Statically Safe Program Generation with
SafeGen

Shan Shan Huang * David Zook * Yannis Smaragdakis **

Abstract

SafeGen is a meta-programming language for writing statically safe generators of
Java programs. If a program generator written in SafeGen passes the checks of the
SafeGen compiler, then the generator will only generate well-formed Java programs,
for any generator input. In other words, statically checking the generator guarantees
the correctness of any generated program, with respect to static checks commonly
performed by a conventional compiler (including type safety, existence of a super-
class, etc.). To achieve this guarantee, SafeGen supports only language primitives
for reflection over an existing well-formed Java program, primitives for creating pro-
gram fragments, and a restricted set of constructs for iteration, conditional actions,
and name generation. SafeGen’s static checking algorithm is a combination of tra-
ditional type checking for Java, and a series of calls to a theorem prover to check
the validity of first-order logical sentences constructed to represent well-formedness
properties of the generated program under all inputs. The approach has worked
quite well in our tests, providing proofs for correct generators or pointing out inter-
esting bugs.

1 Introduction

Program generators can play an important role in automating software engi-
neering tasks. A large amount of research has concentrated on meta-programming
tools for writing program generators and specializers more conveniently, more

* College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332 USA
**Department of Computer and Information Science, University of Massachusetts,
Ambherst, MA, 01003 USA

Email addresses: ssh@cc.gatech.edu (Shan Shan Huang),
dzook@cc.gatech.edu (David Zook), yannis@cs.umass.edu (Yannis
Smaragdakis).

Preprint submitted to Elsevier

efficiently, or more safely [3-6,8,14,26,28,30,33,34]. Nevertheless, such tools
have not enjoyed much practical adoption. Programming language designers
typically find meta-programming to be too unwieldy and undisciplined to be
added as a general-purpose language feature. Working programmers who rou-
tinely use and write generators seem to find that advanced meta-programming
infrastructure adds very little to what they can do with simple, text-based
tools. For instance, many tens of thousands of programmers worldwide use
code templates in the text-based XDoclet tool [27] to generate code for inter-
facing with J2EE application servers.

If a sophisticated meta-programming tool is to become mainstream, it should
offer significant value-added for the generator programmer, comparable to the
value added by high-level programming languages over assembly program-
ming. In this paper, we explore one possible direction towards adding such
value. We present SafeGen: a meta-programming language that offers static
guarantees on the correctness of the generator, yet is expressive enough for
many practical applications. That is, a generator written in SafeGen is ana-
lyzed statically and its correctness is examined under all possible legal inputs,
where the user specifies what constitutes a legal input. If the analysis succeeds,
the generator is guaranteed to only produce well-formed Java code. This ad-
dresses a common problem in generator development and a major reason why
meta-programming often appears too unwieldy and undisciplined: a generator
may have bugs that cause it to produce illegal programs but only under cer-
tain inputs. Such bugs can stay undetected for a long time and may only be
found by end users and not by the generator writer.

To achieve well-formedness guarantees, SafeGen has an easy-to-analyze lan-
guage for describing generators. SafeGen offers restricted syntax for describing
control flow, iteration, and name generation. Inputs to a SafeGen generator
are limited to legal Java programs. That is, SafeGen generates programs by
examining existing Java programs at a level comparable to that of Java reflec-
tion. All SafeGen reasoning is done in a logic that deals with program entities
that are normally exposed through Java reflection (e.g., methods of a class,
argument types of a method, etc.), as opposed to, say, integer numbers. In-
tuitively, this makes SafeGen ideal for XDoclet-like [27] tasks. For instance,
SafeGen is appropriate for going over an existing Java class and creating a
delegator, or wrapper, or interface, or GUI class that will work correctly with
the original class. In contrast, SafeGen is not appropriate for generation tasks
such as creating specialized versions of the FFT transformation for specific
matrix sizes and dimensions.

SafeGen statically checks the legality of code templates by combining tradi-
tional Java type checking algorithms with automated proofs of the validity of
logical sentences. That is, SafeGen expresses the structure of the generator as
a collection of first-order logic formulas, treated as axioms. Further axioms,

also in first-order logic, encode standard properties of Java at the static typing
level (e.g., the fact that a final class cannot be extended). Finally, correctness
conditions of the generator are described as first-order logic conjectures. Safe-
Gen uses an automated theorem prover, SPASS [32], to attempt to prove these
correctness conditions under all inputs, based on the axioms.

SafeGen’s contribution to the meta-programming research community is its
novel approach of combining logic on reflexive properties of valid programs
with program generation, to guarantee the legality of programs that do not
exist until the run-time of the generator. This general logic-based approach is
not specific to SafeGen’s current target language, Java, but could be adapted
to other settings. The approach makes SafeGen the only meta-programming
tool we know of that both guarantees at compile time of the generator the
type-correctness of the generated program, and allows generation of arbitrary
pieces of code (e.g., that can generate an unbounded number of new types
and variables, as well as references to them). SafeGen’s generation language
is highly expressive and useful for many program generation needs.

2 Motivation and Background

One can question whether static checking of a generator is a valuable feature.
After all, once the generator is used, the generated program will be checked
statically before it runs. So why try to catch these errors before the program
is even generated? The answer is that static checking is not intended to detect
errors in the generated program or even errors in the generator input, but
errors in the generator itself. Although these errors will be detected at compile-
time of the generated program, this is at least as late as the run-time of the
generator. Thus, static legality checking for generators is analogous to static
typing for regular programs. It is a desirable property because it increases
confidence in the correctness of the generator under all inputs (and not just
the inputs with which the generator was tested). To see the problem in an
example, consider a program generator that emits programs depending on
two input-related conditions: (We use MAJ [34] syntax: code inside a quote,
“[...], is generated. The unquote operator, #[...], is used to splice the
result of an evaluated expression inside quoted code.)

if (pred1()) emit(‘[int i;]);
if (pred2()) emit(‘[i++;]);
If, for some input, pred2() evaluates to true, while pred1() evaluates to

false (i.e., pred2() does not imply predi()), the generator can emit the
reference to variable i without having generated the definition of i. This

is an error in the generator. However, it might not surface until after the
generator writer has tested and widely deployed the generator. This error will
then be detected by an end user. It should be the responsibility of a good
meta-programming language to prevent such errors by statically examining
the generator.

The problem of guaranteeing the well-formedness of generated programs is
essentially a problem of analyzing the control-flow and data-flow of the gener-
ator. For instance, in the above code fragment, the question is whether there
is a valid program path that reaches the second emit statement without pass-
ing through the first. Similarly, consider a generator that introduces two new
names in the same lexical context:

emit(‘[int #[namel], #[name2];]);

For static well-formedness checking, we need to know that namel and name2
do not hold the same value (or we will end up with an illegal duplicate variable
definition in the generated program). This is a data-flow property.

We should note that an interesting special case of program generation al-
ready offers strong legality guarantees for generated programs. Specifically,
statically typed multi-stage languages, such as MetaML|28], MetaOCaml[8] or
MetaD[25] guarantee that the generated program is type-correct by statically
checking the generator. In this sense, these multi-stage languages represent
the state of the art in static safety checking of generators. Nevertheless, stag-
ing applies restrictions on the structure of the generator and prohibits the
expression of arbitrary generators. Both of our above code examples are not
possible in a multi-stage language. In the first example, identifiers in gener-
ated code (e.g., 1) cannot refer to generated variable definitions that are not
in an enclosing lexical scope inside the generator text. This is a drawback,
even if the final program is expressible in a multi-stage language: ideally, a
good meta-programming language should allow its user to express a generator
in the style the user finds most convenient. In the second example, it is not
possible in a multi-stage language to have the name of a generated defini-
tion vary depending on generator input. (Concretely, in MetaOCaml syntax,
we cannot write, say, .<let ."name:int = O in ."name + ."name)>. since
binding instances cannot be escaped. Similarly, we cannot escape a type, e.g.,
.<let i:."typename = 0 in i+i>.)

