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Abstract. This paper presents an architecture for distributed synchronous col-
laborative visualization and modeling applied to the geosciences. Our goal is to
facilitate the creation of heterogeneous collaboration sessions, in which partici-
pants may use different versions of a core CAD application, configured with
specific functionalities and multimedia user interfaces, through the composition
of run-time plugins. We describe the domain requirements, the architectural
concepts that facilitate the integration of our collaboration plugins with the core
application, and the management of communication channels to allow the defi-
nition of role-based control policies adapted to specific types of sessions.

1 Introduction

Geomodeling, the computer-aided design of geological objects and their properties
[17], involves a large spectrum of skills spread over different domains: geophysics,
geology and reservoir engineering. A numerical earth model is shared by people with
different types of specializations and evolves continuously through a team effort. In
the oil and gas industry, during the exploration and production of a reservoir, new
data is constantly acquired, and the model needs to be frequently updated as new
decisions have to be taken based on the most up-to-date information.

Effective geomodeling is strongly graphics-based. High-performance graphics
make it possible for the professionals involved in the process to interactively visualize
and edit the integrated three-dimensional models. Visualization is used as a powerful
tool for data understanding and insight, as a support for interactive modeling, and as a
common language for communication and collaboration within multi-disciplinary
teams. Currently, virtual-reality applications are starting to be used to enhance com-
prehension and to improve precision in some modeling tasks [11, 14].

Given the geographical dispersion of operations and professionals in the industry,
and the increasing availability of computing, graphics and networking resources,
remote collaboration offers great potential to improve distributed cooperation and
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decision-making. The scarcity of geomodeling experts also makes this technology
very important for consulting and training. However, currently only a few commercial
modeling applications are starting to offer some collaboration functionalities, mainly
the synchronization of points-of-view among remote users .

A key problem faced by the companies is how to integrate different types of tools,
legacy and new, to compose a comprehensive software solution that provides a coher-
ent and efficient environment for remote collaboration.

Therefore, the objective of this work is the development of an architecture for re-
mote synchronous collaborative modeling and visualization applied to oil and gas
exploration and production. This application domain is closely related to other areas,
like collaborative engineering and collaborative scientific visualization. However,
some specific requirements influence the design of the proposed architecture. In
particular we are interested in facilitating the coordinated use of heterogeneous user
interfaces and interaction paradigms by participants in multi-disciplinary collabora-
tive sessions with the support of multimedia communication, taking into account the
different types of collaborative activities to be performed, the roles of the participants
and the communication and cooperation channels involved.

Unlike related collaboration solutions [1, 19, 25], we do not expect the develop-
ment of tools compliant to a predefined architecture. Instead, our purpose is to facili-
tate the transformation of a well-designed operational application, which follows
established design principles [9] and is extensible by run-time plugins, into a collabo-
rative system through the introduction of cooperation and communication mecha-
nisms. Our implementation is based on Gocad [10], a pioneering geological modeling
application.

Along with the core application and its functional plugins, the proposed collabora-
tion solution involves the development and integration of:

= A collaboration plugin responsible for providing session management services
and for supporting synchronous collaboration through the creation of “communi-
cation channels” (commands, camera, telepointers, 3D annotations, avatars,
model distribution, audio and video) among distributed instances of the applica-
tion, with broadcasting and floor control mechanisms;

= A custom tool for multimedia communication, also integrated as a plugin, provid-
ing audio and video channels subject to the defined control policies;

= A virtual-reality plugin compatible with the collaboration functionality provided;

= A real-time data-acquisition plugin, used for automatic integration into the model
of data arriving from remote well-drilling sites [2].

In this article, after an overview of some application scenarios, we emphasize the
description of the coordination mechanisms proposed for dealing with the different
channels used for cooperation and communication.

