
H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 57 – 72, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomous and Self-sufficient Groups:
Ad Hoc Collaborative Environments

Joan Manuel Marquès1,2 and Leandro Navarro2

1 Universitat Oberta de Catalunya, Departament of Computer Sciences,
Av. Tibidabo, 39-43, 08035 Barcelona, Catalonia, Spain

jmarquesp@uoc.edu
2 Universitat Politècnica de Catalunya, Department of Computer Architecture,

Jordi Girona, 1-3, D5-105, Campus Nord, Barcelona, Catalonia, Spain
{marques,leandro}@ac.upc.edu

Abstract. Asynchronous collaborative applications and systems have to deal with
complexities associated with interaction nature, idiosyncrasy of groups and technical
and administrative issues of real settings. Existing solutions address asynchronous
collaboration via simplified and centralized models. In this paper we present
LaCOLLA, a fully decentralized middleware for building collaborative applications
that provides general purpose collaborative functionality without requiring anyone to
provide resources for the whole group. This helps applications to incorporate
collaboration support and deal with most complexities derived from groups and its
members. The implementation of LaCOLLA follows the peer-to-peer paradigm and
pays special attention to the autonomy of its members and to the self-organization of
its components. Resources (e.g. storage, task execution) and services (e.g.
authorization) are provided by its members, avoiding dependency from third party
agents or servers. This work was first validated by simulation. Then we built the
middleware and adapted some collaborative applications.

1 Introduction

One of the most significant benefits of the Internet has been the improvement on
people’s interactions and communication. E-mail, Usenet News, Web and Instant
Messaging are four of the most well-known and successful examples of this. Internet
has allowed the creation of asynchronous virtual communities where members
interact in a many-to-many basis. Many-to-many interaction, uncommon in the
physical world, has transformed the way people learn, do work together, find others
with common interests and share information among them, etc. After a decade of
great excitement, the pace of this transformation is slowing down because
collaboration is much more than these tools, because the Internet is designed for one-
to-one interaction (the Internet transport is designed for the communication between
two hosts) and that applications with collaborative necessities have to deal with
complexities derived from:

• Interaction nature: participants are dispersed, many-to-many collaboration, people
participate in the collaboration at different times, the same person connecting from
different locations at different times of the day (home, work, mobile).

58 J.M. Marquès and L. Navarro

• Idiosyncrasy of groups: variety of issues such as flexibility, dynamism,
decentralization, autonomy of its participants, different kinds of groups (task
oriented, long-term, weak commitment groups, etc), groups exist while its
members participate in group activities and provide necessary resources, etc.

• Technical and administrative issues: guarantees for the availability of information
generated in the group, interoperability among applications, security aspects
(authorization, access rights, firewalls), participants belonging to different
organizations or departments with different authorities that impose rules and limits
to facilitate administration, internal work and individual use, etc. [1]

Development of applications that take into account all those requirements are too
complex and costly, therefore collaborative applications focus only in a few key
aspects while neglecting others. In that way, most of the solutions resort to simpler
client/server centralized models using resources administrated by a third party (a
service provider). Client/server solutions –or more generally speaking, all solutions
that require some sort of centralization– impose technical, administrative and
economic restrictions that interfere with the interaction nature and idiosyncrasy of
groups.

In contrast, Peer-to-Peer (P2P) systems or networks are distributed systems formed
only by the networked PCs of the participants. All machines share their resources:
computation, storage and communication. They all act both as servers and as clients.
P2P systems are self-sufficient and self-organizing, applying protocols in a
decentralized way to perform search and location, and sharing the burden of object
transfers. As resource provision and coordination is not assigned to a central
authority, all participants have similar functionalities and there is no strict dependency
to any single participant. P2P networks may be robust and attain tolerance to failures,
disconnections and attacks. [2]

In this paper we present LaCOLLA, a fully decentralized P2P middleware for
building collaborative applications that provides general purpose collaborative
functionalities based on the resources provided by group participants only. The
provision of these functionalities will avoid applications deal with most of
complexities derived from groups, members working across organizational
boundaries and requiring additional resources. This simplification (transparency) will
help include collaborative aspects into applications in an ad-hoc manner.

LaCOLLA began as a middleware implemented following the peer-to-peer
paradigm paying special attention to the autonomy of its members and to self-
organization of its components. Another key aspect was that resources (e.g. storage)
and services (e.g. authorization) were provided by its members (avoiding dependency
from third party agents). At this first stage, it provided support to: storage, awareness,
groups, members, instant messaging and location transparency. Now we are
incorporating the ability to execute tasks using computational resources provided to
group. With that ability, groups will definitely evolve to become entities per se, not
only gatherings or collections of members.