These restrictions mean that multi-stage languages are ideal for program spe-
cialization where the entire code to specialize is available, but not for program
generation where the generated program may be partial and may need to coop-
erate with other parts whose structure is not known until generator run-time.
For example, a common generation task for J2EE applications is to take as
input an arbitrary Java class and produce a Java interface that contains all of

the class’s public methods [29]. In this case, there is no code to specialize that
is statically known to the generator. If the generator is to reason about the
well-formedness of its output, it needs to do so using abstract properties of
yet-unknown program entities, such as “no two methods in the input class can
have the same type signatures”. This is exactly the kind of program generation
that SafeGen intends to support.! From a technical standpoint, the problem
is harder than multi-stage programming, since there are no restrictions as to
how the control and data-flow of the generator can influence the contents of
the generated program parts.

3 SafeGen Design

In this section we describe the main design of the SafeGen language. We first
give a high-level overview of SafeGen and then present the language in detail.

3.1 Quverview of the Approach

Before we discuss the specifics of the SafeGen language, we will offer a quick
example of what SafeGen can do, which will hopefully illuminate the role of
all the distinct language features described in detail in the next sections. As
we have not yet defined all the elements of SafeGen syntax and functionality,
we will appeal to the reader’s intuition for our example.

A basic, but not too interesting, SafeGen generator is the following:

#defgen MakeInterface (Class c) {
interface I {
#foreach(Method m : MethodOf(m,c)) { void #[m] (O; }
}
}

The above code defines a generator named “MakeInterface”. It accepts a Java
class as its argument. It generates an interface named I (this name may be hy-
gienically renamed at generator runtime if the generator is used multiple times
in the same lexical context, as we explain in Section 3.2.5). For each method of
the input class, the generator produces a void-returning, no-argument method
by the same name in the generated interface.

1 We expect that the general approach used in SafeGen could also apply to program
specialization tasks. Nevertheless, as mentioned earlier, SafeGen’s current input lan-
guage and reasoning engine is limited to reflection-like properties, and cannot apply
to, say, generating specialized numerical code for given array size and dimensions.

Although this generator is almost trivial, it is still challenging to determine
automatically whether it will output a valid interface for every input class. For
example, do all the declared methods have unique signatures? In its attempt
to prove that the generated code is well-formed, SafeGen relies on three kinds
of knowledge: assumptions about the input (in this example there are none
other than the fact that it is a well-formed Java class), general knowledge of
all well-formed Java programs (e.g., all well-formed Java classes have unique
method signatures), and knowledge about the output (in this case, that it is an
interface with methods named after the methods in the input class). SafeGen
represents all its knowledge and assumptions, as well as the well-formedness
properties that should hold in the output, in first-order logic sentences. It then
attempts to prove that these properties hold under the given assumptions, for
any possible input, by using the SPASS theorem prover to prove the validity
of first-order logic sentences. For instance, the following formula is part of
SafeGen’s knowledge about well-formed Java programs—it states that any
two members (either classes or interfaces) in a well-formed Java package have
different names. (We show here the formula in SPASS syntax in order to be
concrete about the level of interfacing with the theorem prover.)

formula(forall([cl, c2],
implies(and(wellformed(cl), wellformed(c2),
equal (DeclaringPackage(c1) ,DeclaringPackage(c2)),
not (equal(cl,c2))),
not (equal (Name (c1), Name(c2))))),
MEMBERS_IN_PACKAGE_DIFF_NAME) .

The following sentence states what SafeGen knows about the generated code,
in relation to the input. It says that there is a well-formed class c, and an
interface I, which has methods with the same name as the methods in the
class. Note that the sentence does not assert that the generated interface is
wellformed, but only that it exists:

exists([c],
and(class(c), wellformed(c),
exists([i], and(interface(i),
forall([m],
and (method(m), equal(DeclaringClass(m), c),
exists([m2],
and (method (m2) ,

equal (DeclaringClass(m2), i),
equal (Name (m) , Name(m2))))))))).

And finally, the following is a property that should hold for the generated
class. It states that generated methods cannot have the same name and type
signatures if they are in the same class.

forall([ml, m2],
implies(and(method(m1l),
method (m2),
equal (DeclaringClass(ml), DeclaringClass(m2)),
not (equal(ml, m2))),
not (and (equal (Name(m1), Name(m2)),
equal (Formals(ml) ,Formals(m2))))))

In fact, this conjecture cannot be proven for the above generator, MakeInterface.
All generated methods have the same signature and methods can have the
same names, since the same method name can be overloaded in the input
class, c. Therefore, in this example we see that the output is potentially ill-
formed.

3.2 Language Design

Figure 1 presents a formal syntax for SafeGen. We use the shorthand T to
represent a possibly empty sequence of T, where T is some syntactical entity.
We also use IDENT to represent any legal Java identifier. For clarity, we use
G_NAME to indicate generator name, and P_NAME to indicate predicate name.
Both are simply identifiers, as shown by the last two rules. We use (...)7 to
indicate that there can be either zero or one occurrences of the construct
represented by “...”.

SafeGen can be thought of as two languages (and thus two syntaxes), with con-
structs for passing control back and forth between the two. There is the meta-
language, which allows for the definition of generators and meta-variables, pro-
vides constructs for directing the control and data flow of the generator and
for abstracting values from meta-variables that can be used in the code to be
generated. Then there is the object-language for defining the code templates—
code to be generated when the generator is run. The object-language is essen-
tially Java, with additional “escape” operators for passing control back into
the generator. Most of the rules in Figure 1 are defined for the meta-language.
The only syntax rule for the object language is CODE_TEMPLATE. It is simply
the Java syntax (as defined by the Java Language Specification [15]), with
the addition of three “escape” operators. We elided the exact definition of
where the escape operators are allowed in the Java syntax for brevity. How-
ever, this should become clear in our subsequent examples of the syntax and
main concepts of SafeGen.

GENERATOR_DEF S #defgen G_NAME (INPUT) { GEN_BODY }

INPUT ::= CURSOR.DEC | INPUT_PRED_DEC
CURSOR_DEC ::= META_TYPE IDENT (: LOGIC)?
INPUT_PRED DEC ::= P_NAME (PRED_ARG) => LOGIC
PRED_ARG ::= META_TYPE IDENT
GEN_BODY ::= CODE_TEMPLATE

I GENERATOR_DEF

I PRED_DEF
CODE_TEMPLATE ::= Java syntax

I #[META_EXPR]

| #foreach (CURSORDEC) { CODE_TEMPLATE }

I #when (LOGIC) { CODE_TEMPLATE }

(#else { CODE_TEMPLATE })?

META_TYPE 1= Class | Interface | Method

| Constructor | Field
META_EXPR ::= IDENT

| META_EXPR.META FUN
META_FUN ::= Name | Type | Formals

| ArgTypes | ArgNames
PRED_DEF ::= #defpred P.NAME (PRED_ARG) = LOGIC
LOGIC ::= forall META_TYPE IDENT : (LOGIC)

I exists META_TYPE IDENT : (LOGIC)

I P_NAME (IDENT)

I IDENT = IDENT

I ! LOGIC

I LOGIC & LOGIC

I LOGIC "|" LOGIC

I LOGIC => LOGIC
G_NAME ::= IDENT

P_NAME ::= IDENT

Fig. 1. SafeGen syntax

3.2.1 Cursors.

The two main concepts in the SafeGen language are those of a cursor and a
generator. A cursor is a variable ranging over all entities satisfying a first-order
logic formula over the input program. Thus, the input program is viewed as
a collection of logical facts about its type declarations. For instance, a cursor
expression in SafeGen would be:

Method m : MethodOf(m,c) & Public(m) & !Abstract(m)

This cursor, m, describes all non-abstract, public methods in class ¢ (c is a
cursor assumed to have been defined earlier). In general, the values of cursors
are type-level entities in the input program (methods, arguments, classes,
interfaces, etc.). The logical predicates used to build cursors can be viewed best
as a reflection mechanism over Java programs. SafeGen has several predefined
predicates that correspond to Java reflection information and the user can
create new predicate symbols that represent arbitrary first-order logic formulas
over the predefined predicates. Since the logical sub-language used to define
cursors in SafeGen is a standard first-order logic, we postpone describing its
specifics in detail until later in the paper.

