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Abstract. A software program requesting a resource that is not avail-
able usually raises an out-of-resource exception. Component software is
software that has been assembled from standardized, reusable compo-
nents which, in turn, may also composed from other components. Due to
the independent development and reuse of components, component soft-
ware has a high risk of causing out-of-resource exceptions. We present a
small component language and develop a type system which can stati-
cally prevent this type of errors .

This work continues our previous works [3, 18] by including explicit deal-
location. We prove that the type system is sound with respect to safe
deallocation and that sharp resource bounds can be computed statically.

1 Introduction

Component software is built from various components, possibly developed by
third-parties [15,17,8]. These components may in turn use other components.
Upon execution instances of these components are created. For example, when we
launch a web browser application it may create an instance of a dial-up network
connection, an instance of a menubar and several instances of a toolbar, among
others. Each toolbar may in turn create its own control instances such as buttons,
addressbars, bookmarks, and so on.

The process of creating an instance of a component = does not only mean
the allocation of memory space for x’s code and data structures, the creation
of instances of z’s subcomponents (and so on), but possibly also the binding
of other system and hardware resources. Usually, these resources are limited
and components are required to have only a certain number of simultaneously
active instances. In the above example, there should be only one instance of a
menubar and one instance of a modem for network connection. Other examples
come from the singleton pattern and its extensions (multitons), which have been
widely discussed in literature [10,9]. These patterns limit the number of objects
of a certain class dynamically, at runtime.

When building large component software it can easily happen that different
instances of the same component are created. Creating more active instances

* This research was supported by the Research Council of Norway.



than allowed can lead to errors or even a system crash, when there are not
enough resources for them. An example is resource-exhaustion DoS (Denial of
Service) attacks which cause a temporary loss of services. There are several
ways to meet this challenge, ranging from testing, runtime checking [9], to static
analysis.

Type systems are a branch of static analysis. Type systems have traditionally
been used for compile-time error-checking, cf. [1,4, 11]. Recently, there are several
works on using type systems for certifying important security properties, such as
performance safety, memory safety, control-flow safety [14, 6, 5, 12]. In component
software, typing has been studied in relation to integrating components such as
type-safe composition [21] or type-safe evolution [13]. In this paper we explore
the possibility of a type system which allows one to detect statically whether or
not the number of simultaneously active instances of specific components exceeds
the allowed number. Note that here we only control resources by the number of
instances. However, we can extend to more specific resources, such as memory,
by adding annotations to components using such resources.

For this purpose we have designed a component language where we have
abstracted away many aspects of components and have kept only those that are
relevant to instantiation, deallocation and composition. In the previous work [3,
18], the main features are instantiation and reuse, sequential composition, choice,
parallel composition and scope and the deallocation of instances is controlled by
scope mechanism. In this work, we consider sequencing and parallel composition,
choice and scope, add an explicit deallocation primitive, which allows us to
imperatively remove an instance in the same scope. For the sake of simplicity,
we do not consider the reuse primitive. However, we believe that the combination
of all the features is feasible.

Though abstract, the strength of the primitives for composition is consid-
erable. Choice allows us to model both conditionals and non-determinism. It
can also be used when a component have several compatible versions and the
system can choose one of them at runtime. Scope is a mechanism to deallocate
instances but it can also be used to model method calls. Parallel composition
allows several threads of execution. Sequential composition is associative.

We use a small-step operational semantics and as a result, we can prove
the soundness of our type system using the standard technique of Wright and
Felleisen [20].

The type inference algorithm for this system is almost the same as in [3]. We
still have a polynomial time type inference algorithm. Polynomial type inference
is of crucial importance since examining all possible executions of the operational
semantics is (at least) exponential.

The paper is organized as follows. Section 2 introduces the component lan-
guage and a small-step operational semantics. In Section 3 we define types and
the typing relation. The soundness and several other properties of the system
are presented in Section 4. Finally, we outline some future directions.



