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Abstract. The biological world offers a full range of adaptive mecha-
nisms, from which technology researchers try to get inspiration. Among
the several disciplines attempting to reproduce these mechanisms ar-
tificially, this paper concentrates on the field of Neural Networks and
its contributions to attain sensorimotor adaptivity in robots. Essentially
this type of adaptivity requires tuning nonlinear mappings on the ba-
sis of input-output information. Several experimental robotic systems
are described, which rely on inverse kinematics and visuomotor map-
pings. Finally, the main trends in the evolution of neural computing are
highlighted, followed by some remarks drawn from the surveyed robotic
applications.

1 Introduction

Why the use of robots is not as widespread as some envisaged they would be
by now? At the risk of oversimplification, I would say that it is due to their
lack of adaptivity, at all levels. This capability is dispensable in well-engineered
environments, and thus we have very performant robots in manufacturing lines,
but it is a sine qua mon when tasks are to be carried out in non-predefined
worlds.

In this sense, the biological world —where adaptivity is crucial for survival—
constitutes a very good source of inspiration for robotics researchers, since it pro-
vides existence proofs of many adaptive mechanisms that do function. However,
caution must be taken, because the best natural solution may not be the best
artificial one [40]. Wheels, wings and calculators have often been mentioned as
examples of artificial solutions considerably different from their natural counter-
parts, and more performant according to certain criteria. The resources available
to engineering design depart a lot from those in nature, and not just when it
comes to materials, but also in the number of instances and spendable time.

With this note of caution in mind, i.e., accepting that biological plausibility
in itself adds no special value from an engineering viewpoint, it is safe to look
into natural adaptivity to get seed ideas that can be instantiated in a different
way by artificial means.

* A more detailed version of this review, although less up to date, can be found in
[48].



2 Natural and artificial adaptivity

We refer to adaptivity as the capability of self-modification that some agents
have, which allows them to maintain a level of performance when facing envi-
ronmental changes, or to improve performance when confronted repeatedly with
the same situation. The term ‘agent’ above stands for a single cell, an organ,
an individual or even a whole society, because, in the biological world, adaptiv-
ity occurs at several levels, each having a possible counterpart in the design of
autonomous robots [42, 14, 53].

At the cell level, several chemical and electrical mechanisms of plasticity
have been discovered, some of which have been modelled and analysed within
the Neural Modelling field, and later applied to adjust the parameters of robot
sensors and actuators. See the chapters on ‘neural plasticity’ in [3].

When referring to individuals, adaptation is usually called learning and it
takes two rather different forms depending on whether it occurs at the senso-
rimotor or cognitive levels. Sensorimotor adaptation consists in building rele-
vant associations between stimuli and responses, while cognitive learning entails
constructing symbolic representations to guide decision-making. Two disciplines
have tried to mimick these two capacities. Neural Networks, closer to Biology,
has proven adequate to handle the massively-parallel tasks of perception and
control of action, while Artificial Intelligence, steeming from Computer Science
and Cognitive Psychology, has developed the necessary data structures and pro-
cedures to tackle symbolic learning [46,47]. Results in both disciplines have been
applied to Robotics, the former to attain adaptive robot sensorimotor mappings
[24], while the latter have led to so called learning robots [49, 9, 22, 23].

Finally, at the species level, adaptation is attained through evolution. Ge-
netic algorithms [11,17] and evolutionary computation [4,5] are starting to be
used to tailor robot genotypes to given tasks and environments [15].

Table 1 summarizes the different adaptation levels and the involved disci-
plines.

ADAPTATION TYPE OF “ARTIFICIAL”
LEVEL ADAPTIVITY DISCIPLINE

Cell Plasticity Neural Modelling
Sensorimotor Associative learning Neural Networks
Cognitive Symbolic learning Artificial Intelligence
Species Evolution Evolutionary Algorithms

Table 1. Levels of adaptation and related disciplines

In this paper we concentrate on adaptivity at the individual sensorimotor
level, i.e. both the robot morphology and its components are assumed to be
fixed and what may change with experience is the functional relationship between
sensors and actuators.