2 Collaborative Geomodeling

Before we proceed to the description of the proposed architecture, let us discuss some
typical application scenarios and related requirements.
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2.1 Collaboration Scenarios

Consulting

User A is building a model, and faces a problem on how to perform a certain task. A
then creates a collaboration session (a conference), invites user B to join from a re-
mote site, transfers the model and explains the problem, turning the model around,
zooming in the area where the problem occurs, pointing to things and making annota-
tions that B can see in a synchronized way, as if both were looking at the same dis-
play. B may also manipulate the camera and make annotations directly on the three-
dimensional model, which are seen by A (Figure 1). For the two participants only,
conversation could take place over the phone. However, integrated videoconferenc-
ing, automatically established among the participants of a conference, simplifies and
improves the communication.
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Fig. 1. Screenshots of two users discussing a model, using 3D cursors and annotations (differ-
entiated by colors)

Conflicting camera movements are detected immediately, and a direct negotiation
for the control can be done during the discussion over the audio channel, without the
need for explicit passing of the camera control. However, if more than two partici-
pants are involved, negotiation of control through a verbal protocol becomes awk-
ward, interfering with the main discussion, and a turn-taking mechanism becomes
necessary. If both participants need to edit the model, floor passing is also used to
regulate the transfer of the control of modeling commands, avoiding possible incon-
sistencies due to conflicting operations.

Well Planning

An important collaboration scenario is the design and real-time steering of oil wells.
While a directional (non-vertical) well is drilled, data acquired at the well bit in the
subsurface needs to be received at the office from the remote drilling location and
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incorporated into the model, shared by local and remote geoscientists, in nearly real
time to support collaborative decisions about the steering of the well trajectory.

This activity involves at least two sites: one or more modeling experts working to-
gether at the office, using a desktop version of the application loaded with a well-
planning plugin with specific functionalities, and an operator at the drilling site, typi-
cally using a less powerful computer and a lightweight version of the application to
visualize the shared model, with restricted editing rights. All participants use the
plugin for real-time data acquisition. Usually very limited network bandwidth is avail-
able at the drilling site, requiring strict control of the use of audio and video. Our
system has been frequently applied to this scenario for the survey of actual operations.

Virtual-reality (VR) applications are now starting to be used for the design and
steering of complex horizontal wells [14, 13]. However, while some modeling tasks
like the design of the well path or a local modification of a surface may be facilitated
by the immersive interface, other global modeling tasks become more difficult with
an “inside the model” point of view. Also, the immersive interface usually needs to
provide restricted functionalities, for ergonomic reasons. We propose that the use of
VR as part of heterogeneous collaboration sessions can bring in the benefits but avoid
the shortcomings. In this case, a participant in the session uses the VR plugin in an
immersive virtual environment, collaborating with other desktop participants. Among
other usability issues, camera position events cannot be exchanged between the desk-
top and the VR users, since their navigation metaphors are totally different.

2.2 Requirements and Consequences

We have observed and taken part in operational collaboration sessions in the scenar-
ios described above. These ethnographic observations have suggested some specific
requirements for the proposed architecture, both from the users’ and from the system
developers’ points of view, which guided our design choices described below.

Small groups: the activities considered involve a small number of participants.
Therefore, scalability is not an issue in this domain. This allows the adoption of a
centralized coordination scheme, simplifying the solution.

Graphic performance: visualization and modeling require very responsive interac-
tion (maintenance of high frame rates), demanding an appropriate treatment of the
graphics-related communication channels. This implies that the implementation of
coordination policies cannot degrade performance. For this reason, for graphic inter-
action events, we propose a floor control mechanism based on the setting of input and
output switches for each channel in the host application, thus avoiding the processing
of the real-time events by the external coordination logic.