3.2.2 (Generators.

A SafeGen generator is a way to express generated Java code. Generators are
defined with the #defgen primitive, followed by zero or more input arguments,
and the code fragment to be generated for the inputs. The following is a trivial
generator taking no inputs, and always producing a constant piece of code:

#defgen TrivialGen () {
class C { public void meth() {} %}
}

To make a generator’s output more interesting, we would have to supply
some inputs. A generator can receive input parameters that are either a sin-
gle reflection-level entity (e.g., class, method, field, etc.), or a collection of
reflection-level entities constrained by a predicate. For instance, the following
is a generator that accepts a single non-abstract class as an argument. (The
body of the generator is elided.)

#defgen MyGenl (Class c : !Abstract(c)) { ... %}

Similarly, the following generator takes as input a collection of classes, con-
strained by the predicate input:

#defgen MyGen2 (input(Class c) => !Abstract(c)) { ... }

Note that input is a new predicate defined right inside the definition of this
generator. Unlike predicate definitions that we will see later, the “implies”
(=>) operator is used for predicates defining generator inputs. The syntax
difference also serves to illustrate a subtle semantic difference: the input is not
all classes that are non-abstract, just some classes that are guaranteed to be
non-abstract.

The body of a generator (enclosed in {. ..} delimiters) can contain any legal
Java syntax. This Java code (object-level code) is “quoted”—that is, it gets
generated when the generator executes. Quoted code can contain three Safe-
Gen constructs that serve as “escapes”: they direct the control and data-flow of
the generator, allowing configuration of the quoted code. These three SafeGen
constructs are #[...] (pronounced “unquote”), #foreach, and #when. Before
getting into the details of these escape operators, it is important to recognize
the distinction between meta- and object-level variables. The quoted code can
contain variable declarations of its own—these are regular Java variables, e.g.,
int i;. However, since the escape operators pass control back to the meta-
level code, escaped code can only refer to meta-level entities. (More precisely,
the part of the program’s syntax tree that has #[...], #foreach, or #when at
its root can only refer to meta-level variables or functions.) Meta-level variables
are those defined as inputs to the generator (e.g., Class c in the generator
MyGen1), or those introduced by cursor definitions. Meta-level functions are
other declared generators and predicates.

The #[...] operator is used for adding fragments of Java code inside a larger
fragment. A generator can derive code fragments by applying several built-
in functions to meta-variables. Available functions are: Name, Type, Formals,
ArgNames, ArgTypes, and Modifiers. Consider the example of the following
generator:

#defgen MyGen (Class c : !Abstract(c)) {
#[c.Modifiers] class #[c.Name] { 7}
}

This generates a new (empty) class with the same name and modifiers as the
input class.

Functions Name and Type generate one identifier. The rest of the functions gen-
erate arrays—Formals generates an array of (Type, Identifier) pairs, whereas
ArgNames, ArgTypes, and Modifiers generate arrays of names, types, and
modifiers, respectively. When unquoting arrays, SafeGen splices the arrays
into the abstract syntax tree of the code being generated. This means that
proper separators will be generated in the final code, even though they are

10

syntactically elided in the code template. For example, consider the following
SafeGen template:

#defgen GenMeth (Method m) {
class OneMethod {
void foo (#[m.Formals]) { ... }
}

The code generated by this template is a class containing only one method,
foo, which accepts the same arguments as the input method m, with commas
properly placed to separate each argument type/name pair.

Clearly, not all functions can be applied to all meta-variables. Formals, ArgNames,
and ArgTypes can only be applied to meta-variables of Method type. Safe-
Gen also allows the syntax #[c] on a meta-variable c. This is a shortcut for
#[c.Name].

3.2.8 Control Flow

The control flow of the generator is affected by primitives #foreach and #when,
allowing iteration and conditional execution, respectively. The #foreach con-
struct takes as argument a cursor definition. As we saw previously, a cursor
ranges over reflection-level elements retrieved from the generator input, con-
strained by some criteria defined using SafeGen logical formulas. Since gener-
ator inputs are well-formed Java program entities, and no Java program has
an infinite structure, all #foreach iteration terminates.

Inside the body of the #foreach, the cursor name can be used to refer to
the current element in the range of the formula used to define the cursor. For
instance, consider the following generator:

#defgen AddFields (Class c) {
#foreach (Field f : FieldOf(f,c)) { int #[f]; }
}

This creates a sequence of definitions of integer variables, each named after a
field in the input class, c.

The #when construct’s syntax is #when (LOGIC) { CODE_TEMPLATE }, op-
tionally followed by #else { CODE_TEMPLATE }. That is, #when takes a logic
formula as a parameter. If the formula evaluates to true at generation time,
the first code template is generated. Otherwise, the code template following
the #else is generated. In the example below, the argument to the generator

11

is a set of Java interfaces (with no other constraints on them). If the set is
not empty, then the “implements” clause gets generated, followed by all the
names of interfaces. Otherwise, nothing gets generated.

#defgen MaybeImplements (input(Interface i) => true) {
#when (exists (Interface in) : input(in)) {
implements #foreach(Interface i) { #[i] }
}

Again, the generator’s model ignores low-level separator tokens—our gen-
erators operate on abstract syntax trees, not parse trees. Thus, when the
#foreach construct above generates multiple interface names, they get added
to an AST. But when actual code is generated, they will be separated by
commas, as Java requires.

3.2.4 User-Defined Predicates.

For modularity and code reuse, SafeGen also allows definitions of new pred-
icates both inside and outside the body of a generator. #defpred is used to
give a name to a frequently used logic formula. The following example de-
clares a predicate myPred that can be used in logic formulas, just like built-in
predicates:

#defgen MyGen3 (...) {
#defpred myPred (Class c) = Public(c) & !Final(c);
}

3.2.5 Name Management and Hygiene.

In the body of a generator, identifiers that correspond to generated definitions
are hygienically renamed to avoid name conflicts. (More precisely, this refers
to “quoted”, constant-name declarations—i.e., identifiers that do not occur
under an escape operator.) For example:

#defgen RenameGen (input(Method m) => (m.Type = int) & noArg(m)) {
#foreach(Method m: input(m)) { int result = #[ml(O;
}

(For convenience, the generator uses a predicate noArg, which we can define
using #defpred. This constrains the input methods to accept no arguments.)

12

The result of the above generator will not be multiple definitions of variable
result. Instead, at generation time, the actual variables generated will have
fresh names. Any references to these variables under the same cursor (or a cur-
sor defined over a sub-range) will be consistently renamed to refer to the right
variable. Since the renaming is only performed at the final output phase (i.e.,
when all generators have been called and the result is a complete Java com-
pilation unit) SafeGen can tell which identifiers need renaming. Sometimes, a
generator writer might indeed want to specify a name for a particular declara-
tion, without renaming. In these cases, we provide the keyword #name ["..."].
The identifier between quotes is generated as is.

3.2.6 Predicates, Cursors, and Logic in Detail.

The logic underlying SafeGen is a sorted logic, with the basic sorts being:
Class, Interface, Method, Constructor, Field, Identifier. Accordingly,
all variables and constants in our domain are of one of these sorts. SafeGen
does not provide any built-in constants. However, the user implicitly “creates”
constants of the Identifier sort as needed. For example, if a user wishes to
find all classes that implement java.io.Serializable, she writes the logical
sentence:

forall (Class c) : (exists (Interface i)
(Interface0f(i, c) & i.Name = "java.io.Serializable"))

java.io.Serializable is then declared as a constant in the domain during
the compilation process.