3 Natural inspiration for artificial neural adaptivity

Neural networks are essentially procedures for approximating nonlinear map-
pings given a set of inputs and some information on the corresponding outputs.
The approximation is attained by iteratively tuning the weights of the connec-
tions between neurons. This iterative process is referred to as neural adaptivity,
leading to the desired input-output behaviour of the network.

The approaches to adaptivity pursued within the Neural Networks field have
their roots in the learning paradigms developed in the domain of Behavioural
Psychology (refer to Figure 1). This is the reason why the rules to attain neural
adaptivity are usually called learning rules. The role of the animal in the be-
havioural learning experiments is played here by the neuron. It is worth noting
that, although inspiration comes from the biological world, the artificial tech-
niques are here applied not only to a different physical substrate, but also at a
different level (neuron instead of animal).
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Fig. 1. Learning paradigms inspiring neural adaptivity. In the diagrams, US stands for
unconditioned stimulus, CS for conditioned stimulus and R for response.

The most basic learning paradigm is classical conditioning, as introduced
by Pavlov [26], which consists of repeatedly presenting to an animal (e.g. a
dog) an initially meaningless stimulus (e.g. the sound of a bell) together with an
unconditioned stimulus (e.g. food) that triggers a reflex response (e.g. salivation).
As a result of such paired presentations, the animal builds up an association so
that, when presented with the conditioned stimulus (e.g. the sound of a bell)



alone, it produces the same response as before (e.g. salivation). This type of
learning is completely open-loop, in the sense that it entails no feedback. The
neural learning rules mimicking this type of conditioning come from the classical
Hebbian rule [13], in which a connection weight is adjusted according to the
correlation between the activation of the two neurons connected, this being the
reason why they are called correlational rules. Neural models incorporating these
type of rules are Self-Organizing feature Maps (SOM) [16], the Cerebellar Model
Articulation Controller (CMAC) [1], and Adaptive Resonance Theory (ART)
[12].

Instrumental conditioning was introduced by Skinner [41] and requires
that the animal under experimentation performs an arbitrary action (e.g. press-
ing a lever, walking around) in the presence of an initially meaningless stimulus
(e.g. a flickering light). If the action is “appropriate” to the given stimular sit-
uation, the animal receives a reward (e.g. food). Otherwise, it receives nothing
or punishment, depending on the particular experimental design being applied.
Thus, this learning paradigm strongly relies on providing the animal with a rein-
forcement signal dependent on the action performed. This can be conceptualized
as a qualitative feedback. The neural learning rules implementing this type of
conditioning at the neuron level are known as reinforcement-based rules [43].

Note that the natural progression in the degree of feedback supplied suggests
the use of a quantitative error signal to guide learning. This is represented in
the third row of Figure 1 under the name of input-output teaching. Here,
after presenting an input to the system and observing the emitted response,
a teacher supplies the desired output whose difference with the emitted one
provides the error signal which is fed back to the system. This is an entirely
closed-loop learning process that requires perfect knowledge of the input-output
pairs to be associated. The most widely used neural learning rules follow this
scheme and we call them error-minimisation rules. They are mostly variants of
the well-known backpropagation procedure [19,39] aimed at palliating its main
drawbacks, namely catastrophic forgetting, overfitting, and a slow convergence
rate.

Several techniques to prevent catastrophic forgetting [30] by explicitly min-
imising degradation of the previously learned patterns while encoding a new one
[25,28] and by introducing noise [2,35] have been devised. Overfitting, i.e., the
problem of learning a function too tailored to the samples and thus yielding a
high generalisation error, is usually addressed by using methods for model com-
plexity control [6, 7] and, in particular, regularisation. An interesting observation
is that many such methods lead to functional invariance [31,32,36], i.e., they
converge to the same function irrespective of network size for fixed regularisation
parameters.