Integrated multimedia communication: audio and video are fundamental components
of a synchronous collaborative modeling system. In some systems this is provided
through external tools, requiring separate session management and controls. We con-
sider that audio and video need to be provided as integrated communication channels.
As the use of multiple audio and video streams poses strong requirements over band-
width and processing consumption, conference participants need to be able to control
individual connections, subject to the role-based policies defined for the conference.
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Reuse of single-user functionality: application deployment is one of the most chal-
lenging aspects of groupware development [7]. Our target applications require the
integration of a very large set of tools and multidisciplinary modeling functionalities,
typically developed over many years. Therefore, the objective of the architecture
proposed is to allow the flexible extension of an operational single-user application
into a collaborative system through the incorporation of plugins, not requiring recom-
pilation and redistribution.

Concurrency control: geological modeling involves the construction of diverse types
of mathematical objects (surfaces, meshes, solid models), with complex geometry and
topology, interdependency relationships, and a very large number of elements (a sin-
gle version of some objects may easily approach the available memory size). Cur-
rently it is not possible to assume that modeling operations may be always rolled back
efficiently. In this context, effective consistency maintenance guaranteeing high re-
sponsiveness and concurrency is still not feasible [23].

Therefore, the approach presently adopted for concurrency management in model-
ing is to actually avoid conflict through the use of mutual exclusion by the floor-
control setting for the modeling commands (or, optionally, to rely on a social proto-
col). As the mechanism proposed is extensible, more sophisticated floor strategies [5,
6] and concurrency control [23, 8, 21] can be used in the future.

Awareness: for effective collaboration, group awareness needs to be provided by
different means [21]. The list of participants in a session, their roles and control rights
over the different communication channels need to be easily accessible. Annotations,
telepointers and avatars need to be associated to the participants with visual cues, like
labels and colors.

Heterogeneous operation conditions: networking resources for distributed partici-
pants are typically very heterogeneous. To guarantee the required responsiveness we
have opted for a replicated architecture [4], in which the basic cooperation mechanism
is the broadcasting of commands and interaction events over the communication
channels, requiring low network bandwidth.

3 Collaboration Architecture

The proposed architecture was designed in the context of the scenarios and re-
quirements described above. A collaboration plugin (NetGocad), loaded at runtime,
allows the transformation of the single-user application (Gocad) into a distributed
collaborative system through its extension with broadcasting and control capabili-
ties, by means of the incorporation of CORBA objects and of a configurable coor-
dination component.

The separation of coordination policies from computation, as proposed elsewhere
[15, 3], and the definition of collaboration types, participant roles and floor control
over the channels through an object-oriented scheme, implemented with a simple and
powerful interpreted extension language (Lua), greatly simplifies the evolution of the
system.



126 L.P. Reis et al.

3.1 Gocad

Gocad (Geological Objects Computer Aided Design) is a CAD software, originally
developed by an international research consortium [10], that allows the construction
of earth models for geophysics, geology and reservoir engineering applications. Its
architecture is based on the systematic use of Design Patterns [9] such as: Abstract
Factory, Builder, Chain of Responsibility, Command, Composite, Factory Method,
Interpreter, Iterator, Observer, Proxy, and Singleton. It also provides a flexible devel-
opment framework to allow the creation of plugins, which can be dynamically loaded
at runtime inside the application shell.

The implementation of NetGocad, described in the next section, is therefore facili-
tated by this framework, in particular by the use of the Command, Abstract Factory
and Observer Patterns.

Gocad uses the Command Pattern to isolate the processing of operations from their
invocation at the user interface. All menu operations generate string commands that
are then executed, facilitating the creation of a mechanism to broadcast them to re-
mote servers. The use of Abstract Factories and Observers allows the run-time redefi-
nition of classes of the main application by the plugin. This mechanism is used to
create new observers for broadcasting commands and graphic events.

3.2 NetGocad

Figure 2 shows a simplified diagram with NetGocad’s main classes, responsible for
the collaboration functionality. Most of them are implemented in CORBA, chosen as
the distribution middleware because it is language-independent and multiplatform,
and facilitates the integration with interoperability solutions used in the industry [18].