Having groups as units of organization and use of resources would help to change
to a view of the Internet as a collection of communities: groups of individuals sharing
resources among them (an individual may belong to different groups and a resource
may belong to different groups). As an example, in virtual learning environments

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 59

students may need to do activities in groups using some kind of software. It will be
useful that any member of the group could install the software by deploying it using
the computational resources available to the group. After that, any member of the
group could use that software and the results will be stored on storage resources
belonging and available to group.

This ability of pooling resources belonging to groups has been strongly influenced
by grid systems. Grids are large-scale geographically distributed hardware and
software infrastructures composed by heterogeneous networked resources owned and
shared by multiple administrative organizations which are coordinated to provide
transparent, dependable, pervasive and consistent computing support to a wide range
of applications [3]. In contrast, our focus is on the ad-hoc creation of groups based
solely on the resources provided by the participants, independently of underlying
administrative organizations or external service providers.

Groove (http://www.groove.net) is a platform that partially covers some of the
ideas behind LaCOLLA approach. In [4] Groove is defined as a system that lets users
create shared workspaces on their local PCs, collaborating freely across corporate
boundaries and firewalls, without the permission, assistance, or knowledge of any
central authority or support groups. Groove allows transparent synchronization among
workspaces, but depends on relay servers to provide offline queuing, awareness, fan-
out and transparency (to overcome firewall and NAT problems). Those relay servers
are provided by third parties. The main differences between Groove and LaCOLLA
are that groove emphasizes transparent synchronization of collaborating PCs, along
with direct communication among them. Also the fact that provides third party relay
servers. Whereas LaCOLLA emphasizes on self-organization as a group and uses
only resources provided by its participants (no dependency on third parties).
Participants are not obliged to provide resources to group, but group works only with
resources provided by its members. All resources connected to group are
synchronized transparently and are used to articulate collaboration.

The rest of the paper is organized as follows: Section 2 presents the requirements
that should satisfy an asynchronous collaborative middleware. Section 3 describes the
functionalities and architectural aspects of LaCOLLA, with emphasis on what we call
virtual synchronism: virtually immediate access to changes and latest versions of
objects, along with the API offered to applications and an overview of internal
mechanisms behavior. Section 4 presents experimental results from a simulator,
concluding in Section 5.

2 Requirements for an Asynchronous Collaborative Middleware

As mentioned previously, asynchronous collaborative applications have to deal with
many aspects to support collaboration. The basic requirements a middleware should
satisfy to facilitate the development of this kind of applications are [5]:

• Decentralization: no component is responsible of coordinating other components.
No information is associated to a single component. Centralization leads to simple
solutions, but with critical components conditioning the autonomy of participants.

• Self-organization of the system: the system should have the capability to function
in an automatic manner without requiring external intervention. This requires the

60 J.M. Marquès and L. Navarro

ability of reorganizing its components in a spontaneous manner in presence of
failures or dynamism (connection, disconnection, or mobility).

• Oriented to groups: group is the unit of organization.
• Group availability: capability of a group to continue operating with some

malfunctioning or not available components. Replication (of objects, resources
or services) can be used to improve availability and quality of service.

• Individual autonomy: members of a group freely decide which actions perform,
which resources and services provide, and when connect or disconnect.

• Group's self-sufficiency: a group must be able to operate with resources
provided by its members (ideally) or with resources obtained externally (public,
rent, interchange with other groups, ...)

• Allow sharing: information belonging to a group (e.g. events, objects, presence
information, etc.) can be used by several applications.

• Security of group: guarantee the identity and the selective and limited access to
shared information (protection of information, authentication).

• Availability of resources: provide mechanisms to use resources (storage,
computational, etc.) belonging to other groups (public, rented, interchange
between groups to improve availability, etc.)

• Internet-scale system: formed by several components (distributed). Members and
components can be at any location (dispersion).
• Scalability: in number of groups, guaranteed because each group uses its own

resources.
• Universal and transparent access: participants can connect from any computer or

digital device, with a connection independent view (e.g. as a web browser).
• Transparency of location of objects and members: applications don't have to

worry about where are the objects or members of the group. Applications use a
location independent identifier and may access to different instances as people
move, peers join and leave, or any other conditions change.

• Support disconnected operational mode: work without being connected to the
group. Very useful for portable devices.

3 LaCOLLA

LaCOLLA is a middleware that follows the requirements presented in the previous
section. Four main abstractions have inspired the design process of LaCOLLA:
oriented to groups, all members know what is happening in the group, all members
have access to latest versions of objects, and tasks can be executed using the
computational resources belonging to the group. These abstractions take shape in the
following functionality.