2 A Component Language

2.1 Syntax

Component programs, declarations and expressions are defined in Table 1. In the
definition we use extended Backus-Naur Form with the following meta-symbols:
infix | for choice and overlining for Kleene closure (zero or more iterations).

Table 1. Syntax

Prog ::= Decls; E Program
Decls ::= < E Declarations
E n= Expression
| € Empty
| newzx Instantiation
| delx Deallocation
| (E+E) Choice
| (E|E) Parallel
| {E} Scope
| EE Sequencing
Let a,...,z range over component names and A,..., E range over expres-

sions. We collect all component names in a set C.

The main ingredients in the component language are component declaration
and expression. We have two primitives (new and del) for creating and delet-
ing an instance of a component, and four primitives for composition (sequential
composition denoted by juxtaposition, + for choice, || for parallel, and {...}
for scope). Together with the empty expression e these generate so-called com-
ponent expressions. A declaration x— E states how the component = depends
on subcomponents as expressed in the component expression E. If z uses no
subcomponents then FE is € and we call x a primitive component. A component
program consists of declarations and ends with a main expression which sparks
off the execution, see Section 2.2.

The following example is a well-formed component program. In this example,
d and e are primitive components. Component a is the parallel composition of
{newd} newe and newd followed by a deallocation of d. Component b has a
choice expression before deleting an instance of e.

d=e e—e
a— ({newd}newe || newd)deld
b— (newa + newenewd)dele;

newb



2.2 Operational Semantics

Informally, expression F can be viewed as a sequence of commands of the form
newz, delz, (A+ B),(A || B),{A} in imperative programming languages and
the execution is sequential from left to right. In the operational semantics F is
paired with a local store, modelled by a multiset. The first three commands act
locally. When executing a command of the form newz, a new instance of z is
created in the local store and the execution continues with the 'body’ A, if the
declaration of z is < A and A # e. If A = € the execution proceeds to the next
command after newz. Executing delx simply removes a z in the local store
then continues with the next command. Executing (A 4+ B) means to choose A
or B to execute with the same store.

When the current command is of the form {E} the execution of the com-
mands after { E'}, say A, is suspended, and the execution is transferred to F with
a new empty local store. When the execution of the new pair ([], ) terminates
in pair (M, €), the instances in M are discarded and the execution resumes to the
expression A and its local store. We will use stacks for this scope mechanism.

Executing (E; || E2) suspends the execution of the commands after it and
creates two new empty stores for each F; and Es and these two new pairs
([1, E1) and ([], E2), called child threads, are executed concurrently. When a
thread terminates in the pair (M, €) the instances in M are returned to the
store at the top of its parent thread. When all the child threads terminated, the
execution resumes to the parent thread. The formal model is detailed as follows.

Stack/thread Binary tree of stacks Locations of a tree
ST €
M, E
= / N\ /'\
ST:[ ... ] ST ST I
M, E, / N\ /7 \
ST ST l Ir

Fig. 1. Illustration of a tree of stacks

The operational semantics is defined by a rewriting system [16] of configu-
rations. A configuration is a binary tree T of threads. A thread is a stack ST
of pairs of a local store and an expression (M, E), where M is a multiset over
component names C, and E is an expression as defined in Table 1. A thread is
active if it is a leaf thread. A configuration is terminal if it has only one (root)
thread of the form (M, ¢). Figure 1 illustrates stacks and configurations. The
syntax of stacks and configurations is as follows.

ST = (Mi,E1)o..0(M,,E,) Stack

T, S := Configurations
Lf(ST) Leaf
| Nd(ST,T) Node with one branch

| Nd(ST,T,T) Node with two branches



The above stack ST has n elements where (M;, E7) is the bottom, (M,,, Ey,)
is the top of the stack, and ’o’ is the stack separator. A node in our binary trees
may have no child nodes Lf(ST), or one branch Nd(ST,T), or two branches
Nd(ST, T, T).