The central class in this architecture is the Participant, which acts as the main
server for remote client requests, invoking operations in the local instance of the ap-
plication. The Conference, instantiated by the Manager, keeps track of a group of
Participants. It provides the same interface for channel events (section 3.4) as Partici-
pants do but broadcasts them to its members, either directly or through LuaConfer-
ence, as discussed below. The abstract class Partner acts as a superclass for both Par-
ticipants and Conference.

The main CORBA classes are described below:

Partner: Declares the interface for the methods that treat the communication channel
events, actually implemented by Participants and Conferences. Clients keep refer-
ences to a Partner.

Participant: Implements methods for treating communication channel events by
invoking the appropriate operations at the host application (command execution, set-
ting of the camera position, etc.).

Conference: Manages a group of Participants and broadcasts channel events to them.
Also keeps track of floors: if a communication channel is controlled, the participant
controlling the floor is the only one allowed to send events through this channel, as
described in the next sections.
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Manager: Manages the overall conferencing system. For a given domain (a company,
for instance), it is responsible for registering and listing participants, creating and
listing conferences, and allowing clients to connect to remote participants and confer-
ences. It is the only published object, instantiated by a daemon, and serves as the
entry point for the creation of collaboration sessions.
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connect()

Fig. 2. NetGocad main classes (simplified)

Client, Server and LuaConference are not CORBA classes:

Client: Singleton class [9] implemented in C++. Instantiated by the application, pro-
vides methods for connecting to the Manager and to Partners, keeping references to
them. When a user performs an operation locally (executes a command, a camera
movement, etc.), a corresponding observer (redefined by the plugin for the applica-
tion) will use the Client instance to invoke the same operation on the Partner it is
connected to.

Server: Singleton class implemented in C++ used by the application to instantiate a
Participant and to register it with the Manager.

LuaConference, a module implemented in the Lua extension language [12, 16], is
created by each Conference at runtime and becomes responsible for the coordination
policies. It loads the definitions of collaboration types and participant roles (section
3.5), and interacts with the Conference to provide configurable services (session man-
agement, floor control, definition of conference types and participant roles).
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3.3 Operation

For a collaboration session to take place, a daemon instantiating a Manager needs to
be running, responsible for registering and listing available Participants and Confer-
ences, and for providing connection services.

When a group of people wants to collaborate, first somebody creates a conference,
choosing a collaboration type among the ones loaded by LuaConference, and auto-
matically becomes the conference owner. Then the other participants call the confer-
ence, choosing one of the roles specified for the current conference type. If the owner
accepts a call, the caller is allowed to join and receives rights over the communication
channels according to the chosen role (Figure 3). Afterwards, whenever a participant
sends an event to the conference over a communication channel, it is broadcasted to
all members enabled to receive it.

If somebody starts audio or video communication, the appropriate streams are cre-
ated, according to the policy in place, through the videoconferencing tool (section 4).

3.4 Communication Channels

We define a “communication channel” as an abstract path for conveying information
among instances of the application (commands, camera positions, telepointers, etc.),
subject to a control policy. To each channel corresponds a method responsible for
treating events, declared in the Partner class and implemented by Participants (except
for audio and video, which are treated separately).

For the definition of the control logic in LuaConference, all channels are treated as
elements of a homogeneous array, for which control matrices are defined. However,
for the implementation of broadcasting mechanisms, we subdivide channels into in-
teraction channels, command channels and streaming channels.

Interaction channels carry events that are generated by direct manipulations inside
the 3D camera (camera movements, telepointers, avatars), that need to be processed at
high rates for smooth graphic interactivity. Three-dimensional cursors (telepointers)
identifying their users by color or label (Figure 1) allow participants to point to shared
objects. Avatars display the position of the camera and the frustum of a participant, in
conferences involving participants with non-synchronized points of view.