3.1 Functionality

LaCOLLA provides to applications the following general purpose functionality [5]:

• Communication by “immediate” and consistent dissemination of events:
information about what is occurring in the group is spread among members of the

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 61

group as events. All connected members receive this information right after it
occurs. Disconnected members receive it during the re-connection process. This
immediate and consistent dissemination of events helps applications to provide
awareness to members.

• Virtually strong consistency in the storage of objects: components connected to a
group obtain access to latest version of any object. Objects are replicated in a
weak-consistent optimistic manner. Therefore, when an object is modified,
different replicas of the object will be inconsistent for a while. However,
LaCOLLA guarantees that, when an object is accessed, the last version will always
be provided (given that events are disseminated immediately).

• Execution of tasks: members of a group (or the applications these members use)
can submit tasks to be executed using computational resources belonging (or
available) to the group. In the present version, tasks are Java classes executed
locally that perform computational activities. In future versions we want to be able
to deploy services that would provide services at group level. Examples of this
kind of services could be a service to coordinate some dynamic and volatile aspect
in a synchronous collaborative activity, a session group-level awareness service, or
any other service that can provide an added value to groups and that the fact of
being deployed in a centralized manner (using only computational and storage
resources belonging to group) doesn’t affect the decentralization, autonomy and
self-sufficiency of the group.

• Presence: know which components and members are connected to the group.
• Location transparency: applications don't have to know the location (IP address) of

objects or members. LaCOLLA resolves them internally (similar to domain name
services like DNS).

• Instant messaging: send a message to a subgroup of members of the group.
• Management of groups and members: administrate groups and members: add,

delete or modify information about members or groups.
• Disconnected mode: allow applications operate offline. During re-connection, the

middleware automatically propagates the changes and synchronizes them.

3.2 Architecture

The architecture of LaCOLLA [5] is organized in five kinds of components (figure 1).
Each component behaves autonomously. Each member decides to instantiate any
number of the following components in the peer is using:

• User Agent (UA): interacts with applications (see section 3.4 for a more detailed
explanation). Through this interaction, it represents users (members of the group)
in LaCOLLA.

• Repository Agent (RA): stores objects and events generated inside the group in a
persistent manner.

• Group Administration and Presence Agent (GAPA): in charge of the administration
and management of information about groups and their members. It is also in
charge of the authentication of members.

62 J.M. Marquès and L. Navarro

UA RA GAPA

Api

Transport

...
Applications

Peer LaCOLLA
EA TDA

• Task Dispatcher Agent (TDA): distributes tasks to executors. In case that all
executors were busy, the TDAs would queue tasks. Also guarantees that tasks will
be executed even though the UA and the member disconnects.

• Executor Agent (EA): Executes tasks.

Fig. 1. Peer LaCOLLA

Components interact one to each other in an autonomous manner. The coordination
among the components connected to a group is achieved through internal
mechanisms. Internal mechanisms [5] have been grouped in: events, objects, tasks,
presence, location, groups, members and instant messaging. They are implemented
using weak-consistency optimistic protocols [6, 7] and random decision techniques
[8]. Table 1 describes which components are involved in each category of
mechanisms. More details about presence, events and objects mechanisms are
provided in section 3.4.

Table 1. Categories of mechanisms implemented by each kind of component

Categories of Mechanisms UA RA GAPA TDA EA

Events X X - - -

Objects X X - - X

Tasks X - - X X

Presence X X X X X

Location X X X X X

Instant Messaging X - X - -

Groups X X X X X

Members X - X - -

Security X X X X X

Disconnected operational mode X - - - -

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 63

Components and mechanisms related to tasks are based on the ideas used to design
JNGI [9], a decentralized and dynamic framework for large-scale computations for
problems that feature coarse-grained parallelization. While the components of JNGI
communicate using JXTA [10], we use the communication facilities of LaCOLLA.
Among the aspects that characterize LaCOLLA one that deserves special attention is
what we have named virtual synchronism.

3.2.1 Virtual Synchronism
LaCOLLA guarantees to applications that all events delivered to LaCOLLA will be
received almost immediately (i.e. immediately or just after reconnection) by the rest
of connected members. This guarantee provides the feeling of knowing what is
happening in the group while it is occurring. Disconnected members will receive the
events during the re-connection process.

LaCOLLA also guarantees that the last version of all objects (based on the
previous guarantee) belonging to group will be available immediately for all
members.