4 Robot sensorimotor mappings

Motion control, both in biological and technological systems, relies strongly on
sensorimotor mappings. These mappings vary considerably [45], depending not



only on the nature of the involved sensors and actuators, but also on the goal
pursued.

Tasks to be carried out by robots are usually specified in world coordinates
(or, alternatively, in terms of sensor readings), while robot moves are governed
by their actuator’s variables. For instance, a sealing task may be specified as
a given curve in 3D space or as following a prespecified visual pattern, but it
has ultimately to be translated into currents sent to the motors governing the
different joints. Therefore, robot control critically depends on the availability of
accurate mappings from physical space or sensor space to joint space or motor
space. The discussion in what follows is centered on mappings required for robot
arms to work, but similar arguments apply to the case of mobile robots [20, 21].

For a gripper to reach a desired position and orientation in space, the robot
controller must access a mapping relating workspace coordinates to joint coor-
dinates. This is called inverse kinematics mapping, because the natural (direct)
map is that relating the values of the joint coordinates defining an arm config-
uration to the position and orientation of its end-effector (hand, gripper,...) in
the workspace.

If a desired end-effector trajectory is specified instead, then the controller
should resort to an inverse dynamics mapping relating such trajectory to the
forces and torques that need to be exerted at the different joints to realize it.
Note that this mapping, which is again called inverse for the same reason above,
cannot be characterized uniquely in terms of inputs and outputs, it being instead
dependent on state variables (or the short-term history of inputs) as it is usually
the case with dynamic systems.

For tasks entailing the achievement of a goal using sensory feedback, pro-
gramming even in terms of the coordinates of the workspace can be very com-
plex. An example of this is the visual inspection of large objects that cannot be
precisely placed (e.g., aircraft wings), since devising a detailed vision-based con-
trol strategy that moves the camera to the same relative position with respect
to the object in all possible situations, and subject to real-world conditions of
uncertainty and noise, is extremely difficult. What is needed to accomplish this
type of tasks is an appropriate sensorimotor mapping relating sensory patterns
to motor commands.

The diversity of the aforementioned mappings sometimes hides what they
have in common: an underlying highly nonlinear relation between a continuous
(often hard to interpret) input domain and a continuous motor domain; a relation
that is very difficult (when not impossible) to derive analytically. Furthermore,
because of environmental changes or robot tear-and-wear, the mappings may
vary in time and then one would like the controller to adapt to these variations,
without any human intervention if possible. Therefore, a way of learning (or tun-
ing) these mappings automatically while robots move is highly desirable. Since,
as we have mentioned, neural networks are essentially procedures for approxi-
mating nonlinear mappings, they constitute a good tool to attain the desired
adaptivity.



In what follows we will describe some experiences related to the learning of
two of the mappings mentioned above, namely inverse kinematics and visuomotor
mappings.

5 Adaptive inverse kinematics

Making robots adaptive to changes in their own geometry (e.g., link bending,
encoder shifting and other wear-and-tear deformations occasioned by regular
functioning) would certainly widen their range of application. Since these geo-
metric changes affect the robot inverse kinematics, the interest of using neural
networks to approximate such mapping has been widely recognized. Especially
when the operation conditions of the robot (in space, underwater, etc.) make it
very hard to recalibrate it.

Along this line DASA (Daimler-Benz Aerospace S.A.), in the framework of
the Advanced Servicing Robot project targeted at unmanned space stations,
proposed an application of maintenance of electronic equipment that required
the automatic recalibration of a 6-dof robot in-situ, since recalibration through
teleoperation from earth is a very time-consuming task due to communication
delays. After reviewing previous approaches to the learning of inverse kinematics,
we will present the solution implemented in the REIS robot included in the space-
station mock-up located at DASA’s R&D laboratory, in Bremen, Germany (see
Figure 2).