The syntax for SafeGen logical sentences closely follows the syntax for first-
order logic sentences (with the addition of sorts for declared variables). Safe-
Gen provides logical operators forall, exists, =, & | , =>, !, which corre-
spond to all the operators available in first-order logic. The full list of available
predicates and functions is shown below:

e Unary predicates: Public, Private, Protected, Static, Final, Abstract,
Transient, Strictfp, Synchronized, Volatile, Native

e Binary predicates: PackageOf, Class0f, InnerClass0f, InterfaceOf,
SuperClass0f, Constructor0f, MethodOf, FieldOf, ExceptionOf,
ArgTypeOf

e Functions: Name, Type, Formals, ArgNames, ArgTypes, and Modifiers.

For readers unfamiliar with first order logic syntax, please refer to Figure 1,
rule LOGIC for details.

13

3.2.7 FExample.

We can now consider a non-trivial generator written in SafeGen. This is a
realistic example, yet one that is short enough to study here and to use later
for illustrating SafeGen’s static checking process. The generator in Figure
2 takes a set of non-abstract classes as input and creates subclasses of the
input classes with methods that just delegate to those of the superclasses. (As
explained earlier, the identifier Delegator is going to be renamed for each of
the generated classes as to not induce name conflicts.)

1. #defgen MakeDelegator (input(Class c) => !Abstract(c)) {
2. #foreach(Class c : input(c)) {

3. public class Delegator extends #[c] {

4, #foreach(Method m : MethodOf(m, c) & !'Private(m)) {
5. #[m.Modifiers] #[m.Type]l #[m] (#[m.Formals]) {
6. return super.#[m] (#[m.ArgNames]) ;

7. b

8. b

9. b

10. }

11. }

Fig. 2. A generator that generates a delegator class for an input class.

3.8 Static Checking

We can now see how our approach can reason about a generator and guarantee
that it produces well-formed programs under all inputs. Every well-formedness
property of the output program is expressed as a logical formula. For instance,
consider again our Section 2 example generator, for which we want to guar-
antee that a generated reference is always bound to a definition:

if (pred1()) emit(‘[int i;]);

1f (pred2()) emit(‘[i++;]);

The above example written in SafeGen is:

#when(logic_1) { int i; }

#%ﬁen(logic_Q) { i++; %

where logic_1 and logic_2 are first-order logic formulas defined in the fash-

ion described in the previous section. Checking whether variable i is declared
before use becomes checking the validity of the logical implication logic_2 —

14

logic_1. If the theorem prover proves validity, we know that under any input
to the generator, the variable i would always be declared before it is used.

Other program well-formedness properties are also expressible in a similar
fashion. Determining how to translate a given program property into a logical
sentence is the role of the SafeGen implementation, described in the next
section.

We should be explicit in that implementing checks for all well-formedness prop-
erties of Java programs is a heavy engineering task. SafeGen currently does
not support all possible checks but we believe the omission is just a matter
of engineering.? The currently supported checks in SafeGen are fairly repre-
sentative in difficulty of the task and correspond to many valuable program
correctness properties (e.g., method typechecking). Specifically, the currently
fully supported tests are for the following properties.

A declared superclass exists.

A declared superclass is not final.

Method argument types are valid.

A returned value’s type is compatible with the method return type.
The return statement for a void-returning method has no argument.

Notably missing checks include access control (e.g., no access to “private” vari-
ables outside class); checking for subtyping restrictions (e.g., a non-abstract
class supplies definitions for all its superclass’s abstract methods); checking for
referring only to defined variables; checks for duplicate definitions; checking
for correct declaration of exceptions; etc.

4 Application

We demonstrated with the MakeDelegator example, in Figure 2, a program-
ming pattern (Adaptor [12]) used in many common software engineering tasks.
The same pattern can be applied to other use cases. For example, we can pro-
vide a generator that takes as input a class and creates a wrapper for it so

2 First-order logic can express any computable property and the only question is
whether a theorem prover can reason about such properties effectively. For several
yet-unsupported properties (i.e., properties for which SafeGen does not generate
conjectures automatically) we have hand-produced logic formulas corresponding to
example SafeGen programs and we have confirmed that we can reason about them
in SPASS effectively. For instance, the conjecture in Section 3.1 was hand-produced,
although our longer example in Figure 4 was automatically produced by the SafeGen
compiler.

15

that each execution of a method is logged. The implementation of this gen-
erator is very similar to the MakeDelegator example, with some additional
logging code before invoking the super method call. We will not belabor the
point by showing it again in detail. Similarly, we can create a generator that
returns a “synchronization” wrapper for the input class, so that each method
is wrapped in a synchronize (mutex) {...} block, where mutex is an object
created just for synchronization. This is in fact the exact technique used by
java.util.Collections (part of the Java Collections Framework [1]) to make
synchronized data structures from unsynchronized ones. Instead of repetitively
writing the same boiler-plate code for each class that needs to be synchronized,
one generator can generate synchronized definitions for all classes.

The two examples given so far have a strong aspect-oriented [23] flavor. In-
deed, since SafeGen allows generated code to be applied uniformly to methods
(or fields, or any other reflection level entity), it has the ability to “cross-cut”
object-oriented entities. However, SafeGen’s expressive logic language allows
programmers to do more than what is provided by the current aspect-oriented
programming tools, such as AspectJ [22] or JBoss AOP [7]. For example, a
task regularly encountered by programmers is to adapt an existing class to
implement an interface. Oftentimes, the class already has all the meaningful
implementation details in place. For the methods in the interface not already
implemented by the class, the class simply needs to provide empty, or de-
fault, implementations. This is a rather tedious task and should have easy,
automated solutions. Other research has also tried to address this problem
[17,24,31]. For illustration, below is a piece of code often seen in Swing graph-
ics programming—when a class needs to implement a listener interface, it of-
ten provides meaningful implementations only for a few methods, and empty
bodies for the rest:

private class SomelListener
implements MouseListener, MouseMotionListener {
public void mousePressed (MouseEvent event) {
. // do something
X
public void mouseDragged (MouseEvent event) {
... // do something
}

// the rest are not needed. Provide empty bodies.
public void mouseClicked (MouseEvent event) {}
public void mouseReleased (MouseEvent event) {}
public void mouseEntered (MouseEvent event) {}
public void mouseExited (MouseEvent event) {}
public void mouseMoved (MouseEvent event) {}

16

The solutions that previous research has provided either are not general enough
to be applied to all classes that need such adaptation [31], or require separate
implementations for different interfaces [24], or provide no static guarantee
that, after adaptation, the class will not have type errors [17]. The SafeGen
solution, however, is general enough that given any class and any interface,
a new class can be generated so that it adapts the class to the interface,
and there is a compile-time guarantee that the generated class will have no
well-formedness errors. The implementation is shown in Figure 3. It defines
a generator, MakeImplement, which takes two inputs—a class (c) and an in-
terface (1). It produces a new class that extends c, and implements i. For all
the methods that c already provides implementations for, the new class simply
forwards the call, very much like the MakeDelegator example. In addition, for
each method in interface i that is not declared in c, the generator generates
a default implementation for that method.

5 SafeGen Implementation

The most interesting part of the SafeGen implementation is the static checker.
Therefore in this section we discuss how SafeGen produces axioms and proof
obligations for a theorem prover, based on the structure of the SafeGen pro-
gram.

5.1 SafeGen Static Checking

Although the SafeGen checking algorithm is not a traditional type-checker, it
is easiest to present it in terms of type-checking, where both the names and
the types of the various entities can depend on logic predicates.

SafeGen has two type-checking processes. The first is type checking for the
meta-language: legality of references to meta-variables, meta-level predicates,
functions, and generators. The second, and much more complex one, is type
checking for generated Java code. SafeGen’s type system keeps two separate
environments to support these two processes: the meta scope, for the genera-
tor, and the object scope, for the generated program.