The sum of both guarantees is what we have named virtual synchronism. Apart
from the up-to-date perception that members of the group have at any moment, virtual
synchronism has an interesting side effect. This side effect is very useful in an
autonomous, decentralized and dynamic storage system: since all components know
the location of all objects (and their replicas), components access them directly
(without a resolver that informs about location of last version of objects). This allows
LaCOLLA to have an autonomous and decentralized policy to handle objects and
their replicas at the same time that guarantees immediate access to last versions.

3.3 Example of LaCOLLA Group

Figure 2 is a snapshot of a collaborative group that uses applications connected to
LaCOLLA. Each member belonging to group provides to it the resources that she/he
wants. As we have said, that decision depends on the capacity and connectivity of the
computer the member is using and on the degree of involvement that she/he has in the
group. In this example, two members (C and D) provide all possible components (RA,
GAPA, EA and TDA). Other two members (B and F) provide all components except
execution components (provide RA and GAPA). Three of the members (A, E and G)
provide no resources to group.

The members of the group use several applications to perform the collaborative
tasks. At the moment the picture was taken, they were using an asynchronous forum,
a file sharing tool and an instant messaging application. Not all members use all
applications at same time.

Those applications share presence, members and group information. On the one
hand, this prevents users to register to each application and also provides presence
information even though they are using different applications. On the other hand,
application developers don’t have to worry about where the necessary information is
located. LaCOLLA middleware also facilitates the sharing of information among
applications (if compatible formats are used) due the fact that information, events and
objects are stored in LaCOLLA storing resources (RA).

64 J.M. Marquès and L. Navarro

Member D (represented by discontinuous lines) is not connected to group at this
moment. Even though, her/his peer is connected to group, providing all its resources
to it. That means that all generated events and some of the objects would be stored in
her/his peer LaCOLLA (RA), tasks would be executed or planned using its resources
(EA, TDA), or that users would be authenticated by her/his peer (GAPA), information
of members and groups would be also stored in it.

Internet

File sharing Instant
Messaging

Forum

Instant
Messaging

Instant
Messaging

Instant
Messaging

Instant
Messaging

File sharing

File sharing

Forum

Forum

Transport

UA

UA

A LaCO LLA peer

Transport

UA

RAUA GAPA

A LaCO LLA peer

Transport

UA

UA

A LaCO LLA peer

Transport

UA

UA

A LaCO LLA peer

Transport

UA

RAUA GAPA

A LaCO LLA peer

EA TDA

Transport

UA

RAUA GAPA

A LaCO LLA peer

EA TDATransport

UA

RAUA GAPA

A LaCO LLA peer

A

B

C

D

E

F

G

Fig. 2. Snapshot of a collaborative group that uses applications connected to LaCOLLA

An example of a group like the one presented in figure 2 could be a collaborative
group doing a collaborative learning practice in a virtual university (as is UOC -
Universitat Oberta de Catalunya). The learning practice could be a software
development project or a case study. In those cases, a member of the group initiates
the group (providing at least one RA and one GAPA components) and invites other
members (who contribute with more resources and components to the group). From
that point on, the group operates using the resources provided by its members.
Although any member disconnects its resources or is removed as member of the
group, the group will be operative. And most important, nothing will happen if the
initiator of the group disconnects its resources or is removed from the group. As long
as members provide resources to the group, it will exist. Whenever no member
provides resources, the group would extinguish.

LaCOLLA is independent of the applications that use its functionalities. Many
applications (not only the kind of applications presented in the figure) involved in a

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 65

collaborative task could benefit from the general purpose collaborative functionalities
that LaCOLLA provides. These applications could range from applications that only
share generated information to sophisticated collaborative applications exploiting
awareness information and coordinating actions (as events) of participants in the
collaboration.

3.4 LaCOLLA Middleware

At the moment of writing this paper, we had the first beta version of LaCOLLA
middleware. This version can be found at: http://lacolla.uoc.edu/lacolla/. It includes
the source code, some basic instructions on how to use LaCOLLA, and installation
procedures. LaCOLLA middleware has an open source license and is written in the
Java language, what makes it independent from the underlying platform.

From both building collaborative applications that use LaCOLLA and from using
the applications we developed, we obtained valuable ideas and improvements to
introduce in the second beta version. The new version will pay special attention to
security issues, which are at its minimum expression in the first version. We are also
planning to introduce new components and mechanisms that will allow mobile
devices (PDA, mobile phone, sensors, etc.) become LaCOLLA peers.