We assign to each node in our tree a location, illustrated in Figure 1. Let «, 8
range over locations. A location is a sequence over {l,r}. The root is assigned
the empty sequence. The locations of two direct nodes from the root are [ and
r. The locations of the two direct child nodes of [ are Il and Ir, and so on. In
general, al and ar are the locations of the direct children of a. We write o € T
when « is a valid location in tree T.

By T[]o we denote a tree with a hole at the leaf location «. Filling this
hole with another tree S is denoted by T[S],. One step reduction is defined first
by choosing an arbitrary active thread. Then depending on the pattern of the
chosen thread and the state of the configuration, the appropriate rewrite rule can
be applied. The rewriting rules for these patterns or subconfigurations, notation
S ~ §, are called the basic reduction relation. The configuration T[S], can take
a step to T[S']q, notation T[S], — T[], if S ~» §'. As usual, —* is the
reflexive and transitive closure of — .

Table 2. Basic reduction rules

(osNew) z—< A € Decls
Lf(ST o (M, newzE)) ~ Lf(ST o (M + z, AE))

(osDel) zeM
LF(ST o (M, del 2E)) ~ Lf(ST o (M — z, E))

(osChoice) ¢ € {1,2}
Lf(ST o (M, (A1 + A2)E)) ~ Lf(ST o (M, A;E))

(osPush)
Lf(ST o (M,{A}E)) ~ Lf(ST o (M, E)o ([],A))

(osPop)
Lf(ST o (M, E) o (M',€)) ~ Lf(ST o (M, E))

(osParlntr)
LF(ST o (M, (A || B)E)) ~ Nd(ST o (M, E), LE(([], A)), LF(([], B)))

(osParElimL)
Nd(ST o (M, E), Lf((M’, €)),S) ~ Nd(ST o (M + M, E),S)

(osParElimR)
Nd(ST o (M, E), S, Lf((M",€))) ~ Nd(ST o (M + M', E),S)

(osParElim)
Nd(ST o (M, E),Lf((M',€))) ~ Lf(ST o (M + M', E))




The basic reduction relation is described in Table 2. Each basic reduction rule
has two lines. The first line contains a rule name followed by a list of conditions.
The second line has the form S ~ §’, which states that if a configuration T has
a subconfiguration of the form S and all the conditions in the first line hold,
then we can replace the subconfiguration S of T by subconfiguration S’ and get
the new state T[S].

Multisets are denoted by [...], where sets are denoted, as usual, by {...}.
M (z) is the multiplicity of element x in the multiset M and M (z) =0if x ¢ M.
The operation U is union of multisets: (M U N)(z) = max(M(x), N(x)). The
operation + or W is additive union of multisets: (M + N)(z) = M(x) + N(x).
We write M + x for M + [z] and when « € M we write M — x for M — [z].

By the rules osNew, osDel, and osChoice we only rewrite the pair at the top
of a leaf stack. The rule osNew first creates a new instance of component = in
the local store. Then if x is a primitive component it continues to execute the
remaining expression F; otherwise, it continues to execute A before executing
the remaining expression E. The rule osDel deallocates an instance of x in the
local store if there exists one. If there exists no instance of  in the local store, the
execution is stuck. Note that here we have abstracted away the specific instance
that will be deleted. The rule osChoice selects a branch to execute.

The next two rules change the shape of a leaf stack. Rule osPush pushes an
element on the top of the leaf stack. The rule osPop pops the stack when the
stack has at least two elements. That means no stack in any configuration is
empty. The last four rules change the tree structure of the configuration. By
the rule osParlntr, a leaf is replaced by a branch of a node and two leaves. In
contrast, by the rules osParElimR; osParElimL, osParElim, a leaf is removed from
the tree and the instances left at the leaf are returned to the store at the top of
the parent thread. When appropriate, the parent node may be promoted to be
an active thread (osParElim).