5.1.1 Environment.

A meta scope keeps track of meta level declarations: generators, predicates,
and meta-variables. A new meta scope is created by the following keywords:
#defgen, #defpred, #foreach, #when, and quantifier keywords forall and

17

#defgen MakeImplement (Class c, Interface i) {
// Define new class that extends c, implements i
#[c.Modifiers] class NewC extends #[c] implements #[i] {
// For all methods in c¢ that implement methods in i
#foreach(Method m : MethodOf(m, c) && !Private(m) &&
(exists Method im : MethodOf (im, i) &&
im.Name == m.Name &&
im.Formals == m.Formals &&
im.RetType == m.RetType)) {
#[m.Modifiers] #[m.RetType] #[m] (#[m.Formals]) {
#when(m.RetType == void) { super.#[m] (#[m.ArgNames]); }
#else { return super.#[m] (#[m.ArgNames]); }

// For all methods in i that do not exist in ¢
#foreach(Method im : MethodOf (im, i) &&
! (exists Method m : MethodOf(m, c) &&
im.Name == m.Name &&

im.Formals == m.Formals)) {
// generate a default implementation

#[im.Modifiers] #[im.RetType] #[im] (#[im.Formals]) {
// for all primitive return types, return their default values.
#when(im.RetType == int) { return 0; }
#telse {
#when(im.RetType == boolean) { return false; }
... // repeat for all primitive types
// for void-returning methods, do nothing.
#when(im.RetType == void) {}
// finally, for non-native type, return null.
#else { return null; }

// For all methods in ¢ that are not in i, and do not conflict with i
#foreach(Method m : MethodOf(m, c) &&
! (exists Method im: MethodOf (mi, i) &&
im.Name == m.Name &&
im.Formals == m.Formals)) {
#[m.Modifiers] #[m.RetTypel] #[m] (#[m.Formals]) {
#when(m.RetType == void) { super.#[m] (#[m.ArgNames]); }
#else { return super.#[m] (#[m.ArgNames]); }

Fig. 3. Default implementation example.

18

exists. With the exception of #when, all of the keywords above create new
meta-variable declarations.® In addition to keeping track of declarations,
#when and #foreach meta scopes are also associated with the logical sen-
tences under which they are created. Each meta scope is linked to at most
one parent meta scope. For example, in Figure 2, the meta scope created by
#foreach on line 4 has the #foreach scope created on line 2 as a parent. The
declarations in parent meta scopes are visible in the children scopes.

An object scope (i.e., a scope for generated code) is very much like a type en-
vironment for regular Java type checking. It contains symbol tables for types,
variables, and methods. However, there are two unique elements of our object
scope. First, the entries in the symbol table (e.g., names of variables or meth-
ods declared in the scope, and the types these map to) may not be constants
but instead refer to a cursor over the input program. Second, each entry in the
symbol tables has a link to a meta scope within which the entry is declared. In-
tuitively, each entry has references that describe what are the variable’s name
and type, as well as a meta scope link that describes when (i.e., under what
conditions) this variable declaration is generated. For example, consider the
method declared on line 5 of Figure 2. The entry in the symbol table will not
contain a constant method name, but the information that the method name
is equal to the value of m.Name. Of course, m only makes sense in the context
of the meta scope that this declaration is made under. Thus, the entry for
this method links to the meta scope defined by the #foreach on line 4 (with
parent meta scopes those on lines 2 and 1). Only meta scopes created with
#defgen, #foreach, #when can be linked from object scope entries.

5.1.2 Algorithm.

SafeGen’s type checking algorithm involves two phases. Phase I accomplishes
the following two tasks:

Phase I.a) Fully populate meta scopes and type check the meta language.
Type checking the meta language is simply ensuring that, first, every use of
a meta-variable, predicate, function, or generator is defined, and secondly if
a meta variable is used as an argument to predicates, functions, or generator
calls, it has the correct type. For example, if meta-variables m, ¢ are used in
predicate MethodOf (m, c), m should have a Method type, and ¢ should have a
Class or Interface type. This is an instance of standard and straightforward
monomorphic type checking.

3 The reader may wonder why exists and forall introduce a meta scope, since the
quantified variables they introduce cannot appear in generated code. Nevertheless,
we still have to check that references to these variables inside the constraint formulas
are valid. This can be viewed as a third kind of scope: the lexical scope of SafeGen’s
first-order logic sub-language.

19

Phase I.b) Collect type information in code templates. Object scopes are par-
tially populated with only type information for declared types, their meth-
ods, fields, and inner types. No statements are inspected. There is no legality
checking done in this phase. This step is analogous to a conventional type
checking algorithm, where a first pass is necessary to generate all the type
information needed to type check the statements inside of method bodies and
static initializers. After the object scopes are populated, we generate a logical
representation of what is in the object scopes: a sentence in first-order logic
describing the types available, their methods, fields, inner classes, etc. For the
example in Figure 2, the initial segment of this sentence is:

forall([c],
implies(and(Class(c), input(c)),
exists([c’], and(Class(c’), Name(c’)=Delegator, ...)))))

We call this sentence fact. It will be used in Phase II of the type checking
algorithm, as described next.

Phase II is responsible for checking the type correctness of templated Java
code. The algorithm resembles regular Java type checking in that it utilizes
the symbol tables to look up information on variables, methods, and types.
However, the algorithm is complicated by the use of meta-variables and func-
tions in object-level declarations and references. Therefore, SafeGen’s type
system combines the use of object scope symbol tables with the building of
logical sentences using the meta scopes (i.e., the meta scope associated with
the current object scope and all its parent meta scopes). For example, in Figure
2, we need to check whether the method call, super.#[m] (#[m.ArgNames])
on line 6 is a valid call. The first step is to look up the superclass of the current
class using the symbol table. However, we find that super does not point to
an actual class with its own symbol tables, but to a meta-variable, #[c]. In
order to check whether super.#[m] (#[m.ArgNames]) is a valid call, we must
construct a logical sentence to inquire: under all legal inputs to this generator
(any class that is !abstract), and under the logical context (encoded by the
meta scope) in which this method call is used:

#foreach(Class c:input(c)) {

#foreach(Method m:Method0f (m,c) & !Private(m)) { ... }

does class #[c]’s superclass always have a method with name #[m], and ar-
gument types matching the type of #[m.ArgNames]? SafeGen expresses this
property as a first-order logic sentence, test. We present this sentence is SPASS
format, shown in Figure 4.

20

implies(
forall([c],
implies(
and (input(c), class(c)),
exists([del],
and(class(del),
equal (Name(del), Delegator),
forall([sc], equiv(equal(SuperClass(del), sc), equal(c, sc))),
forall([m],
implies(and(equal (DeclaringClass(m), c), method(m)),
exists([del_meth],
and (method (del_meth),
equal (DeclaringClass(del_meth), del),
equal (Name (m), Name(del_meth)),
equal (RetType(m), RetType(del_meth)),
equal (Formals(m), Formals(del_meth)))))))))),
forall([c],
implies(and(input(c), class(c)),
forall([m],
implies(
and (equal (DeclaringClass(m), c¢), method(m), not(private(m)),
exists([meth],
and (method (meth), equal (Name(meth), Name(m)),
exists([sc],
and (equal (DeclaringClass(meth), sc),
exists([c’],
and (equal (DeclaringClass(meth), c’),
equal (SuperClass(c’), sc),
equal (Name(sc’), Delegator))))),
equal (Formals (meth), Formals(m)))))))))

Fig. 4. Logical representation of the test property that the example “super” call is
valid.

As the reader may notice, the sentence in Figure 4 does not correspond ex-
actly to the logical language used in the definition of the generator in Figure 2
For example, there is no predicate Method0f (m, c) in the sentence presented
to SPASS. This is because the underlying logic SafeGen type checker uses
does not match the SafeGen language constructs exactly. Several low-level
conversions are performed in order to interface with the theorem prover. This
is expected, as the logic is designed for maximal reasoning power, while the
language is designed for ease of use. For instance, at the logic level we have
more sorts and sub-sort hierarchies for logical entities. Furthermore, many of
the concepts appearing as binary predicates at the SafeGen language level are
expressed as functions in the logic. For example, the MethodOf (m, c¢) binary
predicate, used earlier, is ideally represented more strictly by a function return-
ing the class of each method, since a method cannot be in a Method0f relation-

21

ship with more than one class. The same is true of predicates SuperClass0f,
InnerClass0f, Constructor0f, FieldOf, ExceptionOf, etc.