These events are not passed through the conference virtual machine (LuaConfer-
ence). Instead, their broadcasting is done by the CORBA Conference and controlled
by the switches (control matrices) set for the channel, as described below. If all par-
ticipants are free to send and to receive the events, broadcasting is done through
CORBA'’s Event Service. Otherwise, this service cannot be used, because it provides
no event filtering. The Notification Service (an extension of the Event Service) does
allow event filtering and independent quality of service (QoS) control for each chan-
nel — an important feature, since different channels have different performance re-
quirements. In this case, filtering would be based on the connection matrix, but cur-
rently this service is not employed in our implementation because it is not available in
the CORBA version used [22].

Command channels carry the application commands, directly sent by the Conference
to LuaConference, which is then responsible for broadcasting. The host application
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Fig. 3. Conference user interface

commands can be classified in a resource file associating lists of commands to labels.
These lists are defined for the main application and for each plugin in a configuration
file, and are then obtained by LuaConference and used during broadcasting for pars-
ing and filtering commands. A mandatory class is “donot_broadcast”, defining all the
commands that cannot be broadcasted (registration, connection, exit, model transfer,
creation of interaction tools, etc.).

This mechanism can be used for the logical subdivision of the command channel
into separate channels, so that each can be subject to independent floor control. This
is currently done with three-dimensional annotations (freehand drawing, polygonal
lines and arrow symbols) which, although similar in effect to other graphic interaction
channels, are in fact generated by the application as commands only when the interac-
tive creation of a primitive is complete.

The same type of command processing could be used for the specification of floors
on objects and tools through the control of the commands that manipulate them.

All the commands broadcasted since the beginning of a conference are logged, to
allow late joining (logged commands are sent by the Conference to new participants
joining a session).

Streaming channels are subject to the same floor control mechanism but are handled
separately (as described in section 4), due to the specific requirements they pose (in
particular, audio and video streams are created in a peer-to-peer mode).
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Control Matrices
In a conference with n participants, for each channel, nxn matrices of boolean values
specify the connectivity state of each participant. Three types of matrices are used:
Key, Intention and Connection. Key matrices specify the rights of each participant to
send (K_out) and to receive (K_in) information to one another, according to the par-
ticipants’ roles in a certain conference type. Intention matrices specifiy the instanta-
neous intentions of participants to send (/_out) and to receive (I_in) information
(given that they have this right). Connection continuously expresses enabled connec-
tions, as the result of the compilation of Key and Intention matrices.

A connection is established when the send and receive Keys and Intentions of cor-
related participants are true. That is, for each position in the connection matrix,

Cl'j = (I_OMt[j A K_Outu) A (I_lnﬂ A K_l”ljl)

The specification of the rights of each role to send/receive events to/from each
other role, for each collaboration type, is done as described below (section 3.5). The
nxn matrices for the participants are then dynamically assembled by LuaConference
as they enter and leave the session, based on their roles, and communicated to the host
application by the Conference. Intentions are directly specified by the participants
through the user interface controls (enabled or not according to the key values).

3.5 Collaboration Specification

The control model adopted is inspired in COCA (Collaborative Objects Coordination
Architecture) [15], but with some essential differences:

— as graphic performance is a main concern, our floor control mechanism
changes the scheme defined in COCA based on the processing of all events
through a virtual machine, for the control of input and output switches (tested
by the event observers) at the host application by the plugin;

— instead of using logic-based rules (as in COCA) or declarative programs (as in
DCWPL [3]) to define control policies — which are powerful and flexible but
can become quite difficult to write and adapt by non-skilled programmers —
we use some elegant mechanisms provided by the Lua language (tables in par-
ticular) to create a simple object-oriented syntax for the specification of col-
laborations, which are interpreted by the LuaConference virtual machine at
runtime.

This scheme allows the definition of the different types of Collaborations that a
conference can assume. Collaborations contain Roles (associated to the participants)
and communication channels, for which floors can be defined. Collaborations specify
an extensible set of default functions to provide floor services, session management
services and regulation services (specification of conference types and participant
roles), which can be redefined for particular collaboration types.