The example at the end of Section 2.1 is used to illustrate the operational
semantics. There are many possible runs of the program due to the choice com-
position and when a configuration has more than one leaf thread, the number
of possible runs can be exponential as active threads have the same priority.
Here we only show one of the possible runs. To make it easier to follow, we
represent the trees graphically instead of using the formal syntax; >~ and ’(’ de-
note branches with one and two child nodes, respectively. At the starting point,
the configuration has one leaf Lf([], newb). After the first step, there are two
possibilities by the rule osChoice.

(Start) ([], newb)

(osNew) — ([b], (newa + newenewd)dele)
(osChoice) — ([b], newadele) (or ([b], newenewddele))

Now we continue with the first possibility. When the tree grows two more leaves
we draw a box around the leaf which is to be executed in the next step.



([b], newadele)
(osNew) — ([b, a], ({newd}newe | newd)delddele)
([],{newd} newe)

(osParintr) — ([b,a], delddele) ( ([], newd)

(osNew) — (b al, ael das1 ) ( (U {newd}newe) |

[d], €)
(osPush) — ([b,a], del ddel e) <‘(ﬂ I;e“e) (1], newd) |
(], newe) o ([d], €)
(osNew) — ([b,a], delddele) ( (d, o)
(osParElimL) — ([b, a,d], delddele)« ([], newe) o ([d],€)
(osPop) — ([b,a,d], delddele) (][], newe)
(osNew) — ([b, a,d], delddele)~ ([e],€)
(osParElim) — ([b,a,d, €], delddele)
(osDel) — ([b, a, €], dele)
(osDel) — ([b,a],€) (terminal)

As mentioned in Section 1, here we have abstracted resources by the number
of instances. When we want to account for specific resources, we can annotate
the source program with the resource consumption of relevant component. Then
the maximum resources the component program will use can be computed from
our inferred types and the annotation. Another way to find how much resources
a component program will probably use is declaring the specific resources as
primitive components. Other components will then instantiate these resources
in their declarations if they use the resources. Then our type system in the next
section can tell us the maximum resources the program needs.

3 Type System

We have two main goals in designing the type system. The first one comes from
the rule osDel of the dynamic semantics, where the program is stuck if the next
operation is a deallocation of a component and there exists no instance of that
component in the local store. In other words, the type system must guarantee
the safety of the deallocation operation. We solve the problem by keeping a
store in the typing environment, a technique inspired by linear type systems [19,
12]. For the second goal, we want to find the upper bounds of resources that
a program may request. Since we have abstracted the specific resources in the
instances, the upper bounds become the maximum numbers of simultaneously
active instances. In the rest of this section, we first define types and explain



them informally; Then then we present the formal typing rules and some typing
examples.

Before defining types, we extend the notion of multiset in Section 2 to the
notion of signed multiset. Recall, a multiset over a set of elements S can be viewed
as a map from S to the set of natural numbers N. Similarly, a signed multiset M,
also denoted by [...], over a set S is a map from S to the set of integers Z. The
analogous operations of multisets are overloaded for signed multisets. M (x) is
the 'multiplicity’ of 2 (can be negative); M (x) = 0 when z is not an element of
M, notation z ¢ M. Let M, N be signed multisets, then we define additive union:
(M + N)(x) = M(z) + N(x); substraction: (M — N)(z) = M(xz) — N(z); union:
(MUN)(z) = max(M(z), N(z)); intersection: (M NN)(x) = min(M(z), N(z));
inclusion: M C N if M(z) < N(z) for all x € M. For example, [z, —y, —y] is a
signed multiset where the multiplicity of = is 1 and the multiplicity of y is —2.

Definition 1 (Types). Types of component expressions are tuples
X = (X', x° X"
where X' is a multiset and X°, X' are signed multisets.

Intuitively, the meaning of each part of a type triple is as follows. Suppose
X is the type of an expression E. Then X? is the upper bound of the number
of simultaneously active instances for all components during the execution of E.
Multisets are the right data structure to store this information. Next, X is the
maximum number of instances that 'survive’ at the end of the execution when
executing E alone, as in [3,18]. In this paper, we have the deallocation primitive
and its behaviour is opposite to instantiation so we use signed multisets. More-
over we want compositionality of typing, so in composition X° is the maximal
net effect (with respect to the change in the number of instances) to the runtime
environment before and after the execution of E. Similarly, X in composition
is the effect on the maximum during the execution. The pair (X%, X°) is enough
to calculate the upper bound.