We then construct the sentence fact — test, where fact was constructed in
Phase I, as described earlier. fact needs to be the condition in the implica-
tion because it states the existence of classes and methods that test might
refer to. Facts about the well-formedness of generator inputs are also part of
the theorem prover input, supplied as axioms. We next feed this sentence to
the theorem prover to test its validity. The full input to the theorem prover
includes the logic definition (i.e., predicates, functions, sorts), axioms about
Java, and the fact — test conjecture. This is typically many hundreds of lines
long.

5.1.3 Translation

A SafeGen generator interfaces with the outside world through Java reflection
entities and strings. For instance, a generator that takes a Class argument,
as above, is implemented as a Java method that accepts a java.lang.Class
object as argument. Similarly, a generator that takes a collection of Classes,
as in our second example, is implemented as a Java method that accepts a
java.lang.Class[] as argument.

6 Discussion

We next discuss our design decisions and experience with SafeGen.

6.1 Choice of Logic

The design of the logic language allowed in SafeGen resulted from striving for a
balance between expressiveness and our type checker’s ability to reason about
the logic. Clearly, a decidable fragment of logic would have been ideal, since our
type checker would be able to say with certainty whether a type error exists.
There are a number of general fragments of first-order logic that are known
to be decidable [16]. However, we find unary functions (e.g., SuperClass(c))
as well as equality to be indispensible for the SafeGen language to be useful.
These two requirements alone take us outside of any known decidable (prefix-
)fragments of first-order logic. Thus, we decided early on in our design process
to allow the full syntax of first-order logic to be applied, and appeal to the
power of a theorem prover.

Within the confines of first-order logic, we can still tune our logic to limit

22

its expressiveness, and thus maximize the number of proofs we can produce
completely automatically. That is, when we find in our examples that a specific
pattern causes consistent difficulties in reasoning, we remove the logic feature
it depends on. For instance, transitivity is very hard to reason about. The
superclass relation is transitive, but instead of specifying the transitivity fully
in our logic axioms, we only expand it three levels. As a result, if the validity
of a generator depends on a subtyping relation between classes more than 3
links away in the subtyping hierarchy, then our logic cannot express the proof
and SafeGen will issue a spurious warning.

Ordering is another property that is particularly difficult to reason automati-
cally (partly because it involves reasoning about transitivity). In type check-
ing, one place where ordering matters is the argument types of a method. For
example, if a user defines a method void foo (int i, String s) { ...
} and later invokes it with foo("bar", 2), the type checker should be able to
catch this invalid reference. However, without a notion of ordering, the logic
would only be able to express that there exists a method foo, with argument
types int and String. Using this as a known fact, the type checker would
erroneously infer that the call is valid. For this reason, we explicitly disallow
referring to individual elements of a method’s argument list. We provide only
functions to refer to the argument list as one entity: Formals, ArgTypes, and
ArgNames. The results of applying these functions cannot serve as the base col-
lection for cursor definitions, either. For example, one cannot create a method
with only the public members of another method’s arguments:

void foo (#foreach (Type t : m.ArgTypes & public(t)) { #[t] arg })
{ ... %

6.2 Using the Theorem Prover.

There are two approaches to using the theorem prover to verify the correctness
properties of generated code. We could construct a large sentence that is the
conjunction of all the type-correctness properties the generated code should
preserve, and ask the prover whether these properties hold given the facts
produced by the code templates. While this approach simplifies our language
implementation by delegating all type checking duties to the theorem prover,
it has a major disadvantage. The checking would be all-or-nothing and it
would not produce very useful error messages to the users. When one of the
properties in the conjunction fails to be valid due to a contradiction, all we
receive from the theorem prover is a series of syntactic maneuvers that arrived
at the contradiction. It is very difficult to decipher these messages to determine
the exact property that failed. We can only inform the user that, somewhere
in their program, there is an error. The problem is exacerbated by spurious

23

errors due to valid formulas that could not be proven: the user would be unable
to tell that the error is spurious if we just reject the entire program.

Therefore, we have chosen a second approach. SafeGen’s type checking algo-
rithm consists of a large number of simpler calls to the theorem prover. The
calls check the validity of very specific properties. For example, when we are
type-checking a class declaration, and we reach the declaration of a superclass,
we make two calls to the theorem prover. One is to check that the declared
superclass exists. Another is to check that the superclass is a non-final class.
This approach yields simpler logic formulas to prove. At the same time, we
are able to produce very precise error messages to the user regarding exactly
which property the code template failed to establish.

The one disadvantage of our approach is that we must make many calls to the
theorem prover in the process of compiling just one generator. There might be
a potential performance hit depending on how long the theorem prover takes
to return answers. However, as discussed next, we have not yet found this to
be a major cause of concern.

6.3 FEzperience.

SafeGen is still work in progress. Nevertheless, we have experimented exten-
sively with the checking process for formulas that correspond to SafeGen pro-
grams. In fact, we first chose example SafeGen programs and expressed in
logic their properties that we wanted to check, before trying different theorem
provers and eventually choosing SPASS.

The choice of theorem prover is largely orthogonal to the overall approach,
and we may switch in the future. The overriding factor we used in choosing a
theorem prover was its ability to arrive at a result without human guidance.
We cannot expect the user of SafeGen to hand-tune the logic whenever the
theorem prover fails. A theorem prover that fails to find either a definite
proof of validity or a counterexample would cause SafeGen to produce lots of
spurious warnings to users. After trying several (4) theorem provers, we chose
SPASS because (in our tests) it demonstrated the best ability to terminate
much of the time without human guidance. With our limited set of example
validity tests, SPASS always finds a proof for the valid sentences. For sentences
that are not valid, SPASS terminates with a decision roughly 50% of the time.
It fails to terminate (during the several minutes we observed it) the other 50%
of the time. This means that, for our examples, SafeGen issues no false positive
errors. However, for half of the true type errors SafeGen reported, SafeGen
was only able to report a “possible error”, because SPASS did not terminate
with a decision (i.e., a counterexample) that the sentence is not valid.

24

Because SafeGen makes a large number of calls to the theorem prover during
type-checking, the performance of the theorem prover was a consideration, as
well. So far, for the cases that SPASS was able to terminate, it terminates
in a small fraction of the timeout we set for each proof attempt. (Timeouts
are discussed in detail later.) This is hardly surprising: most of the properties
we want to prove are quite shallow. For instance, for many type-checking
tests, the types and meta scopes match exactly (i.e., the test logic sentence
is verbatim, modulo variable names, a part of fact) even though they are
complex expressions involving cursors and logic predicates.

It is worth noting that our delegator example in Figure 2 has a bug that
SafeGen readily detects: the superclass method is not always guaranteed to
have a return type. If the return type of method m, called in line 6, is void, then
the statement return super.#[m] (#[m.ArgNames]) is not legal. The user
should instead use a #when clause, to detect whether the superclass method
has a returnable result and if not to just call it without attempting to return
its value.

6.4 Cost of Compilation

The repeated calls to SPASS are responsible for the main portion of Safe-
Gen’s compilation cost. We ran the SafeGen compiler on three generators: the
MakeDelegator example in Figure 2, MakeImplement in Figure 3, as well as
an unshown generator, SynchronizeMe which generates a “synchronized” ver-
sion of the input class, as described briefly in Section 4. (The generated class
declares the same methods as the input class. Each method in the generated
class synchronizes against a mutex before delegating the call to an object of
the input class type.)