Communication channel names are associated to the host application’s channel in-
dexes. For each channel of a collaboration type the rights of each role to send/receive
to other roles are specified (Key matrices). By default all channels are open (true
values in the matrix do not need to be specified, only blocked connections need to be
specified with false values).
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Intention matrices by default are also filled with true values. False entries are used to
specify connections initially blocked (for instance, for audio and video channels, so that
no more than the desired streams are created in the beginning of a videoconference).

The controllable channels (the ones for which floors can be established by the con-
ference owner during the conference) are defined; all others will remain free (with no
floor control, although participants may still opt not to send or receive over the chan-
nel). Default roles for the conference owner (the participant who started the confer-
ence) and for new participants are also defined.

The communication between LuaConference and the Conference class in the host
application follows the conventional mechanisms for Lua.

As an example, let us show part of a simplified definition for a well steering ses-
sion, with some very basic roles and polices. In this example, VR users cannot send or
receive camera events to/from anybody, and operators do not receive or send video
streams at the beginning of the session (but can receive the floor afterwards).

-- correlate channel names to application indexes
appl_channels = {cmd=0, cam=1, annot=2, cursor=3, audio=4, video=5, avatar=6}

WellSteering = Collaboration { -- define a collaboration type
type = "wellsteering",
channels = {"cmd", "cam", "annot", "cursor", "audio", "video"}, -- controllable channels
floors = {"cmd", "cam"}, -- channels initially under floor control
LeadGeoscientist = Role {type = "leader"}, -- define roles

Geoscientist = Role {type = "geoscientist"},
VrGeoscientist = Role {type = "vr"},
OnSiteOperator = Role {type = "operator"},

K_in = { ["cam"]= {["vr:all"]=false} }, -- define role-based matrices for

K_out = { ["cam"]= {["all:vr"]=false} }, -~ each channel (all other role pairs,
Lin= { ["video"]= {["operator:all"]=false} }, - for all channels, are true by default)
I_out= { ["video"]= {["operator:all"]=false} },

default_owner_role = "leader", -- default role assumed by the owner
default_participant_role = "geoscientist", -- default role for other participants

-- Obs: K_out, K_in, I out, I_in are true for all other role pairs, for all channels

Collaboration methods can then be redefined in Lua, in an object-oriented way (for
instance, ClassRoom:grant_floor).

LuaConference Interface

The interface provided by LuaConference to the host application implements the
collaboration services (session management, floor control, etc.). Below is an extract
of some of the main methods:

-- Session Management
function include_participant(participant, role)
function exclude_ participant (participant)

-- Floor

function grant_floor(ch, participant, requester)
function request_floor(ch, requester)

function get_floor_controller(ch)

-- Regulation
function set_type(type) -- set collaboration type
function get_type()
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function get_collaboration_types()
function init_channels()

function set_role(participant, role)
function get_role(participant)

function get_collaboration_roles(collab_type)

// Broadcast commands

-- return list of roles for the collaboration

function broadcast_command(command, sender)

// Channels control
function get_control_matrix(M, ch)

// Late join
function late_join(participant)

4 Videoconferencing

-- assembles the nxn participants matrix for the
-- channel, given the role-based control matrix M
--  (one of K_out, K_in, I_out, I_in)

-- send all logged commands to the new participant

Audio and video communication channels are provided in NetGocad through the use
of a custom multiplatform videoconferencing tool, CSVTool (Collaboration Sup-
ported by Video) [20]. This allows for a tight integration of this service, with no
duplication of session management functionalities, and the direct control of audio and
video streams according to the coordination policies defined.

The tool is integrated into the system through a separate plugin (gCSV) to avoid

the establishment of a dependency.

If the plugin is not present, the commands relative

to videoconferencing are simply ignored.
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CSVTool is implemented with JMF (Java Media Framework) [24] and can be used
in two modes: integrated into a collaborative application or as standalone videocon-
ferencing tool. Independently of the operation mode, it is divided into two modules,
the server and the client. The server is responsible for the management of the partici-
pants and videoconferences, as described in the next section.