Besides, we want the safety of the deallocation primitives in composition.
When sequencing E and delxz the safety of delz depends on the minimum
outcome of E. Therefore we need X!, which is the minimum number of sur-
viving instances after the execution of E. Like X, in composition, X' is the
minimal net effect to the runtime environment before and after the execution
of E. The discrepancy between X° and X' is caused by choice composition +.
More explanation is given shortly in the exposition of typing rules below.

A basis is a list of declarations: x1—< F1, ..., x,— E,. Empty basis is denoted
by @. Let I', A range over bases. The domain of basis I' = x1 < E1, ..., x,—< Ey,
notation dom(I"), is the set {z1,...,2,}. A store is a multiset (no negative

multiplicities) of component names. Let o range over stores. An environment is
a pair of a store and a basis. A typing judgment is a tuple of the form

o l'-E:X

and it asserts that expression E has type X in the environment o, I'.



Definition 2 (Valid typing judgments). Valid typing judgments o, I' - A: X
are deriwed by applying the typing rules in Table 3 in the usual inductive way.

Table 3. Typing rules

(Axiom) (WeakenB) (WeakenS)
o, 'FA:X o9, '+B:Y z¢dom(I") o,'-A:X 0Co
I NIA o Te= B ATX o TFAX
(New) (Del)
o, 'FA: X z¢dom(I) o, 'FA: X ze€dom(Il)

o, INt<AF newz: (X' +z,X°+z, X! +x) [z], [ F delx:([],[—=], [—z])

(Seq)

o1, 'FA:X o090, 'H-B:Y A B#e
o1U (o2 — XY, ' AB: (XU (X°4+Y"),X°+Ye, X+ Y1)
(Choice)

o, 'FA:X o9, B:Y
o1Uoy, ' (A+ B):(X'UY*, XeUYe XtNY!)
(Parallel) (Scope)

[,'FA:X [|,+B:Y [, 'HFA:X
[LITFAB)(X*+Y!, Xo+Ye XL 4+YY [, {A}(X (1,1

These typing rules deserve some further explanation. The most critical rule
is Seq because sequencing two expressions can lead to increase in instances of the
composed expression. First, the semantics of the store in the typing judgment
requires that the store always has enough elements for deallocation commands
in the expression. So we need to increase the store when the minimum outcome
of A and its store, X! + oy, is not enough for o,. Consider a component .
The premise of the rule Seq tells us that we need a store o; for executing A.
Thereafter, we have at least X!(x) instances of , where X!(x) € Z. Again by the
premise of the rule Seq we need o3 (x) instances for safely executing B. Therefore
we must start the execution of AB with at least (o2 — X')(z) in the store (more
than o (z) if X!(x) < 0). Second, in the type expression of AB, the maximum is
the maximum of A or of the outcome of A together with the maximum of B. So
the first part of the type of AB is X*U(X°+Y"). The remaining parts, X°+Y?°
and X! 4 Y!, are easy referring to the semantics of these parts of the types.

Other typing rules are straightforward. The rule Axiom is used for startup.
The rules WeakenB allows us to extend the type environments so that the rules
Seq, Choice, Parallel may be applied. The rule WeakenS plays a technical role in
some proofs and is a natural rule anyway: enlarging the store should preserve
typing. The rule New accumulates a new instance in type expression while the
rule Del reduces by one instance. The first signed multiset in the type of delx
is empty since it has no effect to the maximum in composition, but the last
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two multisets are both [—x] since delz reduces the local stores by one x. The
judgment o, I' - A: X in the premise of this rule only guarantees that the basis I
is legal. The rules Parallel and Scope require an empty store in the environment
because the semantics of deallocation applies to local store only.