UA

Api

ApplicationSideApi
login(...)
logout(...)
disseminateEvent(...)
putObject(...)
getObject(...)
removeObject(...)
addGroup(...)
addMember(...)
...

newConnectedMember(...)
memberDisconnected(...)
newEvent(...)
Exception(...)
...

RMIRegistry:
host: 134.23.129.21
port: 2333
Object: ApplicationSideApiImpl.class

RMIRegistry:
host: 134.23.129.21
port: 2156
Object: ApiImpl.class

...

Application

Peer LaCOLLA

Fig. 3. LaCOLLA API. It has two parts. Applications use UA’s API to ask LaCOLLA to
perform some action. The other API is provided by the applications to the UA were they are
connected, that API is used by LaCOLLA to notify events or information to applications.

3.4.1 LaCOLLA API
LaCOLLA provides a powerful API that can be easily used by any application. As
can be seen in figure 3, the API of LaCOLLA is divided in two parts. The first part is
the API provided by LaCOLLA (through its UA) to applications. The detail of
functions that an UA provides to applications is listed on table 2.

66 J.M. Marquès and L. Navarro

The second part of the API is used by an UA to notify events or information coming
from LaCOLLA to applications connected to the UA. Table 3 lists the functions. As can
be seen in figure 3, UAs invoke functions at ApplicationSideApi class. This class
is provided with LaCOLLA middleware and must be extended by any application that
wants to use LaCOLLA.

Java RMI is used to publish and invoke each part of the API. In the example of
figure 3, UA’s API is published at host 134.23.129.21 and port 2156. When an

Table 2. API functions that User Agents offer to applications

Category Function Description
login Connects user to group.
logout Disconnects user from group. Presence
whoIsConnected Which members are connected to the group?
disseminateEvent Sends an event to all applications belonging to group.

Events
eventsRelatedTo Which events have occurred to a specific object?
putObject Stores an object in LaCOLLA.
getObject Obtains an object stored into LaCOLLA. Objects
removeObject Removes an object stored in LaCOLLA.
submitTask Submits a task to be executed by computational

resources belonging to group.
stopTask Stops a task.

Tasks

getTaskState In which state is the task?
Instant Messaging sendInstantMessage Sends a message to specified members of the group.

addGroup Creates a new group.
removeGroup Removes a group.
modifyGroup Modifies the properties of a group.
getGroupInfo Gets information about the properties of a group. (Look

at groupInfo function)
Groups

getGroupInfoSync Gets information about the properties of a group in a
synchronous manner. This function does not return until
the operation is completed and a result is available.

addMember Creates a new member.
removeMember Removes a member.
modifyMember Modifies the properties of a member.

Members

getMemberInfo Gets information about the properties of a member.

Table 3. API functions that UA invokes on applications

Category Function Description
newConnectedMember Notifies that a new member has been connected.

Presence
memberDisconnected Notifies that a member has been disconnected.

Events newEvent Reception of an event occurred in the group.
taskStopped Notifies that the task has been stopped nicely.

Tasks
taskEnded Notifies the ending of a task.

Instant Messaging newInstantMessage Reception of a new instant message.
Groups groupInfo Reception of the group information.

exception Notifies that an internal exception or anomalous
situation has occurred.

Other functions
appIsAlive UA queries the state of the application. Used to

know if application is alive and connected to group.

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 67

application wants to login, logout, send an event, put an object, get an object, etc. it
has to invoke the API function at this location.

The same thing happens with the API provided by each application to LaCOLLA.
In that case, each application extents ApplicationSideApi and publishes it. In
the example, application is at host 134.23.129.21 and at port 2333. This API allows
UAs notify to applications that a member has connected, that a member has
disconnected, that there is a new event, an exception, etc.

It is also interesting to notice that all applications connected to a LaCOLLA peer
will use the API provided by its UA, but that each application will have its own API
and that the UA will notify to each application individually.

If the application is written in Java the integration with LaCOLLA is very easy. It
has to use Java rmi to invoke the API of LaCOLLA at UA. The application also has to
extent ApplicationSideApi class provided along with the LaCOLLA
middleware. This makes very easy to adapt applications done in Java to benefit from
LaCOLLA.

If the application is written in other programming languages, the developer has to
build a module to be able to use the API of LaCOLLA. This module is very easy to
build because it only has to translate parameters and results to and from Java. For
instance, if the application is written in C/C++, JNI (Java Native Interface) can be
used. The module will encapsulate both sides of the API: the invocations from
application to UA and the notifications from UA to application.

3.4.2 Components and Internal Mechanisms
Components are implemented in Java and behave according to its local information
(autonomy). Coordination among components connected to a group is achieved by
internal mechanisms, which allow components learn new information and
synchronize its local information with other components. Internal mechanisms behave
in a decentralized and autonomous manner. Components communicate by message
passing. Messages are serialized Java objects sent using TCP sockets.

