Workload-Optimal Histograms on Streams

S. Muthukrishnah M. Straus$ X. Zheng
December 8, 2004

Abstract

Histograms are used in many ways in conventional databases and in data stream processing for
summarizing massive data distributions. Previous work on constructing histograms on data streams
with provable guarantees have not taken into account the workload characteristics of databases which
show some parts of the distributions to be more frequently used than the others; on the other hand,
previous work for constructing histograms that do make use of the workload characteristics—and have
demonstrated the significant advantage of exploiting workload information—have not come with provable
guarantees on the accuracy of the histograms or the time and space bounds needed to obtain reasonable
accuracy. We study the algorithmic complexity of constructing workload-optimal histograms on data
streams.

We present an algorithm for constructing a nearly-optimal histogram in nearly linear time and poly-
logarithmic space, in one pass. In the more general cash register model where data is streamed as a
series of updates, we can build a histogram using polylogarithmic space, polylogarithmic time to process
each item, and polylogarithmic post-processing time to build the histogram. These are the first known
algorithmic results with provable guarantees for workload-optimal histogram construction, and rely on a
notion oflinear robustnessve introduce here. All these results need the workload to be explicitly stored
since we show that if the workload is summarized in small space lossily, algorithmic results such as
above do not exist. However, we show that our algorithmic results can be extended efficiently to the case
when the workload is compressed without loss by using, for example, run-length encoding or a universal
compression scheme of Lempel-Ziv.

1 Introduction

A histogram is a piecewise-constant approximation of an observed data distribution. A histograms is used
as a small space, approximate synopsis of the underlying data distribution, which is often too large to be
stored precisely. Histograms have found many applications in database management systems, perhaps most
commonly for query selectivity estimation in query optimizers [15], but have also found applications in ap-
proximate query answering [2], load balancing in parallel join execution [25], mining time-series data [18],
partition-based temporal join execution, query profiling for user feedback, etc. loannidis has a nice overview

of the history of histograms, their applications, and their use in commercial DBMSs [14]. Also, Poosala’s
thesis provides a systematic treatment of different types of histograms [25].

*Supported by NSF ITR 0220280. Rutgers Universityithu@cs.rutgers.edu.

fSupported by NSF DMS 0354600. Dept. of Mathematics, University of Michigan, 2074 East Hall, 525 E. University Ave.,
Ann Arbor, Michigan, 48109-1109. Fax: +1-734-763-098%rtinjs@umich.edu

tUniversity of Michigan.xuanzh@eecs.umich.edu

Formally, aB-buckethistogramH of lengthV is a partition of{0, /V) into intervals|bg, b1) U [b1, b2) U
--- U [bp-1,bB), whereby = 0 andbp = N, together with a collection o heightsh;, for 0 < j < B,
one for each bucket. a that is, the uniguaith b; < ¢ < bj;1. In building a B-bucket histogram, we
want to choosé3 — 1 boundaries; and B heightsh;, dependent oA. A number of different choices
are known [25] forb;’'s andh;’s, but the popular and effective one is teOpt histogran{16], whereb;’s
andh;’s are chosen to minimize the total square error, takeiformly over the set of all point querigsr,
equivalently||A —H||> = >, (A[i] — hj(;)*. (Once we have chosen the boundaries, the best bucket height
on an intervall is the average oA overl.)

In [17], the authors presented &X{N2B) time algorithm for determining the optimal histogrdi,,.
that minimizes the total square error. This algorithm has two drawbacks: first, it is expensive—quadratic
in N; second, it needa to be stored explicitly which is prohibitive in space for large distributions where
histograms are used as synopses. In order to overcome the first drawback, focus has ({deencpn
approximationsthat is, algorithms to find a histograHi such that| A — H||? < (1 + €)||A — Hopt % In
order to overcome the second drawback, the focus has been datthstream modeif computation where
(a) the algorithm reads the signal left to right in one pasags, A[2],..., using space sublinear in the
input lengthV; this is the so-calletime-series modgR2], or, (b) A is specified as a series vpdatesand
the algorithm has to track the changesan space and time per update polylogarithmic in inputthis is
the so calleatash register modef only additions are allowed, or more generally, thenamic maintenance
modelif both additions and deletions are allowed [22]. Besides the param@ieys ande, the algorithms’
costs depend on the numerical precision involved; wéllebe a parameter such thiag (M) is roughly
the number of bits of precision used (see below for a formal definition). A serig@s-pk)-approximation

C
algorithms have been proposed that work in time itV + (w) * (for constants:; andcy) in

. . . o) .
the time series model using no more thighles Vloa M space enroute [12, 11, 10]. In the dynamic

maintenance model, [8] presents an algorithm that uses time per update, space, and post-processing time

. o)
time only (ZloaXNlos . This solves the approximaié-Opt histogram computation problem from a

theoretical point of view, modulo getting the constants involved to be as small as possible.

It has, however, long been an issue thatth©pt histogram as defined above is limited in its applica-
tions because it does not take into accountwekloadof queries for which the histogram is optimized.

In particular, when some of the point queries are more frequent than the others, then the histogram needs
to be better at approximating answers to the frequent queries rather than the infrequent ones. In other
words, the metric to minimize is not the sum of squared eromigormly over all point queries, but that
obtained by weighting the error on each point query by the workload of how frequently each point query
is posed. Formally, given an input signAll0--- N — 1] andworkloadw[0---N — 1], 0 < w; < 1,

>, w(i) = 1, theworkload-optimalB-bucket histogranH, is the choice ob;’s andh;’s that minimize

A —H|Z =, wi(Afi] — hj(;))* The problem of findingH,, is interesting on stored or streamed
signals as well as stored or streamed workloads.