Now we can define the notion of well-typed program with respect to our
type system. Basically, a program is well-typed if we can derive a type for the
main expression of the program from an empty store and a list of the program
declarations. As mentioned in the Introduction Section 1, we have an polynomial
algorithm (cf. [3]) which can automatically decide whether a program is well-
typed or not, and if so, infer a type.

Definition 3 (Well-typed programs). Program Prog = Decls; E is well-
typed if there exists a reordering I’ of declarations in Decls such that [],I"'+ E: X.

Using the example in Section 2.1 we derive type for newb. Note that we
omitted some side conditions as they can be checked easily and we shortened
the rule names to the first two characters (we do not use the rule WeakenS
so WeakenB is abbreviated to We). The signed multisets are simplified as well.
The elements of a signed multiset are listed in a string with the multiplicities
as superscripts, multiplicity 1 is not shown as supperscript and elements with
multiplicity 0 are not shown. The rule Axiom is also simplified.

Ne L F (LI ID
d=<cF newd:(dddy (12 F el (L) (1,2 F el (L)

[d=cF {newd):(d,[].[]) [ d=ete({],[][]
[],d=<e€,e=<eb {newd}:(d,[],[])

ot e(LLID [l,ote (D
e [ d=ere(LIL1]
[],d<e€,e<et newe:(e,e,e)
[],d—<¢€,e<et {newd}newe:(de,e,e)

e ng : ;%;[1;1[,27 7 Berednn

[],d<e€,e<el newd:(d,d,d)
[],d=<e¢€,e<el ({newd}newe | newd):(d2e, de, de)

Sc
We

(1)

(1) Ne
Se

(2) We

Pa

(3) d e dom(d—<e,e—e)
[d],d=<e€,e<el deld:([],d~1,d1)
[],d<e€,e<el ({newd}newe | newd)deld:(d%e,e,e)
[],d—<¢€,e<¢e,a— ({newd} newe || newd)deldr newa:(ad?e,ae,ae)

(3) De

Se

Ne

(4)

Similarly, we can derive I' - newb: (abd?e, abd, b) where I' = d—¢, e—<¢€, a—
({newd} newe | newd)deld,b—<(newa + newenewd)dele.

By the example we illustrate how we can infer the specific resources. If com-
ponent a and d each creates a database connection, then from the type of newb,
we know that the program, in particular the main expression newb, may need
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three database connections (one by a and two by d). From another point of
view, we regard d as a database connection component, then we know that the
program needs maximum two database connections.

4 Formal Properties

4.1 Type Soundness

A fundamental property of static type systems is type soundness or safety [4].
It states that well-typed programs cannot cause type errors. In our model, type
errors occur when the program tries to delete an instance which is not in the
local store or when the program tries to instantiate a component x but there
is no declaration of x. We will prove that these two situations will not happen.
Besides, we will prove an additional important property which guarantees that
a well-typed program will not create more instances than a certain maximum
stated in its type.

Our proof of the type soundness is based on the approach of Wright and
Felleisen [20]. We will prove two main lemmas: Preservation and Progress. The
first lemma states that well-typedness is preserved under reduction. The latter
guarantees that well-typed programs cannot get stuck, that is, move to a non-
terminal state, from which it cannot move to another state. In order to use this
technique, we need to define the notion of well-typed configuration. We start with
some auxiliary definitions.

First, since the location of a parent node is a subsequence of the location of
its children (direct and indirect), we define the following binary prefix ordering
relation < over locations. For location oo = $¢s1..8, where s; € {l,r}, &’ < «
if o = 50951..8m, 0 < m < n. The set of all locations in a tree and this binary
relation form a partially ordered set [7]. A maximal element of this partially
ordered set is the location of a leaf. We denote by leaves(T) the set of locations
of all the leaves of T and T(«) the stack at location a in T.