There are 10 categories of internal mechanisms divided in several sub-
mechanisms. Each sub-mechanism performs different actions depending on the kind
of component. Is out of the scope of this paper to detail how the decentralized and
self-organized behavior of LaCOLLA is achieved. A fully and detailed description
can be found at [5, 11]. Alternately we are going to explain the general behavior of
some LaCOLLA’s internal mechanisms and the key aspects to understand its
philosophy.

LaCOLLA middleware is based on the presence mechanism. To guarantee the
consistency and a good performance of LaCOLLA it is required that each component
connected to group knows which other components are connected to the group. The
other key mechanism is event dissemination. Presence is the basis for the peer-to-peer
behavior (decentralization, autonomy, self-organization and self-sufficiency). Event
mechanism provides immediateness and consistency of view. In the next paragraphs
more detail of both categories of mechanisms will be provided. Prior to that, is
important to understand that LaCOLLA is a middleware intended to support
asynchronous group collaboration and some sorts of synchronous collaboration.
Therefore, groups are considered to have a small number of members and components
(as is stated in validation section, LaCOLLA can deal with groups formed by 100 or

68 J.M. Marquès and L. Navarro

more components, but groups, to be realistic collaborative groups, should typically
have 5, 10 or 20 members, not more). LaCOLLA was not created to support
communities of members sharing or performing some weak-collaborative task.

Presence sub-mechanisms are: connection of a component, disconnection of a
component, consistency of connected information, and detection that a component is
no more connected. When a component wants to connect a group, sends its
authentication information to a GAPA. If authentication is ok, GAPA answers with
information about which components the GAPA knows that are connected to group.
Then the new component sends a message to all components he knows that are
connected to the group (those that GAPA has informed him) informing about its
connection to the group. Prior to an ordered disconnection, the disconnecting
component informs other components about its disconnection. To synchronize
information about connected components, two techniques are used: a) every time a
component sends a message to another component it includes the information about
the components the sender knows that are connected. This allows the receiver to learn
about connected components he didn’t know that where connected. b) Time to time, a
component randomly selects N1 components and performs a consistency session with
them. During a consistency session between A and B, A tells B which components A
knows that are connected to group; B tells A which components knows that are
connected to group. The last sub-mechanism related to presence refers to detection of
components that are no longer connected to group: when a component (A) hasn’t
received any message from B for a long period of time2, A tries to contact B. If A
can’t reach B, A removes B from its connected components list.

When an action occurs, an event is generated to inform about the action. Actions
can be: new document, new member, document read, or any action that an application
wants to disseminate to all members. As was explained in virtual synchronism part of
the section 3.2, events are used to provide awareness information to members, but are
also used to guarantee the internal consistency of the system. The dissemination of
events mechanism guarantees that all connected components have all generated
events in a time that users perceive as immediate.

When a new event is created, the component where the event was created sends it
to all components the component knows that are connected. As can be seen, the
performance of this mechanism is strongly related with presence mechanism. All RA
store in a persistent manner all received events. Components not connected to the
group or components that the sender of the event doesn’t know that are connected to
the group will not receive the event. To overcome this, a consistency sub-mechanism
is implemented. Event’s consistency mechanism is based on an adaptation of
Golding’s Time-Stamped Anti-Entropy algorithm [6] and is performed between an
UA or RA and an RA. Consistency sessions among RA are as follows: time to time,
an RA (RA1) randomly selects another RA (RA2) among the RA that knows are
connected to group. Then, RA1 sends to RA2 a summary of all events that RA1 has
received. RA2 sends to RA1 all events that RA2 has and that RA1 doesn’t have along

1 Max (2 , log2(numberConnectedComponents)+1). This number was adjusted by simulation.
2 This period of time is a parameter that can be adjusted. Component A can also know about

component B through some other component (C). In that case, either by presence sub-
mechanism a) or b) C has informed A that B was still connected.

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 69

with the summary of all events that RA2 has. Finally, RA1 sends to RA2 all events
that RA1 has that RA2 doesn’t have. Similarly, in the case of consistency sessions
between UAs and RAs, the UA asks an RA for events that the UA doesn’t have but
UA never provides new information to RAs.

Events mechanism doesn’t provide any order guarantee. Events mechanism
provides immediateness (events are sent by originator to all other connected
components right after the event is created) and consistency (consistency sessions
guarantee that not connected components or components that haven’t received the
event will eventually receive it3). In the case some ordering guarantees were required,
applications should provide them. As future work we are considering to implement
some event’s ordering polices in top of LaCOLLA and provide them to applications.