The database community has proposed methods not merely to synposize data distributions but also to
take the workload into account. Query feedback from the execution engine of a DBMS was used in [5]
to modify the synopsis. Histogram boundaries are refined adaptively in [19, 1, 26] based on dynamically
evolving workload that is continuously updated based on feedback from the query engine; they differ in
how they approximate values within buckets, how they weight the workload etc. Still, these methods do
not give any provable results on approximatiHg,.. There has some work asther synopsis that are
workload-aware. For example, [7] proposed sampling methods that adapt to recent workload. IBM’s LEO
optimizer [27] uses workload information for variety of synopsis. In [24),(@&2 B/ log B) time algorithm

is presented for determining the optimal choicéBdflaar wavelet synopsis; this has recently been improved
to O(N?) time [9]. The Haar basis is modified in [20] with the knowledge of the workload and algorithms
for obtaining B-term synopsis are designed for this new basis; while this algorithm works in linear time,
it does not provide near-optim& Haar wavelet synopsis. For special workloads, [24] presented a near-
linear algorithm for finding the optimdp-term Haar wavelet basis. All of these results for Haar and related
basis [24, 9, 20] work only whehoth the signal and workload are available in a stored form, and not
streamed. In such a scenario however, the dynamic programming from [17] immediately giVe¥ aR)

time algorithm for finding the optimai,;, so the challenge in [24, 9] arises from working with the Haar
wavelet basis and does not reflect on the difficulty in construdtigg . The significant open problem with
finding H,¢ is when either the signal or the workload is streamed, or both are steamed.

In this paper, we address the problem of compulihg; on data streams from a foundational point of
view. Our primary question is, do the powerful theoretical results known for uniform histogram construction
in one pass and on data streams hold for the workload-aware case as well? Is there a difference in streaming
the signal versus the streaming the workload? How accurately can we track the workload in polylogarithmic
space? What is the information-content of the workload and how does it affect the complexity of histogram
construction? We initiate the formal study of the complexity of workload-optimal histogram problems, and
prove first-known theoretical results.

Our contributions are as follows. Suppose the data items are (positive, negative, or zero) integers, and
the weights are positive integers between the minimum weighy,, and the maximum weighty,,.. Let
M = max{||A||?, “ouax } and lete; ande, denote constants.

C
e (StoredA, storedw) We present an; N + (M *time algorithm to compute &-bucket

histogramH with || A — H||?2, < (1 +€)||A — Hopt ||, whereH, is the workload-optimaB-bucket
histogram, with respect to arbitrary. This is the first near-line&time algorithm for approximating
H,,; under non-uniform workloads.

e (Storedw, streamingA) The above algorithm can be run in the time series model taking @ly

.) . o) . .
time per new item and usingZ°e o space and time to construct ther ¢ approximate

histogram. Under the more general dynamic maintenance mode, the above algorithm can be modified
using previously known techniques so that the time per update, total space used, and postprocessing

. o) o
time are all (Zleal¥loa M . This is the first known algorithms that use sublinear—polynomial

in B, 1/e and polylogarithmic inNV, M—space for dealing with data stream signals and yet yields
(1 4 €) approximateH,,, histograms for anyv.

e (Streamingw, A.) To get a(1 + ¢)-factor approximation, one can round each workload weight to
within the factor(1 + Q(e)). But this is essentially all the lossy compression one can do, as our
(straightforward) lower bounds show.

e (Compressedv, streamingA.) We show that, if the vectow’ of rounded weights is losslessly
compressible to a structui@(w’) of size |C'(w’)| by run-length encoding or by the Ziv-Lempel
method [30], then the preprocessing time and space can be reduced from liféaoitinear in
|C(w)|. We present & (C'(w))-spaced data structure to answer “symbol range count” queries which
enable all our workload-optimal histogram construction algorithms above to be implemented in space

!Note that, for moderate values of the parameters other Maiie run time is dominated by N. In this paper, we use the
term “near-linear” for this type of cost.

o(
and timeC (w) (M) " Thisisan advantage for highly compressible worklazs] where
[C(w)| < of|w]).

C
Section 2 has the definitions and preliminaries. @uy + (226N19sM)™ time algorithm illustrates

the main new ideas in this paper, and it is presented in 3. The natural starting point for this algorithm is
to round the workloadu(i)’s so there are only a few workload “classes”, within each of which we build a
robust histogram, a concept borrowed from [8]. The crux of the contribution here is to prove that combining
the individual robust histograms gives a robust histogram for the overall data and workload. Extensions of
this result to the stream models of the signal are straightforward and are sketched in Section 4. The lower
bound on space when the workload is streamed is in Section 5 and is fairly simple. In 6, we describe methods
for managing a compressed workloadand computingd,,; on a data stream ok efficiently. Our work
initiates a number of open problems and directions which we list in Section 7.

In this extended abstract, proofs are omitted. They can be found in an appendix.

2 Preliminaries

2.1 Definitions and Lemmas from previous work

Definition 1 Inner Product with Weight: For any two signals and B with length N respectively and the
same lengthV weight vectorw, define(A,B),, = vazl A;B;w; and ||A|? = (A, A), wherew; is a
non-negative weight at index We continue to writ¢ A, B) and || A || for the dot product and norm under
uniform workload.

Definition 2 Robust Representation [8, 10]. Fix a signal A representatiom,. is called a(B, ¢)-robust
approximation toA if, for any representatiod on the boundaries dfi,. and any othetB — 1 boundaries,
with optimal parameters, we haye — ¢)||A — H..||?> < [|A — H||2.