All the information exchanged among clients, except the audio and video streams,
passes through the server. The most common messages are addition and removal of
participants, which imply the creation or removal of streams. The server is not prone
to traffic overburden because it does not receive the “heavy traffic” — the streams —
which is transmitted directly between clients, in a peer-to-peer fashion.

The client/server communication is implemented in CORBA, and the communica-
tion among clients for stream transmission is made in RTP (Real- Time Protocol).
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Fig. 5. CSVTool interface. Each audio/video control button may assume five different configu-
rations: 1.Disabled: the respective stream cannot be activated because the capture device is
unavailable or is disabled due to the participant’s role in the current conference type — the
button becomes gray; 2. Active: the connection is active; 3. Off: both participants do not want
to activate the stream —the button is dashed and hachured; 4. Waiting: the local participant
wants to activate the streams, but the remote participant does not — the background of the but-
ton is hachured; 5. External: the remote participant wants to activate the streams, but the local
participant does not — the button is dashed. Other buttons activate additional resources such as
textual chat and snapshots.
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CSV Operation with NetGocad

When a NetGocad participant starts a videoconference, the Conference launches a
CSV server through its owner (Figure 4) and informs all Participants to start CSV
clients, which automatically connect to the server.

The CSV server is then responsible for managing the clients and audio and video
streams. All the communication between the NetGocad Conference and the CSV
Server is done in CORBA, through the conference owner.

Control matrices move between the CSV clients and the server, whenever neces-
sary, by means of message exchange. Key and Intention matrices are sent by the Net-
Gocad Conference to CSV, which uses them to set the connections’ state.

The CSV tool updates the received Key matrices to indicate the availability of cap-
ture devices at each participant’s machine, tested at start time. Conceptually, disabling
a connection due to a participant’s role in a certain conference type is equivalent to
switching off the device needed to send or to receive the related information.

One interesting feature provided is that the video stream sent by each participant
can be switched from the image captured by the camera to the captured screen, so the
tool can also be used for the remote display of a user’s desktop. This is very useful for
explanations about the operation of the application, or for consistency checks.

Complementary to the connection matrix, an External Intention matrix is computed
in CSV to reflect connections that are not established because just one side decided
not enable the stream. This information is used for the selection of the appropriate
icon to represent the state of the connection at the user interface (Figure 5). As users
have individual windows relative to one another, the intentions for each channel di-
rection can be explicitly indicated. For the other channels, the setting of controls is
done in a one-to-all basis (Figure 3).

5 Conclusion and Future Work

In this paper we presented an architecture that enables the transformation of a single-
user application into a collaborative system by means of the integration of runtime
plugins. We developed a control mechanism suited to the requirements of the applica-
tion domain (collaborative three-dimensional geomodeling and visualization) and to
the multimedia communication channels employed, based on the use of matrices
associated to the channels, defining role-based rights and the dynamic intentions of
the participants

The control scheme proposed, integrated into the application through a simple and
flexible scripting language, generalizes the treatment of the different channels consid-
ered taking into account their specific performance demands. This scheme can be
adapted to any application that follows some established design principles, particu-
larly the use of the Command, Abstract Factory and Observer patterns.

We have concluded the integration of the tools and control mechanisms described,
and are currently developing specific control policies for the scenarios discussed and
others.

There are many issues that we would like to consider next. We want to assess the
usability of the system under heterogeneous configurations, especially with the use of
the VR plugin. This raises many usability issues that will require further development
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of the immersive interface. We also need to conduct evaluations using an adequate
methodology tailored for groupware, an issue now being studied.

Other difficult CSCW concepts we want to explore in the future are the use of pri-

vate views, concurrency control and asynchronous collaboration supported by the
workflow engine used by the core application.

We expect that in the long term the integration of these features will create new

collaboration tools which will certainly have a strategic importance in the industry.
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