Events and presence mechanisms are in the basis of all other mechanisms. For
example, objects mechanism is in charge of storing, retrieving, removing and
guaranteeing the availability of objects stored in LaCOLLA. When an object is stored
in LaCOLLA, the object is send to any RA and an event is disseminated to all
components to inform about the new object and its location. The event will be used by
any component to know where is located the object. When an UA wants to retrieve an
object, the UA knows where the object is located (some moment in the past, the UA
received and event informing about the location of the object). Consequently, it
obtains the object from any of its locations. To guarantee the availability of objects,
they are automatically replicated in a decentralized manner. Every time a new replica
is created, an event is disseminated to inform about the availability of new replica and
its location.

Other mechanisms also combine push, pull and autonomous decision behaviors as
it has been explained for presence and events mechanisms. Even though the push
behavior is frequently used, neither components nor the network are saturated because
groups are usually small.

 This combination of autonomy of components and direct communication among
them (in a peer-to-peer manner) along with the common ownership of resources
provides a flexibility that suits the idiosyncrasy of our groups.

4 Validation

As said in section 3.4, LaCOLLA middleware implements the functionalities
presented in this paper. We also adapted and implemented some collaborative
applications (an instant messaging tool, an asynchronous forum, and a document
sharing tool) that benefit from LaCOLLA. These realistic applications helped us to
improve the architecture and implementation of LaCOLLA. We have done limited
tests with a number of ad-hoc users. All these tests confirm the usefulness of
LaCOLLA. The next step is going to be to extend the functionalities of the
applications we developed and use them in regular university courses at UOC.

Before implementing LaCOLLA middleware, a simulator was implemented to
validate the proposed architecture under several realistic scenarios. The simulator

3 Implemented variant of TSAE algorithm used in events’ consistency sessions [5, 6] ensures

that.

70 J.M. Marquès and L. Navarro

used J-Sim [12] as network simulator and implemented the UA, RA and GAPA
components, virtual synchronism and the internal mechanisms necessary to prove that
LaCOLLA behaves, as expected, in an autonomous, decentralized and self-sufficient
manner.

Several experiments were done with synthetic workloads with different degrees of
dynamism (failures, connections, disconnections or mobility), with different sizes of
groups (from 5 to 100 members) and with different degrees of replication (number of
RA and GAPA). All components were affected by dynamism.

Simulations had two phases. The first phase simulated a realistic situation. In that
phase all internal mechanisms were operative. During this phase members' activity
was simulated and components connected, disconnected, moved or failed. The second
phase was called repair phase and only internal mechanisms were active. This second
phase was used to evaluate how long LaCOLLA required achieving: a) self-
organization: all connected components have consistent the information about all
internal mechanisms, b) virtual synchronism: all connected components have all
events and have consistent the information about available objects, c) presence and
location: all connected components have consistent the information about presence
and location.

Experiments showed that, in spite of the dynamism and the autonomous and
decentralized behavior of components, LaCOLLA required short amount of time
(with respect to the rate of changes) to update the information referring to internal
mechanisms in all components. Experiments also showed that members knew what
was happening in the group and that they had access to the latest versions of objects
in a time they perceived as immediate [5].
Figure 4 shows the time required by LaCOLLA (depending on group size) to be self-
organized, to provide virtual synchronism, and to have consistent information about
presence and location. Note that, for groups of typical size (10 members),

0
20
40
60
80

100
120
140
160
180
200
220

0 20 40 60 80 100

size (#members)

#s
ec

on
ds

self-organization
virtual synchronism
presence + location

Fig. 4. Simulation results. The figure shows the time required a) to be self-organized, b) to have
consistent all information related to virtual synchronism (events and objects) and c) to have
consistent the information related to presence (presence and location).

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 71

LaCOLLA has good performance: it requires 20 seconds to self-organize, and less
than 10 seconds to provide virtual synchronism. It deserves special attention the fact
that, even though all components don't have all consistent information about internal
mechanisms (self-organization), connected members know all what is happening in
the group and have access to the last version of objects (virtual synchronism) in a time
that they perceive as immediate. This is due to the decentralized implementation of
internal mechanisms and to the fact that non-key mechanisms have long-term
consistency policies. In this figure it is also plotted the time required to have
consistent presence and location mechanisms because they have a great influence in
the achievement of self-organization.