The conclusion reached after extensive experimentation with feedforward net-
works using backpropagation [18,46] is that a coarse mapping can be obtained
quickly, but an accurate representation of the true mapping is often not feasible
or extremely difficult. The reason for this seems to be the global character of the
approximation obtained with this type of networks using sigmoid units: every
connection weight has a global effect on the final approximation that is obtained
[18].

An obvious way to avoid this global effect is of course using local representa-
tions, so that every part of the network is responsible for a small subspace of the
total input space. Thus, Ritter et al. [27] have used a self-organizing map (SOM)
together with an error-minimisation rule to learn the visuomotor mapping of a
robot arm with three degrees of freedom (dof) in 3D space. The target position
of the end-effector is defined as a spot registered by two cameras looking at the
workspace from two different vantage points. Neurons are arranged in a 3D lat-
tice to match the dimensionality of physical space. It is expected that learning
will make this lattice converge to a discrete representation of the workspace.

Extensive experimentation by Ritter et al. [27] and other groups has shown
that the network self-organizes into a reasonable representation of the workspace
in about 30.000 learning cycles. This should be taken as an experimental demon-
stration of the powerful learning capabilities of this approach, because the con-
ditions in which it is made to operate are the worst possible ones: no a priori
knowledge of the robot model, random weight initialization, and random sam-
pling of the workspace during training.



Fig. 2. Space station mock-up at Daimler-Benz Aerospace, Bremen.

This basic model has been extended in three directions to cope with higher-
dof robots. First, a hierarchical version, consisting of a 3D SOM whose nodes
have associated a 2D SOM each, was applied to a 5-dof robot. The 3D net
encodes the workspace as before, while each 2D subnet approximates the end-
effector orientation space at the corresponding position [27].

Ruiz de Angulo and Torras [29] adapted this hierarchical model to suit a
practical setting. Thus, instead of learning the kinematics from scratch, only
the deviations from the nominal kinematics embedded in the original robot con-
troller are learnt. This, together with informed initialization and sampling, as
well as several modifications in the learning algorithm aimed at improving the
cooperation between neurons, led to a speed-up of two orders of magnitude with
respect to the original model.

The resulting algorithm constitutes the core of the recalibration system that
was installed in the REIS robot included in the space-station mock-up located
at DASA, as mentioned above. Figure 2 is a photograph of such a set-up, where
the different racks containing the electronic cards that the robot should maintain
are shown. The robot must reach the handles of the racks with enough precision
to be able to pull them out and, afterwards, extract a faulty card in order to
replace it by another one. Although testing in this set-up has been constrained
by the need to preserve robot integrity, the system has proven able to correct
large miscalibrations of the robot: 95% of the decalibration was corrected with



the first 25 movements, this percentage raising to 98% after 100 movements [29].
Moreover, other desirable features in stand-alone applications, such as parameter
stability, are guaranteed.

The third extension of the basic model relies on the generalisation of SOMs
to parameterized SOMs (called PSOMs). The idea is to turn the discrete repre-
sentation into a continuous one by associating a basis function to each neuron, so
that a parameterized mapping manifold is obtained. Moreover, PSOMs make no
distinction between inputs and outputs, thus encoding bidirectional mappings.
The PSOM reduces considerably the number of training samples required to
attain a given precision as compared to the SOM [50], allowing the learning of
the full inverse kinematics of a 6-dof robot with less than 800 movements.

The main drawback of using neural networks to approximate the inverse
kinematics of robot arms is precisely the high number of training samples (i.e.,
robot movements) required to attain an acceptable precision. A trick has been
proposed [33, 37], valid for most industrial robots, that greatly reduces the num-
ber of movements needed to learn or relearn the mapping to a given accuracy.
This trick consists in expressing inverse kinematics as a composition of learnable
functions, each having half the dimensionality of the original mapping. A training
scheme to learn these component functions has also been proposed. Experimen-
tal results obtained by using PSOMs, with and without the decomposition, show
that the time savings granted by the proposed scheme grow polynomically with
the precision required.