Lemma 3 ([10]) Given B, N, ¢, and M, for any integer-valued signaA with ||A| < M, there exists

o(1) . . . L
aB < (Zlellel and a(B")°") time algorithm to find & B, ¢,)-robust approximation toA
presented in the time-series model.

For completeness, we sketch the construction from [10]. Convert the time fet@s time series of its
Haar waveletdecomposition, in tim&(N) and spaced (log(N)). Using a buffer of sizeD(B”) and a
selection algorithm, find the Haar wavelet terms with largest coefficients, in@fé) and space(B").
Finally, use a greedy algorithm with appropriate stopping condition to seled@'ttergest wavelet terms,
which can be regarded as the desié¥d3’)-bucket robust histogram.

Lemma 4 GivenB, N, ande, there exists, > (e/B)O(l) such that a nearly-optimal representatiéhto
a (B, ¢,)-robust representatiol, is also (1 + eﬂ(l))-nearly optimal toA..

3 Algorithm

In this section, we give an algorithm for time series data.
At a high level, our algorithm proceeds as follows. We will regard the weights as rounded to a power of
(1+e¢); there is a small number= log, , (M) of these classes. We multiplex the incoming time series into

4

p new time series, according to the associated weight. For each subseries, we create a robust representation,
as in [10]. Combining the robust representations gives a linearly-robust represeiiiatitrat we define

below. Finally, a near-bedB-bucket representation f, can be constructed efficiently and will also be
near-best to the original data.,.

3.1 Notation and Basics

We consider signals of lengtN, with weightsw, - - - ,wy, and such thafA||* < M. We will assume
that data items are integers (positive, zero, or negative) and that weights are positive integers in the range
Win = 1 t0 SOMewmax < M (S0 we abandon the normalizatidn, w; = 1.)

Definition 5 Rounded weights with respect to original weights: Define log; . M + 1, andp different
rounded weights!, w?, - - -, wP, wherew® = (1+¢)*~!. Round all the original weights , - - - , wy down
to rounded weights, - - - ,w)y respectively, i.eyi € {1,--- ,N},3j € {1,---,p}, such thatw’ = w)
and

w; < (1+e)w) < (14 €)w;. (1)

We usewv’ = (w] - - - wly) to represent the length¥ rounded weight vector.

In the sequel, any rounding scheme will work if it satisfies Equation (1) and gives just a moderate number
of possible different rounded weight values.

Lemma 6 Fix a singleA of dimensionV. Then||A —H/;||2, < (1+¢€)||A —Hop |2, , whereH,, is the
optimal B bucket representation tA under weighto, andHy,,; is the optimalB3 bucket representation to
A under weightw'.

Definition 7 A symbol-range-count structufer a rounded weight vectar’ supports the following opera-
tions:

e Forall j < N, we can recovew; in constant time per query, provided we are queried withjallin
order,j =0,1,2,..., N — 1.

e Forall j < N, we can recover the number bf< j such thatw; = w’.

The time for the second operation will be called the (symbol-range-caue)y time, and must be

at most (—5——5= . Besides this, we will be interested in th&e of the structure and thpre-

processingime needed to construct the structure. (All implementations we consider will support the first
qguery in the time indicated.)

It is straightforward to build such structufeof sizeO(N), in pre-processing timé@ (N), that answers
both queries in constant time (using, say, perfect hashing), for any order of queries. In Section 6, we will be
interested in smalleR’s and we will exploit the particular requirements listed here.

3.2 Linearly Robust Representations

Definition 8 Linearly Robust Representations with respect to weights: Fix a signahd rounded weight
vectorw’. A representatiorH, is called a(B, ¢)-robust approximation taA under weight', if, for any
B-bucket histogranf g and any scalars andb, we have

(1 - olA - H} < |A — (aH: + bHp)|[3,.

Definition 9 Partition and combination of representations: Given a streAnand given a partitiori? =
{Py,Py,...,Pn_1} 0f [0,N), for eachi € [0,m), defineAT to be A restricted toP;, viewed as a sub-
stream. Define#ie[o,m)AZ’ as the inverse (recombination) operator, so, for examples #ie[O,m)AZ‘) or,
briefly, A = #APF.

Definition 10 Given a streamA and vectorw’ of rounded weights, define the partitign of [0, N) as
follows: For eachi € [0, N), if w, = w’, puti into thej'th group. LetH' be a(B, ¢)-robust representation
for AT. DefineH, to be#H:".

Lemma 11 The representatiold, is a (B, €)-robust representation té, under weighto'.

C:
Lemma 12 There are two constants andcs, s.t.,H, can be computed ia; N + (M) * time.

Note that we need constant time per item to multiplex each data item in the original stream into the
corresponding substream, accordingo We then run an algorithm on each substream that takes time
linear pIus(M)w. Since the substreams’ total lengthN's the result follows.

We use an array; to store eact’ in the form(w® : hy,l1,ha,lz--- , hps,lp/), whereh; is the height
andl; is the right boundary. By lemma BI, has some3’ < <M>O(l) buckets. Thus, on inpyt

we can findH,[j] in time O(log(B’)) by using a simple index structure. (Other data structures are possible.)

Lemma 13 GivenH,, there is an algorithm that takes as input parameters’, N, and M and histogram
H, = #H’ equal to the#-combination ofp B’-bucket histograms with respect to a partitih and, on
queryli, j), computes the best heighto H; on the intervali, j) and the associated errgr’ ., , [H:[k] —
h|2. The algorithm’s runtime is at most the time to perfaiitp B’) symbol-range-count queries.

(Recall that a simple symbol-range-count structure requires preprocessing time and$pgcand
supports queries in constant time.)

3.3 Histogram extracted from robust representation

As in [10], our strategy is to compute a nearly-optimal represent®#liemH, and show that it is also nearly
optimal forA.

Lemma 14 Fix a signalA with rounded weight’, and letH, be a(B, ¢)-robust approximation t&\ under
weightw’. LetH be aB-bucket(1 + ¢)-nearly optimal histogram foH,. Then

IA = H[5, < (1+0(e)[|A - Hy, Il

whereH/, . is the optimalB-bucket representation tA under weight’.

opt
Now we consider efficient computation HE.
Lemma 15 Given parameters3, N, M, p,w’, ande, and robust representatiodd!, - - - , H? of lengthV
o
‘)

. - .) .)
with each||H’|| < M, using a symbol-range-count structure with query tme(ﬁal"gfﬂ , and

. N o) . .
O(B2/¢) additional space, we can output/-bucket representatioH in (M) time, with

L — H|3, < (1 + o) H, — HII3,

whereH is the bestB-bucket representation H,.

3.4 Main Results, Stored Weights

Thus we have, using a simple symbol-range-count structure,

Theorem 16 There is an algorithm that, given parametdss N, M, ¢, weight vectonw, preprocessy in

time (and space)(NV), reads dataA with | A%, < M in time series, then outputs/a-bucket histogram

H with [|[A — H||2, < (1 + O(e))||A — Hopt||%, whereH,, is the best possiblés-bucket histogram
: . . o) . ”

representation toA under weightw. The algorithm uses spac(ew) in addition to the space

associated withw (independent of the input). The algorithm uses t®{éV) to read the stream of data and

. . o(1) .
post-processing tlméw) to build H.

4 Streaming Data

In this section, we consider dynamic or “turnstile” data. Specifically, we are presented with a stream of
updates of the fornfi, v), meaning, “add to A[i].” (Here v may be positive or negative.) We have the
following from [8]:
Lemma 17 For parametersN, M, B, ¢,, there is a randomized data structure for an arrAythat requires
o(1) . : e o(1) .

space(w) and supports the following operations in tlrﬁglogfw) (some only with
overwhelming probability):

e update: Addv to A[]

¢ build: Build a robust representation to the then-current datasewith respect to the uniform work-
load.

Thus we immediately have:

Theorem 18 For parametersV, M, B, ¢, there is a randomized data structure for an arrAythat prepro-
L . . o(1)
cesses a workload in time and spac@(V), requires additional spacéM) , and supports

BlogNlogM)O
€

, . _ (1) . , .
the following operations in tlmé (some only with overwhelming probability):

e update: Addv to A[]

e build: Build a (1 + €)-near optimal histogram with respect to the then-current dataseunder
workloadw.

5 Lower Bounds

It is easy to see that a histogram algorithm that first reads the data and then is given a workload must store
all the data, since the choice of workload and histogram approximation criterion can force the algorithm to
recover any data item exactly. A similar bound can be shown if we read the workload first. Above we
showed that, to get @l + ¢)-factor approximation, one can round weights to a poweriof). We now

show that, in a sense, this is the only kind of lossy compression that is possible.

Theorem 19 Suppose an algorithm reads and processes a workload of leNgdmd bound)/ into an
objects of size|s|, then discards everything about the workload exsgfiien reads time series data. If, for

any workload, any data, and any sufficiently snealt 0, the algorithm produces, with probability> 1/2,

a (1 + e)-approximation to the best 3-bucket histogram, then the algorithm can be used as a subroutine to
store any value from a vector of positive integer entries boundet!/y, of length~ N, up to the factor
(1+0(e)).

6 Compressed Weights

In the previous section, we showed that lossy compression of the workload beyond rounding is not possible,
even information-theoretically. In this section, we consider efficient algorithms for manipulating losslessly
compressed workloads of rounded weights. We consider principally two types of compression, run-length
encoding and Lempel-Ziv-78. Our goal in this section is to build a symbol-range-count strRdimreatch

the given compression scheme. That s, if the compressed'tex has sizeC(w')|, then, ideally, we want

to build R with preprocessing tim&®(|C(w')|), we want|R| < O(|C(w’)|), and we want symbol-range-

. . . . o) .
count queries to be as quick as possible—plausible guarante¢S 4y 1oe or some function of

the compressed string. Thus, the challenge is tofggortunisticand design data structures bounded in
size by|C(w')|. We also discuss building’ of size|R’| < o(|C(w')|) such thatkR’ andC(w’) together
constitute a symbol-range-query structure. This has the advantage that the tot&]| siae be compared
directly to|C(w")|, without giving up any constant factors; this is useful if, §a¥w’)| = |w’|/100.

6.1 Run-length Encoding

A run of a sequence is a maximal substring that uses just a single character. Run-length encoding is a simple
scheme whereby each run is replaced by a single copy of the character used and the length of the run. We'll
denote the run-length encoding of the rounded workloady C'(w’) and its length byC'(w')|.

Next, consider building a symbol-range-count structure to match the run-length encoding bound. It
is easy to see that the run-length encodin@y’) itself lets us recovet; in constant time for queries
j=0,1,2,...,N — linorder. For allj < N, we can recover the number bf< j such thatw) = w; in
time polynomial in|C(w’)|. For some workloads('(w')| is so small that this straightforward approach is
reasonable. For example, theoreticaliy(w')| can be constant-sized. Alternatively, in some applications,
the workload is monotonic, so that more recent data is queried more often than older data. In that case, there
is exactly one run per rounded weight, |§&(w')| = log(M) /e, which is often small.

In other situations, howevef(C'(w’)| is larger, and we would want to do better in terms of symbol-
range-count query time. First, for agiywe can find, in time(log(]C(w’)|), the run containing by using
an index structure of sizg”(w’)|. (The classic van Emde Boas data structure [28] for the “predecessor
query” improves this time t@(loglog(N)).) Then store, at each run for all possible rounded weights
v, the number of’s preceding the run such that, = v. Unfortunately, the space requirement for this is
O(|C(w")|log(M)/e€), which is (theoretically) unacceptable. A simple alternative is to store these statistics
only for one out of everyog(M)/e runs, so the space is now acceptablf{C'(w’)|). The query time is
now log(M)/e rather than constant time, but this multiplies (and, therefore, blends into) the comparable
expression(B log(N)log(M)/e)°M). We call this technique “decimated statistics.” Finally, we note that
one can smoothly tradeoff query time and additional space. That is, one can store statistics somewhat more
sparsely than one out of evelyg (M) /e runs, getting an auxiliary structu® of size|R'| < o(|C(w')]).

The other index structures can similarly be decimated appropriately. Thus we have:

Theorem 20 Given a vector’ over an alphabek (here, of rounded weights) with run-length encoding
C(w'), one can, in time&(|C(w’)|), construct anR’ of size| R'| < o(|C(w’)|), such thatC'(w’) together
with R’ constitute a symbol-range-count structure with query tiing(N)|%])°().

6.2 Lempel-Ziv

In this section, we consider the Lempel-Ziv algorithm. Opportunistic data structures are known for indexing

a string for full-text substring queries [6], but no previous results are known for our problem of supporting
the symbol range-count query. The results of this section may of interest separately in database and string
processing.

We are given a string[1, ..., N], with eachS[i] in alphabet set of size: given by {1,2,...,m}.

We compressS using Lempel-Ziv algorithm, denoteldZ78, which works as follows. Say[1,...,1]

has been compressed; a dictiond?yof tuples(dy, l;) would have been constructed thus far with each

dr, = S[lg, ...,k + |dg| — 1]. The algorithm iteratively proceeds by finding the longest pré&fixt- 1, .., j]

that equals somé;, compressing[i + 1, ..., j + 1] as(lg, |dk|, S[j + 1]), adding(S[i + 1, ...,5+ 1],i + 1)

to D and continuing. Each such step is called a “parse” and the number of parses is directly related to the
size of the compressed representatigiy) of S upto constant factors. Hereafter, we will |€t(.S)| be the

number of such parses, as is standard in the string compression area, without being specific about how to
code eactfly, |dx|, S[j + 1]) in smallest number of bits.

There are many variants of this basic method, depending on whether windowing is used, Whether
1,...,j]andS[l, ..., + k+|di| — 1] may overlap or not, how the parses are encoded using bits, etc. We will
focus on the basic version above and our results will hold for these other variants as well. A significantly
different variant is th& 277 [29] algorithm in which we add all substrings 8fi + 1, .., j] to D. This leads
to larger D and hence, fewer parses and smaflé5). Our algorithm in this section will work with the
LZ77 compression method as well, but we omit the details in this extended abstract.

Theorem 21 A string S given in itsLZ78 compressed forrd’(S) can be preprocessed in time and space
O(]C(S)|). A symbol range-count query, j, o) can be answered in timé@(|C]i, j]| loglog N) where
|C4, j]| is the number oEZ78 parses overlapping, j].

Finally, we note that the decimated statistics technique applies alst/® and to other dictionary/trie
compression techniques. We need to store decimated statistics for prefixes of rounded weights within parses
and also for prefixes of parses within the text. We also need to decimate the level-ancestor algorithm and
other indices.

This result is incomparable with Theorem 21, since Theorem 21 gives querydifng]|log log(V)
for range[i, j] whereas the decimation technique gives time polynomi&dii)) /¢; either of these may
be bigger than the other. We note, however, that, in the context of our algorithm, we will query on a set
of ranged[s, j] that (several times) covéd, V), so every parse gets touched. Since the minimum number
of parses inLZ78 is v/N, it follows that the overall contribution to the runtime of Theorem 21 is at least
Vv/N. Also note that the decimation technique appears to be the only technique that works for certain other
dictionary/trie compression schemes, IIk&77 .

The decimated statistics technique can also be usedLifi8 to give sublinear auxiliary space cost.

That is:

2Note that, in our context, we can accept query tithg (V) log(M)/€)°D, so level-ancestor and predecessor algorithms can
be implemented in a manner that is much more straightforward than some of the optimal implementations. No new data structure
is needed beyond basic engineering.

Theorem 22 Given vectorw’ over alphabe® with LZ78 C(w’) under a plausible implementation, one
can, in timeO(|C(w")]), construct anR’ of size|R'| < o(|C(w')|), such thatC(w’) together withR’
constitute a symbol-range-count structure with query tilog(N)|2])°(M).

7 Concluding Remarks

We have shown, for the first time, given a data set of lengtland bound), how to build a(1 + ¢)-
near optimalB-bucket histogram that is provably nearly optimal with respect to a non-uniform workload

C
also bounded by/, where the algorithm runs in nearly linear timeN + (M) * and space

o(1)
Blog Nlog M beyond what is needed to store the workload. This algorithm generalizes to the dynamic

additive update model. For both time-series and addtive update models, our time and space costs are com-
parable to those for the uniform workload. We have also shown that lossy compression of the workload is
not possible beyond rounding to within the factér+ ¢). Finally, we show how to improve the space cost

to essentially the space used to compress losslessly the rounded workload by either run-length encoding or
the Lempel-Ziv algorithm.

Many open problems remain in the area of tracking synopsis such as the histograms taking the workload
into account. For example, a natural problem is to extend our work to two and higher dimensisnal
STholes is a known heuristic for multidimensional histograms that are workload-aware [4], but it will be of
interest to study the complexity of this problem. Another natural problem is to not consider the workload on
point queries alone, but also consider the workloadamge queriesDatabase research such as [19, 5] has
considered using range query workload to refine histograms; [21] has recently proposed changing the Haar
basis to be workload-aware and fistdterm wavelet synopsis for range workloads. Again, these results do
not provide any theoretical guarantees on complexity and accuracy of the problem of conkbyyirfor
range workloads, and provable results are of our interestufitwrmworkload over the range queries, see
results in [23] for the rangesum histogram problem.

10

A Appendix—Proofs

Lemma 6 Fix a singleA of dimensionV. Then||A — H{ |12, < (14 €)[|A — Hop |2, , whereH, is the
optimal B bucket representation tA under weightv, andHy, is the optimalB bucket representation to
A under weightw'.

Proof. We have

N

1A —Ho 5 = > (A= Hypy ()] w;
=1

M) =

< (1+€)) [Ay—H, (i)]*w]
z;l

< (1+4¢ Z[AZ — Hopt (Z)]Qw;
i=1

< (L+6)) [Ai = Hop (i) *w;

i=1
= (1+ o)A —Hopll3,.

Lemma 11The representatiofl; is a (B, ¢)-robust representation té&, under weightv’.

Proof. The proof is derived from the definition of robustness.

Given scalars: andb and aB-bucket representatioH g, multiplex aH, + bHpg into p sub-streams
H7, .-, Hy, based on the partitiof? derived fromw’. Notice that the boundaries of eakfy will fall in
the boundaries of correspondifff and no more tha3 — 1 additional boundaries respectively, since the
representatio 5 itself takes no more tha® — 1 additional boundaries. According to the definition of
robustness with respect to uniform workloads, we have foi'thestream:

IA7 —H|? > (1 - ¢)|A] — H|?
By scaling, we have for théth stream:
L+ AP —Hi|? > (1 -) (1 + o) | AT —H'||*.
By summing the inequalities for all the sub-streams together, we have
IA —H"|% > (1 - €)||A - Hif},

SoH, is a(B, €)-robust representation #& under weightu'. [

Lemma 13GivenH,, there is an algorithm that takes as input parameters’, N, and M and histogram
H, = #H’ equal to the#-combination ofp B’-bucket histograms with respect to a partiti®h and, on
queryli, j), computes the best heighto H. on the intervali, j) and the associated errgr’ ., , [Hx[k] —

h|%. The algorithm’s runtime is at most the time to perfattpB’) symbol-range-count queries.

11

Figure 1: lllustration of histograms in Lemma 14. By optimality df, there are near right angles as
indicated.

A

Hopt
Proof. Letwgym = i:i wj.. Define a random variabl& by letting X = H,[k] with probability wﬁm, for

k € [i,7) atrandom. The®[X] = h is the height of the optimal one-bucket representaticHtdetween

J / J /
i andy. Therefore), = k=i wkH,r)[’“] S LUy
k):l k? sum
Note that all the data in one bucket of a robust representation in each stremarma the same rounded

weight and the same height H,. So we will break{i, j) into p substreams and at maBt buckets from
the correspondingl’. For each such bucket, we need to make a single symbol-range-count query.
Computing the errofy_4 _, w),(H.[k] — h)?, is similar. |

Lemma 14Fix a signal A with rounded weight’, and letH, be a(B, ¢)-robust approximation té\ under
weightw’. LetH be aB-bucket(1 + ¢)-nearly optimal histogram foH,. Then

IA = HI5, < (1+0(e)[|A - Hyp 5

whereH{)pt is the optimalB-bucket representation tA under weight’.

Proof. Extend the proof from [8, 10] under uniform weight to weighit Notice that, the proof under
uniform weight uses robustness, the triangle inequality and the Pythagorean tReSiere.all these prop-
erties hold under weight’, we can get the above result. Roughly speaking, the linear robustness property
insures that there is are near-right angledak,-H,,; and A-H,-H. Since the legA-H., is the same in

the two triangles and sincH-H., is shorter tharH,:-H,, it follows thatH-A is not much longer than
H,,:-A. See Figure 1.]

Lemma 15 Given parameters3, N, M, p,w’, ande, and robust representatiorid!, - - - , H? of length v

. , . . . o(1)
with each||H/|| < M, using a symbol-range-count structure with query tme(M) , and

M)O(l) time, with
P 1

O(B?/¢) additional space, we can outputf-bucket representatioH in (

L — H|3, < (1 + o) H, - HII3,

®In this context, the Pythagorean Theorem says tha@it- A,B — A) = 0, then||C — B> = |C - A|? + B - A| .
The vectorsC — A andB — A have a near-right angle {C — A,B — A) <0 ||C - A|||B - A|.

12

whereH is the best3-bucket representation tH,.

Proof. Our proof is as in [10] (similar to [12, 11]), so we give just a brief sketch. We use dynamic pro-
gramming to get é&B-bucket representatidd to H,. First assume that we know an approximationo the
optimal errorEqpy, satisfyingEqp < E < 2Eq,, whereEqy, = ||H, — }AI||%U,, andH is the optimal rep-
resentation t&1, under weightv'. DefineFar[j,] to be a position: such that somg-bucket histogram on

[0, z) has error at most + j + 1) ;5 E but noj-bucket histogram oft), z +1) has error at most + j) 55 E.

We build aO(B?/¢)-sized tablel” to store the information, for eagh< B and eacli < O(B/e). For each
entry of T', we compute:

T[j][l] = Far[j,1] = pax cost(Far[j — 1, l1],z) <

wherecost(l, r) is the difference oH, and the optimal one-bucket representation between ihded index
r to it under weightw'.

For some optimal histogram, lej be the error in thg'th bucket, and lein; = [e; * 2B/(eE)]|. Then,
inductively, our dynamic program will do at least as well as using error beupg; £ for the j'th bucket,
which means the boundaries it finds will all be equal to or to the right of the corresponding boundaries in
the optimal histogram. The overall error is suboptimakByly per bucket, which is at mostz,,; overall.
Thus the overall error il + €) Ept, as desired.

Note that, giverl < E,,; < M, we could use Q¢g log M) time to find propet® by binary search.®

Theorem 19 Suppose an algorithm reads and processes a workload of leNgdamd bound)/ into an
objects of size|s|, then discards everything about the workload exeefiten reads time series data. If, for

any workload, any data, and any sufficiently smat 0, the algorithm produces, with probability> 1/2,

a (1 + ¢)-approximation to the best 3-bucket histogram, then the algorithm can be used as a subroutine to
store any value from a vector of positive integer entries boundetl/ py, of length~ N, up to the factor

(14 O(e)).

Proof. Suppose we are given a vectoof entries bounded by/ /4, of lengthN — log(M)/e. Construct a
workload as follows. The firgD(log(M)/e) values are all the powers ¢f + ¢), in order, called “reference
values.” The next value is equal fd. Finally, the lastV — log(/)/e values are the original vector. Run
the first part of the algorithm on this workload, producing

Our goal now is to recover any from s and;. To do this, consider the data that is all zeros except for a 1
at a position corresponding to a reference workload valié ¢%)* and another 1 at position corresponding
tov;. If v; > (1+€)**1, then the best 3-bucket histogram getsight and is zero everywhere else (getting
the 1 at reference positidit + €)* wrong). Similarly, ifv; < (1 + €)*~! the best 3-bucket histogram gets
v; wrong and(1 + €)* right. It follows that we can learn; up to the facto1 + €)? = (1 + O(e)). |

Theorem 21A string S given in itsLZ78 compressed formy'(S) can be preprocessed in time and space
O(]C(S)|). A symbol range-count query, j, o) can be answered in timé@(|C|i, j]| loglog N) where
|C4,]| is the number oEZ78 parses overlapping, j].

Proof. We sketch our solution. First, we make a few observations about the dictiéhaty particular,
focus on thei;’s. Notice that each newj;, that is added t@ is one symbol longer than a differedif € D.

For example, whes[i + 1, ..., 7 + 1] is added taD in the description of the algorithm abovef;i + 1, ..., j]

is already inD. Hence, the set of all;_ in D can be arranged as a rooted trie with the internal nodes labeling
the indexk; the edge from nodg&’ to k is marked with the additional symbol in We label this trie ag".

The size ofl" is proportional to the number of tuples in, which we denotél’| = | D| and in fact, it is easy

to observe thatl’'| = |C(.5)|, too.

13

Our algorithm is as follows. Consider the parses that ovétlgpand denote their number g'(i, 7)|.
There may be a left boundary parge, io] with I} < i and: < la < j; likewise, there may be a right
boundary parsé-, 2] with i < r; < jandj < ro. The remainder of the parses are central with both their
endpoints insidéi, j]. For each central parse, we will compute the number of occurrences of it. For
the right boundaryry, j], we note that sincg, r2| is in D, then so must bg;, j] sinceD has the property
that all the proper prefixes ofd, in D are also inD. Given the pointer to the node that stands|fqr],
in O(1) time one can get the node that stands|far j] using the level ancestors algorithm [3]. We can
now treat the right boundary as the pafsg j]. A similar trick doesnotwork for the left. We need to find
the number of occurrences ofs in [i, l3], but while[ly, l2] is a parse[i, ls] need not be becaude is not
suffx-closed, ie.dy in D does not imply that all its suffixes are in. We do a simple trick here: we count
the number ofv's in [i, [2] as that in[l;, I2] minus that in/;,7 — 1] both of which are parses i because
we are given thalt;, l»] is, and the other is its prefix. Thus the overall algorithm is to consider each of these
parses, at mosC|i, j]| + 1 of them, and find the number afs in each such substring.

We now focus on finding the number a@fs in a given parse. We need a few definitions. Deflheo be
the induced subtree df on edges labeled; i.e., for any(z, y) labeleda with x the parent ofy, connectr
to v if v is the closest ancestor ofin T such tha{(w, v) is labeledy andw is the parent of. Itis clear that
T,’s partition the edges df and hence their total size 3(|7'|). We preprocess eadh, to answer Least
Common Ancestor (LCA) queries between any two node3(ih) time as in [13]. Also, we preproceds,
so that for each node, we know its depthi(v) in T,, or equivalently the number af’s on the path from
to the root tov. Also, we preproces¥ by constructing an Euler tour (in-order traversal of the tree but we
explicitly write down the node ID each time we visit it), writing down in an arfayhe sequence of node
IDs that are encountered as well as the symbol on the edge leading to that node. It is easy to see that each
nodew in T has a leftmost and a rightmost positionfihcorresponding to the first and the last timevas
visited; we denote these &g andR,, resp.

We can think of the query as countiags labeling edges on the path i from the root to the node
given by that parse. We do not want to spend time linear in the length of the parse because that is prohibitive.
Our approach is to find the deepest edgey) on the path ta: that is labeledx. Then, we would be able
to read offd(y) that has been precomputed. We find the e@dge) as follows. We determine the closest
occurrencez of « on the Euler tour to the left of,,. Similarly, we determine the closest occurremnasf
«a to the right of R(u). Each of this take®)(loglog V) time using the van Emde Boas structure. Now our
central claim is:LC A(a, b) in T, givesy for u. The proof involves case analyis which we omit here. i

Theorem 22Given vector’ over alphabek with LZ78 C'(w') under a plausible implementation, one can,
intime O(|C(w")]), construct ank’ of size|R’| < o(|C(w")]), such thatC'(w’) together withR’ constitute
a symbol-range-count structure with query tifieg(N)|2])°0).

Proof. The proof assumes thét(w) itself supports the following operations:
e Given a pointer into the decompression trie, find a pointer to the parent iriime

e Given a trie node: that corresponds to the end of some parséind, in timeO(1), the node that
corresponds to the end of the next parse.

These are plausible assumptions abouZ@8 implementation. We omit the details of the algorithm engi-
neering involved in decimation. |

14

References

[1] A. Aboulnaga and S. Chaudhuri. Self-Tuning Histograms: Building Histograms Without Looking at
Data. Proc. ACM SIGMOD, 1999.

[2] S. Acharya, P. Gibbons, V. Poosala, S. Ramaswamy. The Aqua Approximate Query Answering System.
SIGMOD Conference 1999: 574-576.

[3] O.Berkman and U. Vishkin. Finding level-ancestors in trees. Journal of Computer and System Sciences,
48 (2), 1994, 214 - 230.

[4] N. Bruno, S. Chaudhuri and L. Gravano STHoles: A Multidimensional Workload-Aware Histogram.
Proc. ACM SIGMOD 2001.

[5] C. Chen and N. Roussopoulos. Adaptive selectivity estimation using query feedback. SIGMOD 1994.
[6] P. Ferragina, G. Manzini. Opportunistic Data Structures with Applications. FOCS 2000: 390-398.

[7] V. Ganti, M. Lee and R. Ramakrishnan. ICICLES-Self-tuning samples for approximate query answer-
ing. VLDB, 2000.

[8] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan and M. Strauss. Fast, small-space algorithms
for approximate histogram maintenance. STOC 2002: 389-398

[9] S. Guha. A note on wavelet optimization. 2004. http://www.cis.upenn.edu/ sudipto/notes/wavelet.pdf.gz

[10] S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Histogramming Data Streams with Fast Per-ltem
Processing. Proc 29'th ICALP, 681-692, 2002.

[11] S. Guha, N. Koudas. Approximating a Data Stream for Querying and Estimation: Algorithms and
Performance Evaluation. ICDE 2002: 567-

[12] S. Guha, N. Koudas, K. Shim. Data-streams and histograms. STOC 2001: 471-475. See also the journal
version available at http://www.cis.upenn.edu/ sudipto/mypapers/histjour.pdf.gz.

[13] D. Harel, R. Tarjan. Fast Algorithms for Finding Nearest Common Ancestors. SIAM J. Comput. 13(2):
338-355 (1984).

[14] Y. loannidis. The history of histograms (abridged). Proc. VLDB 2003.

[15] Y. loannidis, S. Christodoulakis. Optimal Histograms for Limiting Worst-Case Error Propagation in
the Size of Join Results. ACM Trans. Database Syst. 18(4): 709-748 (1993).

[16] Y. loannidis, V. Poosala. Balancing Histogram Optimality and Practicality for Query Result Size Esti-
mation. SIGMOD Conference 1995: 233-244.

[17] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, T. Suel. Optimal Histograms with
Quality Guarantees. VLDB 1998: 275-286.

[18] E. Keogh, K. Chakrabarti, S. Mehrotra, M. Pazzani. Locally Adaptive Dimensionality Reduction for
Indexing Large Time Series Databases. SIGMOD Conference 2001.

15

[19] A. Konig and G. Weikum. Combining Histograms and Parametric Curve Fitting for Feedback Driven
Query Result Size Estimation. Proc. VLDB, 1999.

[20] Y. Matias and D. Urieli. Optimal workload-based wavelet synopses, TR-TAU, February (revised, July),
2004. Also, ICDt 2005.

[21] Y. Matias and D. Urieli. Optimal wavelet synopses for range-sum queries, TR-TAU, July, 2004.

[22] S. Muthukrishnan. Data stream algorithms and applications. http:
www.cs.rutgers.edu/ muthu/stream-1-1.ps. 2003.

[23] S. Muthukrishnan and M. Strauss. Rangesum histograms. ACM SODA 2003. 233-242.

[24] S. Muthukrishnan. Nonuniform sparse approximation theory with Haar wavelets. DIMACS Technical
Report, 2004.

[25] V. Poosala. Histogram-based estimation techniques in database systems. Ph. D. Thesis, Univ of Wis-
consin, 1997.

[26] L. Qiao, D. Agrawal, A. El Abbadi. RHist: adaptive summarization over continuous data streams.
CIKM 2002: 469-476.

[27] M. Stillger, G. Lohman, V. Markl and M. Kandil. LEO - DB2’s Learning Optimizer. VLDB 2001,
19-28.

[28] P.van Emde Boas. Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space. Inf.
Process. Lett. 6(3): 80-82 (1977).

[29] J. Ziv, A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE Transactions on
Information Theory 23(3): 337-343 (1977).

[30] J. Ziv, A. Lempel. Compression of Individual Sequences via Variable-Rate Coding. IEEE Transactions
on Information Theory 24(5): 530-536 (1978).

16