Second, we call a.k the position of the kth element (from the bottom) of the
stack T(«). Again the set of all positions a.k in tree T is a partially ordered set
with the following binary relation. aq.k1 < aio.ko if either a; = as and k1 < ko,
or o < (a.

Next, we formalize the notion of subtree. Given a tree T. The set of positions
L={a;.k; € T|1<i<m}is valid if a;.k; £ «a;.k; for all ¢ # j. The tree
T’ obtained from T by removing all elements at positions a.k > ay.k; for all
1 <4 < m is a subtree of T, notation T C, T or T = T|,. Consequently, T’
has the same root as T. When L is empty, we get T = T.

We denote by hi(ST') the height of the stack ST. By T(a.k) = (M, E) we
denote that the element at position a.k is the pair (M, E). We denote by [T(a.k)]
the store M at position a.k, by [T(«)] the additive union of all stores in the stack
at location a, and by [T] the multiset of all active instances in the tree T, i.e.
[T) = Wer[T())

Now we calculate the multiset of instances that will be returned to a position
a.k. Due to the non-determinism of osChoice, we can only calculate the upper
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bound and the lower bound of the collection. The minimal number of instances
returned to a position a.k, denoted by function retly(«.k), is zero if k is not the
top of the stack at location «, or « is a leaf. Otherwise, it contains those in the
multisets at the bottom of its child nodes and the minimal number of instances
which survive the expressions there. Since the bottom of a child node of a.k may
receive instances from its child nodes (osParElimL, osParElimR; osParElim) and so
on, we need to call the function recursively.

[], if & < hi(T(a)) or a € leaves(T)

etlr(a.k) =
retin(a-k) {@ﬁe{aw}(Merl+ret|T(5.1)), otherwise

where T(5.1) = (M, E) and M + retlp(8.1),I' F E: X. Note that this recursive
definition is well-defined since first it is well-defined for all the positions at all
leaves. Then it is well-defined for the top position of the parents of all leaves.
And so on until the root.

The maximal number of instances that will be returned to a position a.k,
denoted by function retor(a.k), is calculated analogously.

[], if & <hi(T(a)) or « € leaves(T)

etor(a.k) =
rerorlet) {wge{w}mw+retow<ﬂ-1>>a otherwise

where T(5.1) = (M, E) and M +retlp(8.1),I' - E: X.

By Lemma 5 below, these two functions always return multisets even though
signed multisets X!, X° appear in their definitions.

Now we can define the notion of well-typed configuration. It guarantees that
the local store always has enough elements for typing its executing expression.
Hence deallocation operations are always safe to execute.

Definition 4 (Well-typed configuration). Configuration T is well-typed with
respect to a basis I', notation I' =T, if for all pair (M, E) at position a.k € T
there exists X such that

M +retlp(a.k), ' F E: X

Having the definition of well-typed configuration, the two main lemmas men-
tioned at the beginning of the section are stated as follows.

Lemma 1 (Preservation). If ' =T and T — T’, then T’ is well-typed.

Lemma 2 (Progress). If I' = T, then either T is terminal or there exists a
configuration T’ such that T — T’.

Next, we show some additional invariants which allow us to infer the resource
bounds of a well-typed program. Then we state the soundness theorem which
contains both goals mentioned at the beginning of the section.

Consider the pair (M, E) at position a.k in a well-typed configuration T.
By Definition 4 we have M + retly(a.k), ' = E: X for some X. The maximum
number of instances involved in the execution of the pair (M, E) is computed
by:

iop(a.k) = M + retor(a.k) + X°
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Lemma 3 (Invariants of retl, reto, and io). If I' =T and T — T’, then for
all positions a.k in both configurations T and T’ we have:

1. retlp(a.k) C retly (a.k) of T(a.k) = T'(ak),
2. retor(a.k) D retor (k) if T(a.k) = T'(a.k),
3. ior(a.k) D iop (k).

Note that the inclusions are related to choice: less options means smaller
maxima and larger minima.