When the size of groups increases, the required time grows, but still maintains low
enough values for asynchronous collaboration (e.g. with 60 members: self-
organization takes 2 minutes, providing virtual synchronism in 1 minute). This also
proves that LaCOLLA can be used in situations where quite large groups require
asynchronous sharing capabilities. These values will be further adjusted based on
experience with real users using the current middleware with specific applications.

5 Conclusions and Future Work

Asynchronous collaborative applications have to adapt to group idiosyncrasy and
interaction style and support the formation of ad hoc collaborative environments for
people willing to cooperate using only their own computers, without any additional
computing resources (i.e. servers). This requires the autonomy and self-sufficiency
that peer-to-peer networks can only offer. We have identified groups as units of
resource sharing, by which several individuals dispersed through Internet may
spontaneously start to collaborate by just sharing their own computers to form an
independent ad hoc community.

In this paper we have described the general characteristics and properties of
LaCOLLA, a decentralized, autonomous and self-organized middleware for building
collaborative applications that operates with resources provided by their members,
that adapts to the idiosyncrasy and to the interaction nature of human groups, and that
allows execution of tasks using resources belonging to the group. We also presented
the details of current LaCOLLA middleware implementation, paying special attention
to its API.

From both building collaborative applications that use LaCOLLA and from using
the developed applications we obtained valuable ideas and improvements to introduce
in the next versions of LaCOLLA. These new versions will pay special attention to
security issues, which are at its minimum expression in the first version; and to
introduce new components and mechanisms that will allow mobile devices (PDA,
mobile phone, sensors, etc.) become LaCOLLA peers.

We are also planning to use LaCOLLA in real collaborative settings. In that sense,
we are planning to use collaborative applications that use LaCOLLA middleware in
some collaborative learning practices at UOC. UOC is a virtual university that
mediates all relations between students and lecturers through Internet. We think that
this kind of collaborative environments where participants never physically meet one
to each other will benefit from approaches like the one provided by LaCOLLA,

72 J.M. Marquès and L. Navarro

specially for the degrees of autonomy and self-sufficiency that can be achieved. These
real experiences will be of great value for us to further refine the architecture and
adjust the implementation of the middleware.

Acknowledgements

Work partially supported by MCYT-TIC2002-04258-C03-03.

References

1. Foster, I.; Kesselman, C.; Tuecke, S. (2001). The Anatomy of the Grid Enabling Scalable
Virtual Organizations. Lecture Notes in Computer Science.

2. Navarro L., Marquès J.M., Freitag F. (2004). On distributed Systems and CSCL. The First
International Workshop on Collaborative Learning Applications of Grid Technology
(CLAG 2004). Held in conjunction with the IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2004). April 19 - 22, 2004, Chicago, Illinois, USA.
http://www.ccgrid.org/ccgrid2004.

3. Bote, M., Dimitriadis, Y., Gómez-Sánchez, E. (2003) Grid uses and characteristics: a grid
definition. In Proceedings of First European Accross Grids Conference, 2003.

4. Hurwicz, M. (2001). Groove Networks: Think Globally, Store Locally. Network
Magazine. May 2001.

5. Marquès, J.M. (2003). LaCOLLA: una infraestructura autònoma i autoorganitzada per
facilitar la col•laboració. Ph.D. thesis, <http://people.ac.upc.es/marques/LaCOLLA-
tesiJM.pdf>

6. Golding, R.A. (1992). Weak-consistency group communication and membership. Doctoral
Thesis, University of California, Santa Cruz.

7. Saito, Y.; Shapiro, M. (2002). Replication: Optimistic Approaches. Technical Report
HPL-2002-33, HP Laboratories, 2002. <http://www.hpl.hp.com/techreports/2002/HPL-
2002-33.html/>.

8. Carter R. L. (1995). Dynamic server selection in the Internet. In Proceedings of the Third
IEEE Workshop on the Architecture and Implementation of High Performance
Communication Subsystems (HPCS'95).

9. Verbeke, J.; Nadgir, N.; Ruetsch, G.; Sharapov, I. (2002) Framework for Peer-to-Peer
Distributed Computing in a Heterogeneous, Decentralized Environment. Manish Parashar
(Ed.): Grid Computing, Third International Workshop, Baltimore, USA. LNCS 2536
Springer 2002, ISBN 3-540-00133-6. <http://jngi.jxta.org/>

10. JXTA: http://www.jxta.org/. An overview paper: L. Gong. Project JXTA: A Technology
Overview, 2001. < http://www.jxta.org/project/www/docs/TechOverview.pdf>.

11. LaCOLLA: http://lacolla.uoc.edu/lacolla
12. J-Sim: http://www.j-sim.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

