Estimating a kernel Fisher discriminant in the presence of label noise. In: Brodley, C., Danyluk, A.P. (eds.) Proceedings of the International Conference in Machine Learning, vol. 18. Morgan Kauffman, San Francisco (2001)

    Google Scholar 

  14. Lawrence, N.D., Seeger, M., Herbrich, R.: Fast sparse Gaussian process methods: The informative vector machine. In: Becker, et al. (eds.) [2], pp. 625–632

    Google Scholar 

  15. MacKay, D.J.C.: Bayesian Methods for Adaptive Models. PhD thesis, California Institute of Technology (1991)

    Google Scholar 

  16. Minka, T.P.: A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  17. Nabney, I.T.: Netlab: Algorithms for Pattern Recognition. Advances in Pattern Recognition. Springer, Berlin (2001), Code available from http://www.ncrg.aston.ac.uk/netlab/

    Google Scholar 

  18. Schölkopf, B., Burges, C.J.C., Vapnik, V.N.: Incorporating invariances in support vector learning machines. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 47–52. Springer, Heidelberg (1996)

    Google Scholar 

  19. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2001)

    Google Scholar 

  20. Seeger, M.: Covariance kernels from Bayesian generative models. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 905–912. MIT Press, Cambridge (2002)

    Google Scholar 

  21. Seeger, M.: Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error Bounds and Sparse Approximations. PhD thesis, The University of Edinburgh (2004)

    Google Scholar 

  22. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Conference on Computational Learning Theory, vol. 10, pp. 287–294. Morgan Kauffman, San Francisco (1992)

    Google Scholar 

  23. Sollich, P.: Probabilistic interpretation and Bayesian methods for support vector machines. In: Proceedings 1999 International Conference on Artificial Neural Networks, ICANN 1999, London, U.K, pp. 91–96, The Institution of Electrical Engineers (1999)

    Google Scholar 

  24. Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Touretzky, et al. (eds.) [25], pp. 640–646

    Google Scholar 

  25. Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.): Advances in Neural Information Processing Systems, vol. 8. MIT Press, Cambridge (1996)

    Google Scholar 

  26. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  27. Williams, C.K.I.: Computing with infinite networks. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9. MIT Press, Cambridge (1997)

    Google Scholar 

  28. Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In: Touretzky, et al. (eds.) [28], pp. 514–520

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lawrence, N.D., Platt, J.C., Jordan, M.I. (2005). Extensions of the Informative Vector Machine. In: Winkler, J., Niranjan, M., Lawrence, N. (eds) Deterministic and Statistical Methods in Machine Learning. DSMML 2004. Lecture Notes in Computer Science(), vol 3635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559887_4

Download citation

  • DOI: https://doi.org/10.1007/11559887_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29073-5

  • Online ISBN: 978-3-540-31728-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics