
A Perspective on Component Refinement
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Abstract. This paper provides an overview of an approach to coalge-
braic modelling and refinement of state-based software components, sum-
ming up some basic results and introducing a discussion on the interplay
between behavioural and classical data refinement. The approach builds
on coalgebra theory as a suitable tool to capture observational semantics
and to base an abstract characterisation of possible behaviour models for
components (from partiality to different degrees of non-determinism).

1 Introduction

In recent years component-based software development [46, 49] emerged as a
promising paradigm to deal with the ever increasing need for mastering com-
plexity in software design, evolution and reuse. However, as it happened before
with object-orientation, and software engineering in the broad sense, component-
orientation has grown up to a collection of popular technologies, methods and
tools, before consensual definitions and principles (let alone formal foundations)
have been put forward.

This paper focus on a particular corner of the ’componentware’ landscape.
A corner in which software components are regarded as specifications of state-
based modules, in the tradition of the so-called model oriented approach to formal
systems design — a widespread paradigm of which Vdm [23], Z [45], B [1] and
Raise [47] are well-known representatives. In a series of papers, starting with [6]
and including [8, 7, 9], a coalgebraic characterisation of this sort of components
and a corresponding calculus was proposed. This approach defines components as
persistent units which encapsulate a number of services through public interfaces
and provide limited access to internal state spaces. Coalgebra theory [42] was
found a suitable tool to capture observational semantics and to base an abstract
characterisation of possible behaviour models for components (e.g., partiality
or (different degrees of) non-determinism). Such models are introduced in the
framework in a generic [5] way — i.e., as a parameter, in the form of a strong
monad in the component calculus. More recently in [29, 30] the framework was
extended from an equivalence to a refinement calculus, based on a weak form of
coalgebra morphism.

This paper provides an overview of this approach to component modelling
and refinement, summing up some basic results and introducing a discussion
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on the interplay between behavioural refinement, as introduced in [29, 30], and
classical data refinement [18, 35] applied to software components.

Section 2 motivates the use of coalgebras in component modelling and reviews
the component calculus introduced in [8, 7]. This paves the way for a detailed
discussion of component refinement at both the behavioural and data levels in
sections 3 and 4, respectively. Finally, section 5 introduces some recent research
concerns on this topic.

2 Coalgebraic Models for Software Components

2.1 Coalgebras

One of the most elementary models of a software component, or of any compu-
tational process whatsoever, is that of a function

f : O ←− I

which specifies a deterministic transformation rule between two structures I
and O. In a (metaphorical) sense, this may be dubbed as the ‘engineer’s view’
of reality: here is a recipe (a tool, a technology) to build gnus from gnats.

Often, however, reality is not so simple. For example, one may know how to
produce ‘gnus’ from ‘gnats’ but not in all cases. This is expressed by observing
the output of f in a more refined context: O is replaced by O + 1, where 1
denotes the singleton datatype and + is datatype sum or coproduct. Then f is
said to be a partial function. In other situations one may recognise that there
is some environmental (or context) information about ‘gnats’ that, for some
reason, should be hidden from input. It may be the case that such information
is too extensive to be supplied to f by its user, or that it is shared by other
functions as well. It might also be the case that building gnus would eventually
modify the environment, thus influencing latter production of more ‘gnus’. For
U a denotation of such context information, the signature of f becomes1

f : (O × U)U ←− I

A function computed within a context is often referred to as ‘state-based’,
in the sense the word ‘state’ has in automaton theory — the internal memory
of the automaton which both constraints and is constrained by the execution
of actions. In fact, the ‘nature’ of f as a ‘state-based function’ is made more
explicit by rewriting its signature as

f : (O × U)I ←− U

This, in turn, may suggest an alternative computational model, which (again in
a metaphorical sense) one may dub as the ‘natural scientist’s view’. Instead of

1 In the sequel we often adopt the standard mathematical notation BA for funtional
dependency, instead of the equivalent [A→ B] more familiar in computing.
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a recipe to build ‘gnus’ from ‘gnats’, we are left with the awareness that there
exist gnus and gnats and that their evolution can be observed.

The able ‘natural scientist’ will equip herself with the right ‘lens’ — that
is, a tool to observe with, which necessarily entails a particular shape for ob-
servation. The basic ingredients required to support such an ‘observational’, or
‘state-based’, view of computational processes may be summarised as follows:

a lens: ©_© (a functor T)

an observation structure: ©_© universe
p←− universe (a T-coalgebra)

Technically, in the category Set of sets and set-theorectical functions, a coalgebra
for a functor T is a set U , which corresponds to the object being observed (the
carrier), and a function p : T U ←− U 2.

There is, of course, a great diversity of ‘lenses’ and, for the same ‘lens’, a va-
riety of observation structures, i.e., of coalgebras. Moreover, such structures can
be related and compared. This entails the need for a notion of homomorphism,
i.e., a map which preserves the shape of T as an observation tool. Therefore,
a T-coalgebra morphism h between, say, coalgebras p and q is just a function
between the respective carriers making the following diagram to commute:

U
p //

h

��

T U

T h

��
V q

// T V

Let us consider some possible lenses. An extreme case is the opaque lens:
no matter what we try to observe through it, the outcome is always the same.
Formally, such a lens is the constant functor 1 which maps every object to the
singleton set 1 and every morphism to the identity on 1. Since 1 is the final object
in Set, all 1-coalgebras reduce to ! — the canonical function to 1. A slightly more
interesting lens is 2, which allows states to be classified into two different classes:
black or white. This makes it possible to identify subsets of the ‘universe’ U under
2 The dual perspective emphasises the possibility of at least some (essentially finite)

things being not only observed, but actually built. In this case, one does not work
with a ‘lens’ but with a ‘toolbox’. The assembly process is specified in a similar (but
dual) way:

a tool box :
eee

(a functor T)

an assembly process: artifact
d←−

eee
artifact (a T-algebra)
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observation, as an observation structure p for this functor maps elements of U
to one or another element of 2. Should an arbitrary set O be chosen to colour
the lens, the possible observations become more discriminating. A coalgebra for
O is a ‘colouring’ device in the sense that elements of the universe are classified
(i.e., regarded as distinct) by being assigned to different elements of O.

Thus, a ‘colour set’ as 1, 2 or O above, can be regarded as a classifier of the
state space. Coalgebras, for such constant functors, are pure observers providing
a limited access to the state space by mapping it into the ‘colour set’ — or
attributes, as they are known in object-oriented programming.

A common assumption on state-based components is that the state itself is
a ‘black box’: it may evolve either internally or as a reaction to external stimuli,
but the only way of tracing such an evolution is by observing the values of
its attributes. Under this assumption the ‘transparent’ lens is not particularly
useful. Technically, it corresponds to the identity functor Id. An observation
structure for Id amounts to a function p : U ←− U . This means that, by using p,
the state U can indeed be modified, an ability we hadn’t before. But, on the other
hand, the absence of attributes makes any meaningful observation impossible.
The best we can say, if no direct access to U is allowed, is just that things happen.
A better alternative is to combine attributes with such state modifiers, or update
operations, to model the ‘universe’ evolution. The latter will be called actions
here; in the object paradigm they are known as methods. Such a combination
leads to a richer stock of lens. We might consider, for example, that

– things happen and disappear : T U = U + 1
– things happen and, in doing so, some of their attributes become visible, i.e.,

(non trivial) output is produced: T U = U ×O

– additional input is required for an observation to take place: T U = U I

– we are not completely sure about what has happened, in the sense that the
evolution of the system being observed may be nondeterministic. In this case,
the lens above can be combined with T U = PU where PU is the finite
powerset of U .

In the second example, the action also has an input interface. Typically, actions
over the same state space cannot happen simultaneously and, therefore, if more
than one is specified in a particular structure, in each execution the input sup-
plied will also select the action to be activated. In some cases, the input is there
only for selection purposes: actions with trivial input (i.e., I = 1) correspond
to buttons that can be pressed. Then the input interface organises itself as a
coproduct. Attributes, on the other hand, can be inspected in parallel. In other
cases still we might be intereseted in methods which not only change the in-
ternal state of a component but also produce an observable output. Putting all
the ingredients together we arrive at the following functor as a possible shape
for software components modelled as coalgebras:

T = A× (Id×O)I (1)
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where A = Πk∈KAk stand for the product of the attribute types and I =∑
j∈J Ij and O =

∑
j∈J Oj correspond to the coproduct of, respectively, input

and output parameters of the component operations.
Functor T can still be enriched with a specification of a particular beha-

vioural model to which components may stick to. Notice the use of the maybe or
the powerset monads above to capture such models. Therefore functor T in (1)
becomes parametric on an arbitrary strong monad3 B, leading to coalgebras for

T = A × B(Id×O)I (2)

as a possible general model for state based software components. Therefore com-
putation of an action will not simply produce an output and a continuation
state, but a B-structure of such pairs. The monadic structure provides tools to
handle such computations. Unit (η) and multiplication (µ), provide, respectively,
a value embedding and a ‘flatten’ operation to reduce nested behavioural effects.
Strength, either in its right (τr) or left (τl) version, cater for context information.

Several possibilities can be considered for B. The simplest case is, obviously,
the identity monad, Id, whereby components behave in a totally deterministic
way. Other possibilities capturing more complex behavioural features, include
the maybe monad (B = Id + 1) for partiality, the (finite) powerset (B = P) or
sequence (B = Id∗) monads for (arbitrary or ordered) non determinism or the
bag monad 4 to model cases in which among the possible future evolutions of a
component, some are stipulated to be more likely (cheaper, more secure, etc.)
than others (see [8] for further details on the use of monads in a calculus of
generic behaviour models).

2.2 Components

Building on the discussion above, this subsection introduces component’s spe-
cifications as coalgebras and gives a glimpse of the resulting calculus. Without a
major loss of generality, however, we shall concentrate in this text on coalgebras
for

T = B(Id×O)I (3)
3 A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η and

µ are strong natural transformations [26]. B being strong means there exist natural
transformations T(Id × −) : T × − ⇐= T × − and T(− × Id) : − × T ⇐= − × T,
called the right and left strength, respectively, subject to certain conditions. Their
effect is to distribute the free variable values in the context “−” along functor B.
Strength τr, followed by τl maps BI×BJ to BB(I×J), which can, then, be flattened
to B(I × J) via µ. In most cases, however, the order of application is relevant for
the outcome. The Kleisli composition of the right with the left strength, gives rise
to a natural transformation whose component on objects I and J is given by δr =
τrI,J • τlBI,J Dually, δl = τlI,J • τrI,BJ . Such transformations specify how the monad
distributes over product and, therefore, represent a sort of sequential composition of
B-computations.

4 defined over a structure 〈M,⊕,⊗〉, where both ⊕ and ⊗ are Abelian monoids, the
latter distributing over the former.
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therefore ommiting the attribute’s part in (2). Notice that, for B = Id, such
coalgebras correspond to classical Mealy machines [27]. In general a component
specification is defined as follows, where a collection of sets I, O, ..., acting as
component interfaces is assumed.

Definition 1. A software component is specified by a pointed coalgebra

〈up ∈ Up, ap : B(Up ×O)I ←− Up〉 (4)

where up is the initial state, often referred to as the seed of the component com-
putation, and the coalgebra dynamics is captured by currying a state-transition
function ap : B (Up ×O)←− Up × I.

An elementary, but typical, example of a state based component is given by
the following specification of a buffering device which provides services to store
and deliver messages.

Example 1 Denoting by U its internal state, a buffer for messages of type M
is handled through operations

put : U ←− U ×M

pick : U ×M ←− U

An alternative, ‘black box’ view hides U from the component’s environment and
regards each operation as a pair of input/output ports. Such a ‘port’ signature
of, e.g., the pick operation is given by

pick : M ←− 1

The intuition is that pick is activated with the simple pushing of a ‘button’ (its
argument being the buffer private state space) whose effect is the production of
a M value in the corresponding output port. Similarly typing put as

put : 1←−M

means that an external argument is required on activation but no visible output
is produced, but for a trivial indication of successful termination. Such ‘port’ sig-
natures are grouped together in the diagram below. Note how input (respectively,
output) ‘ports’ are represented by the sum of their parameters. Such sums label
the buffer input (respectively, output) point represented by an empty (respect-
ively, full) circle in the diagram. Combined input type M + 1 models the choice
between the two functionalities.
One might capture Store dynamics by a function aStore : P(U ×O) ←− U ×
I which describes how Store reacts to input stimuli, produces output data (if
any) and changes state. This can also be written in a curried form as aStore :
P(U ×O)I ←− U that is, as a coalgebra of signature U ←− T U where functor
T captures transition ‘shape’:

T = P(Id×O)I (5)
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(
put : 1←−M

pick : M ←− 1
•

��	�

��
Store

O = 1 + M

I = M + 1

Fig. 1. The Store component.

Built in this ‘shape’ is the possibility of non deterministic evolution captured
by the finite powerset monad. Concretely, our first model for Store given below
assumes that messages are labelled by a time tag (provided by a clock function
ttag()) so that on the arrival of a pick request any message stored for more than
a specified time interval (ε) can be delivered. Let U = P(M × T ), where T stands
for a suitable representation of time, be its state space. Then,

aStore〈u, put m〉 = {〈u ∪ {〈m, ttag()〉}, ι1 ∗〉}
aStore〈u, pick〉 = {〈u \ {〈m, t〉}, ι2 m〉| 〈m, t〉 ∈ u ∧ t− ttag() ≥ ε}

where put m and pick abbreviate ι1 m and ι2 ∗, respectively.

Components can be regarded as arrows between (input/output) interfaces
and therefore arrows between components are arrows between arrows. Formally,
these three notions — interfaces, components and component morphisms —
lead to the notion of a bicategory 5 as a possible mathematical universe for
components to live. In brief, we take interfaces as objects of a bicategory Cp,
whose arrows are pointed T-coalgebras and 2-cells, the arrows between arrows,
the corresponding morphisms. Formally,

Definition 2. Assume arbitrary sets as Cp objects. For each pair 〈I,O〉 of ob-
jects, define a category Cp(I,O), whose arrows

h : 〈uq, aq〉 ←− 〈up, ap〉 Up
ap //

h

��

T Up

TB h

��
Uq

aq

// T Uq

5 Basically a bicategory [11] is a category in which a notion of arrows between arrows
is additionally considered. This means that the the space of morphisms between any
given pair of objects, usually referred to as a (hom-)set, acquires itself the structure
of a category. Therefore arrow composition and unit laws become functorial, since
they transform both objects and arrows of each hom-set in an uniform way.
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satisfy the following morphism and seed preservation conditions:

aq · h = T h · ap (6)
h up = uq (7)

Composition is inherited from Set and the identity 1p : p←− p, on component p,
is defined as the identity idUp on the carrier of p. Next, for each triple of objects
〈I,K,O〉, a composition law is given by a functor

;I,K,O : Cp(I,O)←− Cp(I,K)× Cp(K, O)

whose action on objects p and q is given by

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉

where ap;q : B(Up × Uq ×O)←− Up × Uq × I is detailed as follows

ap;q = Up × Uq × I
∼=−−−−→ Up × I × Uq

ap×id−−−−→ B(Up ×K)× Uq

τr−−−−→ B(Up ×K × Uq)
∼=−−−−→ B(Up × (Uq ×K))

B(id×aq)−−−−−−→ B(Up × B(Uq ×O)) Bτl−−−−→ BB(Up × (Uq ×O))
∼=−−−−→ BB(Up × Uq ×O)

µ−−−−→ B(Up × Uq ×O)

The action of ; on 2-cells reduces to h ; k = h× k. Finally, for each object K,
an identity law is given by a functor

copyK : Cp(K, K)←− 1

whose action on objects is the constant component 〈∗ ∈ 1, acopyK
〉, where acopyK

=
η1×K . Slightly abusing notation, this will be also referred to as copyK . Similarly,
the action on morphisms is the constant morphism id1.

2.3 A Component Calculus

The fact that, for each strong monad B, components form a bicategory amounts
not only to a standard definition of two basic combinators ; and copyK of a pos-
sible component calculus, but also to setting up its laws in the form of bisimula-
tion equations. Therefore, the existence of a seed preserving morphism between
two components makes them TB-bisimilar, leading to the following laws, for
appropriately typed components p, q and r:

copyI ; p ∼ p ∼ p ; copyO (8)
(p ; q) ; r ∼ p ; (q ; r) (9)

In previous papers [8, 7, 9] we have proposed an algebra of T-components
parametric on a behaviour model B. The development of such a calculus starts
from the simple observation that functions can be regarded as particular ins-
tances of components, whose interfaces are given by their domain and codomain
types. Formally,
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Definition 3. A function f : B ←− A is represented in Cp by

pfq = 〈∗ ∈ 1, apfq〉

i.e., a coalgebra over 1 whose action is given by the currying of

apfq = 1×A
id×f // 1×B

η(1×B) // B(1×B)

The pre- and post-composition of a component with Cp-lifted functions can
be encapsulated into an unique combinator, called wrapping, which is reminiscent
of the renaming connective found in process calculi (e.g., [31]). Let p : O ←− I be
a component and consider functions f : I ←− I ′ and g : O′ ←− O. Component
p wrapped by f and g, denoted by p[f, g] and typed as O′ ←− I ′, is defined by
input pre-composition with f and output post-composition with g. Formally,

Definition 4. The wrapping combinator is a functor

−[f, g] : Cp(I ′, O′)←− Cp(I,O)

which is the identity on morphisms and maps component 〈up, ap〉 into 〈up, ap[f,g]〉,
where

ap[f,g] = Up × I ′
id×f−−−−→ Up × I

ap−−−−→ B(Up ×O)
B(id×g)−−−−−→ B(Up ×O′)

Three tensor products are also introduced in the calculus to model choice
(�), concurrent (�) and parallel composition (�). The latter is detailed below
for illustration purposes.

Parallel composition, denoted by p�q, corresponds to a synchronous product:
both components are executed simultaneously when triggered by a pair of legal
input values. The behavioural effect, captured by monad B, propagates. For
example, if B expresses component failure and one of the arguments fails, product
fails as well. Formally,

Definition 5. The parallel combinator � is defined as I�J = I×J on objects
and a family of functors

�IOJR : Cp(I × J,O ×R)←− Cp(I,O)× Cp(J,R)

which yields
p � q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

where

ap�q = Up × Uq × (I × J)
∼= // Up × I × (Uq × J)

ap×aq // B (Up ×O)× B (Uq ×R)
δl // B (Up ×O × (Uq ×R))
∼= // B (Up × Uq × (O ×R))

and maps every pair of arrows 〈h1, h2〉 into h1 × h2.
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A generic form of component interaction is achieved by a generalization of
sequential composition, leading to a family of hook combinators which forces
part of the output of a component to be fed back as input. For components
with the same input/output type, the hook combinator has a particularly simple
definition as the Kleisli composition of the original coalgebra. Formally,

Definition 6. Let p : Z ←− Z. Define

p �: Z ←− Z = 〈up ∈ Up, ap�〉

where

ap� = Up × Z
ap // B(Up × Z)

Bap // BB(Up × Z)
µ // B(Up × Z)

i.e., ap� = ap • ap,

The following example illustrates the use of some component combinators
to connect elementary state-based specifications. The component to be built is
known as the game of life, a simple model of cellular behaviour which has been
popularised as a common screen locker for computers.

Example 2 The game is based on a grid of cells each of which sends and receives
elementary stimulus to and from its four adjacent neighbours. A stimulus is a
Boolean value indicating whether the cell is either ‘alive’ or ‘dead’. The following
few rules govern the survival, death and birth of cell generations:

– Each living cell with less than two or more than three living neighbours dies
in the next generation.

– Each dead cell with exactly three living neighbours becomes alive.
– Each living cell with less than two or three living neighbours survives until

the next generation.

Each cell will be specified as a component Cell whose input is a tuple of four
Boolean values, each one to be supplied by one of the four adjacent cells. The
cell reacts to such a stimulus by computing its new state — ‘dead’ or ‘alive’ —
and by making it available as an output to its neighbours, used to compute the
next cell generation. Formally, we define

Cell : 2←− 2× 2× 2× 2 = 〈true ∈ 2, aCell〉

where

aCell 〈u, t〉 = let n = living t

in


〈false, false〉 if u = true ∧ (n < 1 ∨ n > 3)
〈true, true〉 if u = false ∧ n = 3)
〈u, u〉 otherwise

Function living above, counts the number of living stimuli (i.e., the number of
true values) in a four Boolean tuple. So, UCell = 2 and B = Id. The game’s
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behaviour is, of course, deterministic and all cells in the grid react simultaneously
to produce the new generation. To form a grid of n cells we simply connect them
using the parallel combinator �. The crucial point is to devise a wiring scheme
to guarantee that the joint output of the n connected cells is appropriately fed
back. The composed system is pictured below, where component

Bus : 24n

←− 2n

concentrates and correctly distributes the output.
The n cells are organised as a fully connected matrix of k rows and l columns

(n = k× l), so that the neighbours of cell 〈i, j〉 are 〈i− 1, j〉, 〈i + 1, j〉, 〈i, j − 1〉
and 〈i, j + 1〉 (in the ‘west’, ‘east’, ‘north’ and ‘south’ directions, respectively)
computed in the k and l rings (i.e., 1−1 = k, k+1 = 1 and 1−1 = l, l+1 = 1).

•

��	�

��
2n

Cell � Cell � · · ·� Cell

24n

•

��	�

��
Bus

24n

  
  
  
  

To specify Bus we adopt the following convention: the first cell in the �-expression
has coordinates 〈1, 1〉, second is 〈1, 2〉 and so on until column n is reached; the
next cell is then 〈2, 1〉. Under this convention the output produced by cell 〈i, j〉
is selected from the global output tuple as the j + (n× (i− 1))-projection, i.e.

out〈i,j〉 : 2n −→ 2

out〈i,j〉 = πj+(n×(i−1))

Now, the input to cell 〈i, j〉 is simply the split of the outputs of its neighbours,
i.e.,

in〈i,j〉 : 2n −→ 24

in〈i,j〉 = 〈out〈i,decnj〉, out〈decni,j〉, out〈i,incnj〉, out〈incni,j〉〉
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where decnx = (x = 1 → n, x − 1) and incnx = (x = n → 1, x + 1). Finally,
Bus is defined as the lifting of the split

w = 〈in〈i,j〉 | i, j ∈ 1..n〉

The game of life component is then written as

GameLife = ((Cell � Cell � · · ·� Cell) ; Bus) �

where

Bus = pwq

Note how the hook combinator is responsible for extending the game’s behaviour
to the infinite, once the component has been stimulated with an initial input.

3 Behavioural Refinement

3.1 Component’s Behaviour and Bisimulation

Successive observations of (or experiments with) a T-coalgebra p reveals its be-
havioural patterns. These are defined in terms of the results of the observers as
recorded in the shape T. Then, just as the initial algebra is canonnically defined
over the terms generated by successive application of constructors, it is also pos-
sible to define a canonical coalgebra in terms of such ‘pure’ observations. Such a
coalgebra is the final object in CT, if it exists, and will be denoted by outT over
carrier νT.

Being final means that there exists a unique morphism to outT from each
other coalgebra 〈U, p〉. This is called the coinductive extension of p [48] or the
anamorphism generated by p [28], and written as [(p)]T or, simply, [(p)], if the
functor is clear from context. In other words, an anamorphism is defined as the
unique function making the following diagram to commute:

νT
outT // T νT

U
p //

[(p)]T

OO

T U

T [(p)]T

OO

or, alternatively, by the following universal law:

k = [(p)]T ⇔ outT · k = T k · p (10)

For each u ∈ U , [(p)]T u can be thought of as the (observable) behaviour of a
sequence of p transitions starting at state u. This explains yet another alternative
designation for an anamorphism: unfold [14]. On its turn, u in [(p)]T u, is called
the seed of the anamorphism.
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As in the algebraic case, the existence part of the universal property (i.e.,
the implication from left to right) provides a definition principle for (circular)
functions to the final coalgebra which amounts to equip their source with a
coalgebraic structure specifying the ‘one-step’ dynamics. Then the correspond-
ing anamorphism gives the rest. In other words, such functions are defined by
specifying their output under all different observers. The uniqueness part (i.e.,
the reverse implication), on the other hand, offers a powerful proof principle —
coinduction.

Agreeing with the intuition that the final coalgebra is the coalgebra of all
behaviours, observational equivalence can be defined as

u∼ v ⇐⇒ [(p)] u = [(q)] v (11)

for u and v in the carriers of coalgebras 〈U, p〉 and 〈V, q〉, respectively. The notion
of a bisimulation, which is central in coalgebra theory [42], entails a local proof
theory for observational equivalence. Informally, two states of a T-coalgebra (or
of two different T-coalgebras) are related by a bisimulation if their observation
produces equal results and this is maintained along all possible transitions. I. e.,
each one can mimic the other’s evolution. Originally the notion of bisimulation,
which can be traced back to [44] and [12], was introduced in the context of pro-
cess calculi in Park’s landmark paper [38]. Later [2] gave a categorical definition
which applies, not only to the kind of transition systems underlying the opera-
tional semantics of process calculi, but also to arbitrary coalgebras. Bisimulation
acquired a shape: the shape of the chosen observation interface T.

A notion of refinement should also be shaped by T. Intuitively component
p is a behavioural refinement of q if the behaviour patterns observed from p
are a structural restriction, with respect to the behavioural model captured by
monad B, of those of q. To make precise such a ‘definition’ we shall first describe
behaviour patterns concretely as generalized transitions.

3.2 Refinement

Just as transition systems can be coded back as coalgebras, any coalgebra 〈U,α :
TU ←− U〉 specifies a (T-shaped) transition structure over its carrier U . For
extended polynomial Set endofunctors6 such a structure may be expressed as a
binary relation α←−: U ←− U , defined in terms of the structural membership
relation (which is an instance of generic datatype membership [19]) ∈T: U ←−
T U , i.e.,

u′ α←− u ≡ u′ ∈T α u

or, in an equivalent but pointfree formulation which often simplifies formal reas-
oning, as the following relational equality7

6 The class inductively defined as the least collection of functors containing the identity
Id and constant functors K for all objects K in the category, closed by functor
composition and finite application of product, coproduct, covariant exponential and
finite powerset functors.

7 In the sequel both functional and relational composition will be denoted by the same
symbol · given that the former is just a special case of the latter.
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α←− = ∈T ·α
where ∈T is defined by induction on the structure of T:

x ∈Id y iff x = y

x ∈K y iff false

x ∈T1×T2 y iff x ∈T1 π1 y ∨ x ∈T2 π2 y

x ∈T1+T2 y iff

{
y = ι1 y′ ⇒ x ∈T1 y′

y = ι2 y′ ⇒ x ∈T2 y′

x ∈TK y iff ∃k∈K . x ∈T y k

x ∈PT y iff ∃y′∈y. x ∈T y′

For any function h, relation ∈T satisfies the following naturality condition

h · ∈T = ∈T · T h (12)

which can be proved by induction on T. Applying shunting8 to the left to rigth
inclusion component of equation (12) leads to

∈T ⊆ h◦ · ∈T · Th (13)

The dynamics of a component p : O ←− I is based on functor B(Id × O)I .
Therefore a possible (and intuitive) way of regarding component p as a beha-
vioural refinement of q is to consider that p transitions are simply preserved in
q. For non deterministic components this is understood as set inclusion. But one
may also want to consider additional restrictions. For example, to stipulate that
if p has no transitions from a given state, q should also have no transitions from
the corresponding state(s). In any case the basic question is: how can such a
refinement situation be identified?

The general ‘recipe’ to identify a refinement situation is to look for an ab-
straction to witness it [18]. In other words: look for a morphism in the relevant
category, from the ‘concrete’ to the ‘abstract’ model such that the latter can
be recovered from the former up to a suitable notion of equivalence, though,
typically, not in a unique way. Component morphisms, however, are (seed pre-
serving) coalgebra morphisms which are known to entail bisimilarity. Actually
a T-coalgebra morphism h : β ←− α is a function from the state space of α to
that of β such that

Th · α = β · h (14)

Regarding α and β as (generalised) transition systems equation (14) becomes a
relational equality:

h · α←− = β←− ·h (15)

8 In the relational calculus [4] Galois connection f · R ⊆ S ≡ R ⊆ f◦ · S, involving
function f and arbitrary relations R and S, is known as the shunting rule. Also note
that notation R◦ stands for the converse of relation R.
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i.e., the conjunction of inclusions

h · α←− ⊆ β←− ·h (16)

β←− ·h ⊆ h · α←− (17)

which, by introducing variables and observing that by shunting inclusion (16)
can also be presented as α←− ⊆ h◦ · β←− ·h, takes the following more familiar
shape

u′ α←− u ⇒ h u′ β←− h u (18)
v′ β←− h u ⇒ ∃u′∈U . u′ α←− u ∧ u′ = h v′ (19)

They jointly state that, not only α dynamics, as represented by the induced
transition relation, is preserved by h (16), but also β dynamics is reflected back
over the same h (17). Is it possible to weaken the morphism definition to capture
only one of these aspects? In [29] this question got an afirmative answer, resorting
to the notion of a preorder ≤ on a Set endofunctor T introduced in [21]. Such a
preorder is defined as a functor ≤ in such a way that, for any function h : V ←−
U , Th preserves the order, i.e.

x1 ≤TX x2 ⇒ (Th) x1 ≤TY (Th) x2 (20)

or, in a pointfree formulation,

(Th)· ≤ ⊆ ≤ · (T h) (21)

Let us denote by
.
≤ the pointwise lifting of ≤ to the functional level, i.e.

f
.
≤ g ≡ ∀x. f x ≤ g x (22)

which can also be formulated in the following pointfree way as

f
.
≤ g ≡ f ⊆≤ ·g (23)

In [30] it is shown that, for any function h monotonic with respect to ≤ one has

f
.
≤ g ⇒ h · f

.
≤ h · g (24)

f
.
≤ g ⇒ f · h

.
≤ g · h (25)

In this context the main result in the above mentioned reference is the defin-
ition of a forward morphism h : β ←− α with respect to ≤ as a function from U
to V such that

T h · α
.
≤ β · h

and the proof that
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Lemma 1. For T an endofunctor in Set, T-coalgebras and forward morphisms
define a category. Moreover, forward morphisms preserve transitions if ≤ is com-
patible with the membership relation, i.e., for all x ∈ X and x1, x2 ∈ TX,

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2 (26)

or, in a pointfree formulation,

∈T · ≤ ⊆ ∈T (27)

Proof. We prove only the second part (see [30] for the full proof). Let h be a
forward morphism. Transition preservation follows from

α←−
= { definition }
∈T · α

⊆ { (13), monotonicity }
h◦ · ∈T · T h · α

⊆ { h forward entails Th · α ⊆≤ ·β · h, monotonicity }
h◦ · ∈T · ≤ · β · h

⊆ { compatibility with ∈T (27), monotonicity }
h◦ · ∈T · β · h

= { definition }
h◦ · β←− · h

ut

A preorder ≤ on an endofunctor T satisfying inclusion (27) will be referred
to, in the sequel, as a refinement preorder. Then, the existence of a forward
morphism connecting two components p and q witnesses a refinement situation
whose symmetric closure coincides, as expected, with bisimulation. Formally,

Definition 7. Component p is a behaviour refinement of q, written qEp, if there
exist components r and s and a (seed preserving) forward morphism h such that

q ∼ s r ∼ phoo

The exact meaning of a refinement assertion q E p depends, of course, on
the concrete refinement preorder ≤ adopted. But what do we know about such
preorders? Condition (27) provides an upper bound leading to a definition of
structural inclusion:

x⊆Id y iff ∀e∈Tx. e ∈T y (28)

Several other cases arise by suitable restrictions. For example,
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– Structural inclusion as defined above is too large to be useful in practice.
Actually its definition on a constant functor is the universal relation which
would make refinement blind to the outputs produced. This suggests an
additional requirement on refinement preorders for Cp components: their
definition on a constant functor K must be equality on set K, i.e., x ≤K

y iff x=K y so that transitions with different O-labels could not be related.
Note that refinement of non deterministic components based on this preorder
captures the classical notion of non determinism reduction.

– A ‘failure forcing’ variant —⊆E
T , where E stands for ‘emptyset’ — guarantees

that the concrete component fails no more than the abstract one. It is defined
as ⊆T by replacing the clause for the powerset functor by

x ⊆E
PT y iff (x = ∅⇒ y = ∅) ∧ ∀e∈x∃e′∈y. e⊆T e′

– For partial components refinement based on the preorders above collapse
into bisimilarity instead of entailing an increase of definition in the imple-
mentation side. An alternative is relation ⊆F

T (F standing for ‘failure’) which
adds a maybe clause

x ⊆F
T+1 y iff

{
x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ⊆T y′

x = ι2 ∗ ⇒ true

taking precedence over the general sum clause.

We end this section with a small example. The reader is referred to [30]
for a glimpse of a refinement calculus for state based components based on the
existence of forward morphisms.

Example 3 For an example of behavioural refinement consider a new specific-
ation of component Store which differs from the one in example 1 only in the
specification of operation pick. The idea is that instead of choosing the message to
be returned non deterministically from the set of messages waiting for more than
a specified ε delay, the operation selects the message in that set which is waiting
for a longer time. Formally, assuming function lwait computes such message, the
specification becomes

aStore〈u, pick〉 = let c = {〈m, t〉 ∈ u | t− ttag() ≥ ε}
in (c = ∅ → ∅, let 〈m, t〉 = lwait c in {〈u \ {〈m, t〉}, ι2 m〉})

where notation (φ → f, g) reads if φ then f else g. Clearly, the identity mor-
phism from this new coalgebra to the one in example 1 is a forward morphism
witnessing the former as a refinement of the latter.

4 Data Refinement

4.1 State Refinement

In the previous section component’s refinement was discussed at the behaviour
level based on a refinement preorder with respect to monad B. There is, however,
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another axis for refinement: the data level, which amounts to the static refine-
ment of the data structure which specifies the component state space. Data
refinement, as discussed in formal development methodologies such as Vdm [23],
is the process of transforming abstract data structures into more concrete ones,
a transformation which presumably entails efficiency (e.g., the conversion of in-
ductive data types into ‘pointer’-based representations).

Refinement of a component specification p into another specification q has to
fulfil a number of requirements. First of all, the existence of enough redundancy
in the state space of q to represent all the elements in p is required. This is called
in [23] the adequacy requirement and is captured by the definition of a surjection
from the state space of q to that of p, called the abstraction or retrieve map.
Next, substitution is regarded as ‘complete’ in the sense that (concrete) actions
in q accept all the input values accepted by the corresponding abstract ones, and,
for the same inputs, the results produced are also the same, up to the retrieve
map. If components are specified, as they usually are in Vdm, by pre and post-
conditions, this amounts to say that, under refinement, neither pre-conditions
are strengthened, nor post-conditions are weakened. Note this approach to data
refinement, which can be traced back to Hoare’s landmark paper [18], is usual
in model-oriented design methods, even though several variants and alternatives
have been proposed in the literature (see [41] for a recent account).

In this section we shall resort to Sets [34, 35] — a calculus of data represent-
ations, based on identical principles: any refinement is witnessed by a surjection
which, whenever partial, may induce a representation invariant on the concrete
side. Each concrete operation is then calculated (rather than ‘conjectured and
verified’ as in Vdm) by solving the corresponding refinement diagram.

The calculus consists of inequations of the form A ≤ B (read: data type B
refines or implements data type A) which witnesses the existence of an abstrac-
tion map abs from B to A with a right-inverse rep (called the representation
relation), i.e.,

A ≤ B iff A
rep

55≤ B

abs
uu such that abs · rep = idA (29)

Note that rep is injective because ker rep ⊆ ker abs◦ and ker abs◦ = img abs
which coincides with identity as abs is surjective9. Moreover if abs is partial,
the characteristic predicate of the codomain of relation rep defines the invariant
induced by the refinement process.

Clearly (see [35] for a proof), the refinement relation is a preorder and is
preserved by extended polynomial functors, i.e.,

A
rep

55≤ B

abs
uu ⇒ TA

T rep

44≤ TB

T abs
tt

(30)

9 Notation ker R (respectively, img R) stand for the kernel (respectively, image) of
relation R defined as ker R = R◦ · R (respectively, img R = R · R◦) [4].
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Example 4 A simple example of data refinement in the context of the Store
component is the implementation of its state space U = P(M × T ) as a finite
sequence of type (M × T )∗ with abs = elems, the function which returns the set
of elements of a list. Other representations for sets, including the notion of a
bag (which retains the unordered structure of set while keeping track of element
repetition) are recorded in the following inequations:

PA ≤ Nat ↼ A ≤ A∗ (31)

where notation B ↼ A stands for a partial function (also called a simple relation
in [4] or a mapping in specification methods like Vdm [23]) from A to B. An ele-
mentary example of a data refinement situation where the abstraction morphism
is not a function is the following representations of elements as ’pointers’:

A

rep=ι1

44≤ A + 1

abs=ι◦1

vv (32)

which, moreover, induce the concrete invariant φ = [true, false] over the imple-
mentation type. References [34, 35] and [36] provide several applications of this
calculus to the derivation of imperative programs and data base schemes.

Once the state space of a component p = 〈u ∈ U,α : TU ←− U〉 is refined
into, say, V a new component is defined over V , whose seed is given by abs u and
the dynamics β : TV ←− V computed as a solution to the following equation

α = Tabs · β · rep (33)

The basic result, from the point of view of a component calculus, is that data
refinement entails bisimilarity, i.e.,

Lemma 2. Components p and q as defined above satisfy p∼ q.

Proof. Consider the general case in which refinement U ≤ V , witnessed by abs
and rep, induces a concrete invariant φ over V , i.e., an inclusion i : V ←− Vφ.
Let also β′ denote the restriction of β to Vφ. The starting point is equation (33)
which defines the dynamics of q. The target is to show that absφ = abs · i is a
coalgebra morphism. I.e.,

α · absφ = Tabsφ · β′

≡ { absφ = abs · i}
α · abs · i = Tabs · Ti · β′

≡ { i is a coalgebra morphism, i.e., β · i = Ti · β′ }
α · abs · i = Tabs · β · i

⇒ { i is injective }
α · abs = Tabs · β
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⇒ { Leibniz equality }
α · abs · rep = Tabs · β · rep

≡ { abs · rep = id and (33)}
α = α

4.2 Shape Refinement

In the approach to component modelling discussed in this paper, interfaces are
encoded in the shape of functor T corresponding to the component’s service
signature. Therefore applying data refinement to this level may capture some
forms of interface enrichment. Consider, for example, the elementary cases of
adding an attribute or an operation to the shape of a (deterministic) component:

– adding an attribute at : B ←− X

A×X 22
(A×B)×X

abs=π1×id
tt

– adding an operation op : X ←− X ×B

XA
55X

A+B

abs=(·ι1)
vv

Now the interesting result is that refinement of the signature functor has a
counterpart at the behavioural level, i.e., the carriers of the corresponding final
coalgebras, which form the spaces of their behaviours, are also related by a data
refinement. Formally, we prove that the data refinement relation as introduced
above extends to coinductive types:

Lemma 3. Let T and G be extended polynomial functors. Then,

TX
rep

44≤ GX

abs
tt ⇒ νT

repν

44≤ νG

absν

tt (34)

where νT denotes the carrier of the final T-coalgebra. Moreover,

absν , [(abs · outG)]T and repν , [(rep · outT)]G

for abs and rep natural on X

Proof. We have to show that

[(abs · outG)]T · [(rep · outT)]G = id (35)
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in the context of the following diagram:

νG

outG

%%

[(abs·outG)]T

��

TνG
rep

11 GνG

absqq

νT
outT //

[(rep·outT)]G

XX

TνT
rep

11 GνT

absqq

Therefore10,

[(abs · outG)]T · [(rep · outT)]G = id

≡ { reflection for coinductive extension }
[(abs · outG)]T · [(rep · outT)]G = [(outT)]T

⇐ { fusion for coinductive extension }
abs · outG · [(rep · outT)]G = T[(rep · outT)]G · outT

≡ { cancellation for coinductive extension }
abs · G[(rep · outT)]G · rep · outT = T[(rep · outT)]G · outT

≡ { rep is natural}
abs · rep · T[(rep · outT)]G · outT = T[(rep · outT)]G · outT

≡ { hip }
T[(rep · outT)]G · outT = T[(rep · outT)]G · outT

Example 5 Another typical example is what could be called stream completion
induced by the following data refinement at the signature level:

1 + A×X 11
(A + 1)×X ∼= X + A×X

abs=!+id
rr

Note that the final coalgebra for the ’abstract’ shape is A∞, i.e., the space of finite
and infiinite sequences of A, whereas for the concrete case one gets (A+1)ω, i.e.,
10 The laws of reflection, cancellation and fusion stated below, in this order, and used

in the proof are standard results on coinduction easily derived from the universal
property (10) [15].

[(outT)] = idνT

outT · [(p)] = T [(p)] · p

[(p)] · h = [(q)] if p · h = T h · q
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streams of either elements of A or a mark ∗ ∈ 1. By the lemma above one may
easily conclude that A∞ ≤ (A+1)ω, a fact often used in coalgebraic specification
[22], where a finite sequence is extended to a stream by replication of a dummy
value.

5 Conclusions and Further Work

This paper provided an overview of an approach to refinement of (state-based)
components whose main theory has been developed in previous publications
(namely, [29, 30]). The integration of behaviour and data refinement and the
application of the latter to a form of interface enrichement is, however, new.

The main possible interest of this approach is its parametrization by a model
of behaviour captured by a strong monad B. This is generic enough to capture a
number of situations, depending on both B and the refinement preorder adopted.
Non determinism reduction is one possibility among many others. For example,
Poll’s notion of behavioural subtyping in [39], at the model level, also emerges as
another instantiation.

A note on related work is now in order. First of all two major influences
should be acknowledged. The first one relates to the use of a bicategorical set-
ting to capture the ‘two-level structure’ in component models which is in debt
to previous work by R. Walters and his collaborators on models for determin-
istic input-driven systems [24, 25]. The other is the recent area of coalgebraic
specification of object-oriented systems (see e.g., [40, 20]), which has been de-
veloped with a similar motivation, although in a property-oriented, or axiomatic,
framework.

An alternative, but related, approach to componentware is inspired by re-
search on coordination languages [17, 37] and favors strict component decoup-
ling in order to support a looser inter-component dependency. Here computation
and coordination are clearly separated, communication becomes anonymous and
component interconnection is externally controlled. This model is (partially) im-
plemented in JavaSpaces on top of Jini [33] and fundamental to a number of
approaches to componentware which identify communication by generic chan-
nels as the basic interaction mechanism — see, e.g., Reo [3], Piccola [43, 32],
as well as [16, 13] or [10].

The genericity of the approach described in this paper and its coalgebraic
basis seems promising, although a lot of work remains to be done. Among the
current research directions we would like to underline the following two.

Backwards refinement. Behavioural refinement was defined in section 3 in terms
of transition preservation, i.e., as a sort of T-shaped simulation witnessed by
what we have called forward morphisms. An alternative point of view is based
on the dual notion of backward morphisms, morphisms which verify

β · h
.
≤ T h · α (36)



23

In [29, 30] these are shown to form a category and to reflect transitions, in the
sense of equation (19), although possible applications to component refinement
are still to be developed.

Induced distribution. Several laws of data refinement split components’ state
space into a number of factors. Typical examples are laws whose purpose is
to factorize mappings with structured domains or codomains, heavily used in
the derivation of database implementations [36]. For example the following laws,
studied in [35], refine a mapping to either a sum or a product type into a product
of two mappings:

(B + C) ↼ A
33

≤ (B ↼ A)× (C ↼ A)

cojoin

ss

(B × C) ↼ A
33

≤ (B ↼ A)× (C ↼ A)

join

ss

where abstractions are defined as

cojoin = ∪ · ((ι1·)× (ι2·))
join = 〈 , 〉

where 〈R,S〉 = ∩·((π◦1 ·R)×(π◦2 ·S)), is a relational split [15]. Similarly relational
either witnesses the decomposition of a mapping from a sum type:

A ↼ (B + C)
33

≤ (A ↼ B)× (A ↼ C)

peither

ss

with

peither = [ , ]

where [R,S] = (R · ι◦1) ∪ (S · ι◦2).
The state space factorization underlying this sort of laws may lead to a si-

milar component factorization by aggregation of the original actions according
to the part of the state space they manipulate. This finds application in typi-
cal re-engineering processes in which clusters of related operations identified in
monolythic code are coupled together around specific state loci. The process is
suggested in the following diagram where data refinement induces the factor-
irization of the original component into two new ones which are composed in
parallel.
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•

��	�

��
C (B×C)↼A

•

��	�

��
C B↼A �

•

��	�

��
C C↼A

Our main current research concern is the study of a precise characterization
of this phenomonom. In particular, a suitable approach entails the need for re-
thinking interfaces in terms of decomposition of operations’ signatures into pairs
of input/output ports (as in e.g., [10]) providing a basis for the specification of
component usage as a transition structure over port names. In this context,
representation invariants induced by data refinement (notice that both join and
cojoin abstractions are partial) would generate aditional constraints over such
component usage specifications.
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