We show in Figure 5 compilation times collected for these generators. LOC
denotes the lines of code for each generator; t;,,; denotes the total compila-
tion time; tspass denotes the time spent by SPASS proving FOL sentences;
timeouts denotes the number of times that SPASS is unable to terminate
with a decision given the time limit. The current time limit for proof attempts
is 3 seconds. Of all the FOL sentences for which SPASS is able to terminate
with a definitive decision of validity, ave. t;,,, denotes the average time taken
for SPASS to terminate; t,,,, denotes the maximum amount of time to termi-
nation; t,,;, denotes the minimum amount of time to termination. All times
are in milliseconds.

As the data show, time spent in SPASS takes up roughly 94% of the total
compilation time. Furthermore, the majority of the time spent in SPASS was
spent on queries that never terminated before reaching the timeout limit: 92%.

25

LOC | tiotar | tspass | Ftimeouts | ave. tierm | tmaz | tmin
MakeDelegator | 11 4,044 3,684 1 217 420 19
SynchronizeMe | 12 3,973 | 3,623 1 201 431 | 20
MakeImplement | 33 12,933 | 12,406 4 144 266 31
Overall 56 | 20,950 | 19,713 6 181 431 19

Fig. 5. Compile-time statistics.

For those queries that did terminate, the average time per query is only 181
milliseconds. Given that our current timeout is set at 3 seconds, the time
spent in SPASS (and thus the total compilation time) reduces dramatically if
we reduce the timeout limit. The maximum time taken for a successful proof
was less than half a second for the above generators, and generally we never
observed a SPASS proof that successfully terminated in more than 1 second.
Thus, reducing the timeout to 1 second might be reasonable if time becomes
an issue.

An interesting point exhibited by the data is that the size of a SafeGen pro-
gram does not have any correlation to the average time SPASS needs per
sentence. In fact, the longest program we have, MakeImplement, has the short-
est average termination time per sentence. This is not surprising given that
a longer generator is not necessarily a more complex generator, and prov-
ing each local property depends only on the context (i.e., the contents of the
meta scope). Thus, the theorem prover’s performance for any given sentence
is affected by the structure of the sentence, rather than its size. For instance,
a sentence with more nested existential or universal quantification would be
harder to prove than a simple, non-nested sentence of much greater size. Fur-
thermore, an implication A implies B is much harder to automatically prove
when A and B have different structures in terms of quantification nestings.
Fortunately for SafeGen, most of the sentences the compiler generates are of
the form A implies B, where A and B share largely the same structure. This
could be the reason that the increase in problem size does not manifest itself
in the average query time.

The SafeGen compiler is still a prototype. Type checking in imcompletely
implemented. As we state in Section 3.3, the current implementation only
checks for five types of errors. However, since the query time does not seem to
increase with problem size, we expect the time for compilation to grow linearly
with the number of calls made out to the compiler for generators of typical
complexity:.

26

6.5 Big Picture: Soundness and Why a New Language?

The SafeGen static checking algorithm is intended to be sound: if a generator
is approved by SafeGen, it is guaranteed to be correct (with respect to the
supported tests, of course—but with no fundamental reason why these tests
cannot in the future be all possible Java well-formedness tests). As in any static
checking system, however, what matters most is not soundness but usefulness.
After all, soundness is easy to achieve by just rejecting all programs. In the
static checking arena, tools like ESC/Java [11] have garnered a lot of attention
by trying to be useful, even though they are not sound.

We view the soundness argument as tied to another major decision, namely
whether to support a hard-to-analyze programming language like Java as the
meta-language, or to design a small, specialized language like SafeGen. If we
were to implement our checking approach in a meta-programming system built
on top of Java (such as our MAJ system [34]), we would certainly have sac-
rificed soundness to achieve usefulness. Java has several language constructs
(including dynamic dispatch, aliasing and assignments, exceptions) that make
it hard to be sound (i.e., guarantee correctness) while allowing a large percent-
age of the correct programs. Instead, our choice of creating a new language
was largely so that we could be sound, yet useful. We believe that soundness
is not a goal by itself, yet it is valuable in terms of user perception. Sound
static checking mechanisms (such as type systems) are much more easily ac-
cepted by programmers than unsound tools (like ESC/Java) because they feel
more disciplined. At the same time, we have aimed to make SafeGen expres-
sive enough for most program generation tasks that depend on reflection over
existing programs.

Of course, SafeGen checking offers no guarantees of completeness: if we find no
proof of the correctness of the generator, it is by no means certain that it is er-
roneous. Since most interesting properties on first-order logic are undecidable,
the proof process will not always terminate. We have examined the possibility
of restricting our language to a broad but decidable fragment of first-order
logic, such as the guarded fragment [2]. (In fact, SPASS, with the right choice
of parameters is a decision procedure for the guarded fragment [13].) Never-
theless, we believe that this would limit significantly the expressiveness of our
logic. Furthermore, it is not clear whether a guarantee of termination of the
proof process with a decision is a very important property in practice, unless
it is a guarantee of termination in a very short time, which seems impossible:
such decision procedures typically have super-exponential complexity.

27

7 Related Work

We have mentioned throughout the paper some related work, such as work on
multi-stage languages, and other solutions to class adaptation and expansion.
Nevertheless, this does not cover the work most closely related to SafeGen.
Concurrently or subsequently to the original SafeGen publication [19], other
work has appeared in the area of combining reflection with generation and
much of it has drawn inspiration from SafeGen.

Two such projects are Genoupe [9] and Compile-Time Reflection (CTR) [10].
Both of these are extentions to the C# language. Genoupe allows users to write
programs by reflecting over C# types, using controlled @foreach and @if
constructs very similar to SafeGen’s #foreach and #when. Genoupe provides
an integrated way to both generate and reference the newly generated type
in the program. However, Genoupe iteration and conditionals are based on
values that may change at runtime, which makes the type system unsound.
CTR provides tighter control over its iteration and branching conditions such
that they can only be based on values known at compile-time. Furthermore,
CTR introduces the use of patterns for expressing the properties of generated
code, which is a major syntactic simplification. For instance, instead of a
logical property that states that a method should have any name and an int
type argument, the user can just write a matching method signature and use
a pattern variable for the name. In terms of checking, however, CTR elides
an important issue: the uniqueness of declarations. A transform written in
CTR could declare a variable with potential naming conflict to the program
it may transform, but this is not caught at the compile-time of the transform
itself, but at the time the transform is applied. (In fact, the potential conflict
is not reported as an error, but just used to determine that the transform
is not applicable.) This is precisely the point we argued against earlier—the
compile-time of the resulting, transformed program is the run-time of the
generator, and the naming conflict in the generated program is really a bug
in the generator itself, and should be caught by the generator writer.

SafeGen has also inspired our subsequent work on integrating reflection-based
program construction tightly with Java generics. ¢J [20] is an extension of Java
where methods, fields, and supertypes of a class (or interface) can be declared
based on static type conditionals. These type conditionals are only subtyping
conditions (i.e., is one type the subtype of another?). This is analogous to a
#when condition in SafeGen. MorphlJ (a.k.a. MJ) [21,18] is more sophisticated
in that it combines static iteration with pattern-matching. For example, in
MorphJ, a class may contain a series of methods defined in a static loop,
based on the methods of another type, matching a particular pattern on the
method signature. Method signature patterns can involve the use of both type
and name variables. This is analogous to a #foreach loop in SafeGen, where a

28

pattern is converted to a conjunctive formula in logic. SafeGen is a superset of
both c¢J and MorphlJ in the sense that it allows all the program configurations
that these languages allow, and much more (e.g., negation in static conditions,
unlimited levels of reflection). What SafeGen does not provide is the seamless
integration into the object language (Java) that both ¢J and MorphJ provide.
SafeGen is very much a separate generation language. Because of their limited
expressiveness (as compared to SafeGen), c¢J and MorphlJ are able to have
relatively simple to state typing algorithms.