The aforementioned trick assumes that the last three robot joints cross at
a point, a condition satisfied by some classic robot architectures, but not by
other more innovative ones. Therefore, a more general decomposition technique
applicable to any serial robot has recently been developed [38], which still retains
the main advantage of the trick above: The input dimensionality of each of the
tasks resulting from the decomposition is half that of the original one. Thus,
for a given desired accuracy, if the number of training samples required to learn
inverse kinematics directly is O(n?), through the decomposition it reduces to
O(nd/ 2). This yields an enormous reduction in the number of samples required
for high-precision applications.

The development of humanoid robots has recently raised the interest in learn-
ing inverse kinematics. Due to the many dof’s involved, the aim is no longer
learning the mapping for the whole workspace, but focussed on a specific tra-
jectory. Following the trend of using localized representations, D’Souza et al. [8]
have applied a supervised algorithm —locally weighted projection regression— in
this context, with promising results.

6 Adaptive visuomotor mappings

Depending on the task to be performed and the camera-robot arrangement, vi-
suomotor mappings take different forms. Thus, in eye-hand coordination, where
cameras external to the robot are used to monitor the pose (position and orien-
tation) of its end-effector, a mapping from the camera coordinates of a desired



end-effector pose to the joint angles that permit attaining that pose is sought.
This mapping is closely related to the inverse kinematics one, especially if the
camera coordinates of selected points in the end-effector uniquely characterize
its pose. Therefore, the same models used to learn inverse kinematics have been
applied to the learning of the visuomotor mapping underlying eye-hand cooor-
dination [27].

A camera mounted on a robot arm is used in tasks such as visual positioning
and object tracking. The goal of these tasks is to move the camera so that the
image captured matches a given reference pattern. The target is thus no longer
a position of the robot in space but a desired image pattern, and the desired
visuomotor mapping needs to relate offsets w.r.t. that pattern with appropriate
movements to cancel them. In visual positioning, the scene is assumed to be static
and the main issue is to attain high precision. Applications include inspection and
grasping of parts that cannot be precisely placed (e.g., in underwater or space
settings). The aim of object tracking is to maintain a moving object within the
field of view, speed being here the critical parameter instead of precision.

The classical way of tackling these tasks consists of defining a set of image
features (corners, holes, etc.) and then deriving an interaction matrix relating
2D shifts of these features in the image to 3D movements of the camera [10].
The advantages of applying neural networks to this task are the direct learning
of the interaction matrix, as well as avoiding the costly matching of features in
the current and reference images.

The latter approach has been used in an application developed for Thomson
Broadcast Systems [52] for the inspection of large objects (e.g., ship hulls, air-
plane wings, etc.). Since these objects are difficult to move, it is the camera that
has to travel to attain a pre-specified position and orientation with respect to
the object. The developed camera control system consists of a feedforward net-
work trained with backpropagation. The training procedure consists of moving
the camera from the reference position to random positions and then using the
displacement in image features together with the motion performed as input-
output pairs. In operation, the robot is commanded to execute the inverse of the
motion that the network has associated to the given input.

The key option in this work is the use of global image descriptors, which per-
mits avoiding the costly matching of local geometric features in the current and
reference images. By using a statistical measure of variable interdependence (the
mutual information criterion), sets of global descriptors as variant as possible
with each robot dof are selected from a battery of features, including geometric
moments, eigenvectors, pose-image covariance vectors and local feature analysis
vectors [51]. The results obtained with a 6-dof show that, after 10.000 learning
cycles, translation and rotation errors are lower than 2mm and 0.1 degrees, re-
spectively. Figure 3 shows the robot-mounted camera and the reference image
of an object to be inspected (a water valve), together with several snapshots
along the visual positioning process. In this case, the silhouette of the object
could be readily extracted and 32 Fourier descriptors coding it were used as
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Fig. 3. Visual positioning system developed in collaboration with Thomson Broadcast
Systems.



image features. It can be observed that, after 7 movements, the captured image
is practically registered with the reference one.