The maximum number of instances of a subtree T|. includes the maximum
of its leaves and all the active instances in all the stores inside the subtree.

maxins(T|z) = [ [T(a.k)] + [H ior(ak)
a.k<L’ a.keLl!

where £’ is the set of all positions at the top of leaves of subtree T, i.e. L =
{a.hi(T|z(@)) | @ € leaves(T| )}

By the monotonicity of the function io, the function mazins also has this
property.

Lemma 4 (Invariant of maxins). If ' =T and T — T, then for all valid
set of positions L' of T’ there exists a valid set of positions L of T such that

maxins(T|z) 2 maxins(T'|z/)

Now we can state the soundness property together with the upper bounds of
instances that a well-typed program always respects.

Theorem 1 (Soundness). If program Prog = Decls; E is well-typed, then there
exists a multiset M such that for every sequence of reductions Lf([], E) —* T
we have T is not stuck and [T] C M.

4.2 Typing Properties

This section lists some properties of the type system. They are needed to prove
the lemmas and theorem in the previous section. We start with some definitions.

Let ' =x1—<Ay,...,2,—< A, be a basis. I' is called legal if o, " - A: X for
some store o, expression A and type X. A declaration z— A is in ', notation
x—<Ael if x =z and A = A; for some i. A is an initial segment of I", if
A=21=<A,...,x;<A; for some 1 < j <n.

We use X* for any of X?, X° and X'. Recall X* are maps, we denote by
dom(X*) = {z | X*(x) # 0} the domain of X*. For multiset M we denote
dom(M) = {z | M(z) # 0}. Let var(E) denote the set of variables occurring in
an expression:

var(newz) = var(delx) = {x}, var({4})=var(4),
var(AB) = var((A+ B)) = var((A || B)) = var(A) Uvar(B)

The following lemma collects a number of simple properties of a valid typing
judgment.
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Lemma 5 (Legal typing). If o, '+ A: X, then

var(A) C dom(I"), dom(X*) C dom(I"),

every variable in dom(I") is declared only once in I,
X DX°DX XD,

c+X* D[]

e v~

The following lemmas show the associativity of the sequential composition
and the significance of the order of declarations in a legal basis.

Lemma 6 (Associativity). If o;, ' A;: X, for i € {1,2,3}, then the typing
Judgments for (A1 As)As and A1(AzA3) are the same.

The following lemma is important in that it allows us to find a syntax-
directed derivation of the type of an expression. This lemma is sometimes called
the inversion lemma of the typing relation [11].

Lemma 7 (Generation).

1. If o,I' F newx: X, then there exist bases A, A’ and expression A such that
I'=Az=<A A" ando, A+ A:Y with X = (Y +2,Y°+z,Y! + ).

2. Ifo,I'+ delx:X, thenx € o, x € dom(I") and X = ([], [—x], [—x]).

8. Ifo, ' AB:Z with A, B # €, then there exist X, Y such that o, '+ A: X,
o+ XL, I'FB:Y and Z = (X' U(X°+Y?), X°+Y° XL+ Y1),

4. If o, - (A + B): Z, then there exist X, Y such that o, ' H A: X and
o, l'FB:Y and Z = (X'UY", X°UY°, X N Y.

5. If o, ' = (A || B): Z, then there exist X, Y such that [],I' F A: X and
[, 'FB:Y,and Z = (X'+ Y, X°+Y°, X' +Y!).

6. Ifo,I' = {A}:Z, then there exist multisets X and X such that [, T+ A: X
and Z = (X" [],[])-

5 Conclusions and Research Directions

This work follows a more liberal approach compared to our previous works [3,
18] where the resource bounds, i.e. the maximum number of instances for each
component, are known in advance and the type system checks these bounds in
typing rules. The dynamic semantics of the deallocation primitive here applies to
local stores only. Even though this style is rather common in practice, we plan
to extend the semantics of deallocation so that it can operate beyond scopes
and even threads. We are well aware of the level of abstraction of the component
language and plan to incorporate more language features. These include recur-
sion in component declarations, communication among threads and location of
resources.
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