8 Conclusions

In this paper we presented SafeGen, a meta-programming language with the
distinguishing feature that it offers powerful correctness guarantees for genera-
tors expressed in it. SafeGen statically checks its input to guarantee that only
well-formed code will be generated at the generator’s runtime. We demon-
strated a novel approach that combines traditional static type checking with
representing program correctness properties in logic. We believe that SafeGen
is expressive and useful, even though its syntax is restricted so we can rep-
resent all program correctness properties logically. We also believe that the
approach of using logic to control and reason about code generation is one
that extends beyond the implementation of SafeGen. It can be used for a dif-
ferent target language (from Java), and with a different logic (from one based
on Java reflective properties), suitable for other broad categories of generation
needs.

Acknowledgments.

This research was supported by the National Science Foundation under Grant
No. CCR~0735267.

References

[1] Java Collections Framework Web site,
http://java.sun.com/j2se/1.5.0/docs/guide/collections/, Accessed Feb. 2008.

[2] H. Andreka, J. van Benthem, I. Nemeti, Modal languages and bounded
fragments of predicate logic, Journal of Philosophical Logic 27 (3) (1998) 217
274.

[3] J. Bachrach, K. Playford, The Java syntactic extender (JSE), in: Proc. of the
16th ACM SIGPLAN conference on Object Oriented Programming, Systems,
Languages, and Applications, ACM Press, Tampa Bay, FL, USA, 2001.

29

[4] J. Baker, W. C. Hsieh, Maya: multiple-dispatch syntax extension in Java,
in: Proc. of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, ACM Press, Berlin, Germany, 2002.

[5] D. Batory, B. Lofaso, Y. Smaragdakis, JTS: tools for implementing domain-
specific languages, in: Proc. Fifth Intl. Conf. on Software Reuse, IEEE, Victoria,
BC, Canada, 1998.

[6] A. Bryant, A. Catton, K. De Volder, G. C. Murphy, Explicit programming,
in: Proc. of the 1st international conference on Aspect-Oriented Software
Development, ACM Press, Enschede, The Netherlands, 2002.

[7] B. Burke, et al., JBoss AOP Web site, http://labs.jboss.com/portal/jbossaop,
accessed Feb. 2008.

[8] C. Calcagno, W. Taha, L. Huang, X. Leroy, Implementing multi-stage
languages using ASTs, gensym, and reflection, in: Generative Programming
and Component Engineering (GPCE) Conf., LNCS 2830, Springer, 2003.

[9] D. Draheim, C. Lutteroth, G. Weber, A type system for reflective program
generators, in: Proc. of the 4th Intl. Conf. on Generative Programming and
Component Engineering, LNCS 3676, Springer-Verlag, Tallin, Estonia, 2005.

[10] M. Féhndrich, M. Carbin, J. R. Larus, Reflective program generation with
patterns, in: Proc. of the 5th Intl. conference on Generative Programming and
Component Engineering, ACM Press, Portland, OR, USA, 2006.

[11] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, R. Stata,
Extended static checking for Java, in: Proc. of the ACM SIGPLAN 2002 Conf.
on Programming Language Design and Implementation, ACM Press, 2002.

[12] E. Gamma, R. Helm, R. Johnson, Design Patterns. Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional Computing Series,
Addison-Wesley, 1995.

[13] H. Ganzinger, H. de Nivelle, A superposition decision procedure for the guarded
fragment with equality., in: LICS, 1999.

[14] R. Gliick, J. Jorgensen, Efficient multi-level generating extensions for program
specialization, in: Programming Languages, Implementations, Logics, and
Programs, Utrecht, The Netherlands, September 1995. (Lecture Notes in
Computer Science, vol. 982), Berlin: Springer-Verlag, 1995.

[15] J. Gosling, et al., The Java Language Specification, GOTOP Information Inc.,
5F, No.7, Lane 50, Sec.3 Nan Kang Road Taipei, Taiwan.

[16] E. Gradel, Decidable fragments of first-order and fixed-point logic. From prefix-
vocabulary classes to guarded logics, in: Proc. of Kalmar Workshop on Logic
and Computer Science, Szeged, 2003.

[17] S. S. Huang, Y. Smaragdakis, Easy language extension with Meta-AspectJ, in:
Proc. of International Conference on Software Engineering (ICSE), 2006.

30

[18] S. S. Huang, Y. Smaragdakis, Class morphing: Expressive and safe static
reflection, in: Conf. on Programming Language Design and Implementation
(PLDI), ACM, 2008.

[19] S. S. Huang, D. Zook, Y. Smaragdakis, Statically safe program generation with
SafeGen., in: Proc. of the 4th Intl. Conf. on Generative Programming and
Component Engineering, LNCS 3676, Springer-Verlag, Tallin, Estonia, 2005.

[20] S. S. Huang, D. Zook, Y. Smaragdakis, c¢J: Enhancing Java with safe type
conditions, in: Proc. of the 6th Intl. Conf. on Aspect-Oriented Software
Development, ACM Press, Vancouver, British Columbia, Canada, 2007.

[21] S. S. Huang, D. Zook, Y. Smaragdakis, Morphing: Safely shaping a class in the
image of others, in: E. Ernst (ed.), Proc. of the European Conf. on Object-
Oriented Programming (ECOOP), LNCS, Springer-Verlag, 2007.

[22] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
overview of AspectJ, in: Proc. of the 15th European Conf. on Object-Oriented
Programming, Springer-Verlag, London, UK, 2001.

[23] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-oriented programming, in: M. Aksit, S. Matsuoka (eds.),
Proc. of the 11th European Conf. on Object-Oriented Programming, vol. 1241,
Springer-Verlag, Berlin, Heidelberg, and New York, 1997, pp. 220-242.

[24] M. Mohnen, Interfaces with default implementations in Java, in: Proc. of the
inaugural conference on the Principles and Practice of Programming, 2002,
National University of Ireland, Maynooth, County Kildare, Ireland, Ireland,
2002.

[25] E. Pasalic, W. Taha, T. Sheard, Tagless staged interpreters for typed languages,
in: ICFP ’02: Proc. of the seventh ACM SIGPLAN international conference on
Functional programming, ACM Press, New York, NY, USA, 2002.

[26] T. Sheard, S. P. Jones, Template meta-programming for Haskell, in: Proc. of the
ACM SIGPLAN workshop on Haskell, ACM Press, Pittsburgh, Pennsylvania,
2002.

[27] A. Stevens, et al., XDoclet Web site, http://xdoclet.sourceforge.net/, accessed
Feb. 2008.

[28] W. Taha, T. Sheard, Multi-stage programming with explicit annotations,
in: Proc. of the 1997 ACM SIGPLAN symposium on Partial Evaluation
and semantics-based Program Manipulation, ACM Press, Amsterdam, The
Netherlands, 1997.

[29] E. Tilevich, S. Urbanski, Y. Smaragdakis, M. Fleury, Aspectizing server-side
distribution, in: Proc. of the Automated Software Engineering (ASE) Conf.,
IEEE Press, 2003.

[30] E. Visser, Meta-programming with concrete object syntax, in: Generative
Programming and Component Engineering (GPCE) Conf., LNCS 2487,
Springer, 2002.

31

[31] A. Warth, M. Stanojevic, T. Millstein, Statically scoped object adaptation with
expanders, in: Proc. of the 21st annual ACM SIGPLAN conference on Object
Oriented Programming, Systems, Languages, and Applications, ACM Press,
Portland, OR, USA, 2006.

[32] C. Weidenbach, The theory of spass version 2.0, Tech. rep., Max-Planck
Institute fur Informatik.

[33] D. Weise, R. F. Crew, Programmable syntax macros, in: SIGPLAN Conf. on
Programming Language Design and Implementation, 1993.

[34] D. Zook, S. S. Huang, Y. Smaragdakis, Generating AspectJ programs with
meta-AspectJ, in: Proc. of the 3rd Intl. Conf. on Generative Programming
and Component Engineering, Springer-Verlag, Vancouver, British Columbia,
Canada, 2004.

32