7 Conclusions

This paper has reviewed the ways in which neural computing may help to in-
crease sensorimotor adaptivity in robots. The mechanisms of neural adaptivity
have been inspired in the learning paradigms of Behavioural Psychology (classical
and instrumental conditioning), and fall into three classes that require progres-
sively more feedback: correlational, reinforcement and error-minimisation rules.

Some trends in the development of these learning rules deserve notice, since
they have parallels in other disciplines dealing with adaptivity at diferent scales,
such as Evolutionary Computation and Artificial Intelligence. The first trend is
that of progressing from binary variables to continuous ones. This entails moving
from discrete search spaces and classification tasks to manifold representations
and function approximation. Then, issues such as model complexity control [7]
and functional invariance [36] become very important.

A second trend is that of progressively replacing local feedback for more
global one, this globalisation taking place both spatially and temporally. The first
learning rules proposed required feedback to be supplied to each single neuron.
Backpropagation made a big step forward in allowing feedback to be supplied
at the overall network level (spatial globalisation). Reinforcement learning has
greatly contributed to dealing with deferred feedback (temporal globalisation).

The dichotomy between locality and globality appears also in the state space
representation. Correlational rules are often incorporated into network models
that build localised representations (such as SOM, ART and CMAC), while the
strength of most models based on error-minimisation and reinforcement rules
lies precisely in the distributed (global) way in which information is represented
across all the network weights. In the localised representations, appropriately
tuning the neighbourhood size is a key issue.

Moving from off-line to on-line learning is another trend observed in neural
computing. Initial learning procedures were designed to work in a batch mode
(with all training samples supplied at the same time), while a later challenge was
to incorporate new samples into an already trained network. Sequential learning
addresses this challenge by explicitly seeking to avoid catastrophic forgetting
[34].

Finally, let us mention the important role that randomness plays in learning.
This has been widely acknowledged in many contexts, but specifically in neural
computing noisy inputs and weights have proven useful for regularisation (a
complexity control method), and randomness is of course a key ingredient of
reinforcement learning.

After the overview of neural adaptivity, the paper has focused on its applica-
tion to robot control. This basically entails the learning of nonlinear mappings
relating stimuli to responses. Several robotics applications have been surveyed,
classified according to the underlying mapping that needs to be approximated:
inverse kinematics and visuomotor mappings.



The learning of inverse kinematics makes robot arms adaptive to changes in
their own geometry (e.g., link bendings, encoder shiftings, etc.), while learning
of visuomotor mappings allows robots to cope with changing environments (e.g.,
different loads, moving objects, etc.).

A first remark stemming from the survey of robotic applications is that in
the case of mappings that can be easily sampled, it seems sufficient to apply a
plain error-minimisation procedure. Some simple inverse kinematics mappings
and visuomotor mappings used for visual positioning have been learned in this
way. If the input space is complex, then many researchers have resorted to a
combination of correlational rules for the efficient coding of that space, with
error-minimisation rules to build the appropriate association with the outputs.
The use of SOMs to encode the robot workspace or the sensor space falls into
this category. Then, an error-minimisation rule is used to build the appropriate
input-output mapping: inverse kinematics in this case. Finally, when the task
is specified as a goal to be reached using sensory feedback, without making
explicit the movements necessary to reach it, then the only possibility is to
resort to reinforcement learning schemes, which depend just on the availability
of a measure of success rather than an error measure.

The number of learning cycles required ranges widely in the applications de-
scribed, depending on the complexity of the mapping to be learned as well as on
the accuracy required. Note that learning time is directly related to the number
of training samples, each of which entails at least one robot movement. And
robots are slow as compared to computers. Therefore, minimising the number
of training samples is of paramount importance in the application of neural net-
works to robotics, and many efforts are currently oriented in this direction (e.g.,
adaptive sampling, function decomposition) [37, 38].
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