
TBD manuscript No.
(will be inserted by the editor)

Shafi Goldwasser · Madhu Sudan · Vinod Vaikuntanathan

Distributed Computing with Imperfect Randomness

Abstract Randomness is a critical resource in many
computational scenarios, enabling solutions where de-
terministic ones are elusive or even provably impossi-
ble. However, randomized solutions typically assume ac-
cess to a source of unbiased, independent coins. Physical
sources of randomness, on the other hand, are rarely un-
biased and independent although they do seem to exhibit
somewhat imperfect randomness. This gap in modeling
questions the relevance of current randomized solutions
to computational tasks. Indeed, there has been substan-
tial investigation of this issue in complexity theory in the
context of the applications to efficient algorithms and
cryptography.

In this paper, we seek to determine whether imperfect
randomness, modeled appropriately, is “good enough”
for distributed algorithms. Namely, can we do with im-
perfect randomness all that we can do with perfect ran-
domness, and with comparable efficiency?

We examine two natural models of imperfect random-
ness in a distributed setting – namely, where each player
has an (independent) block source (resp. weak source).
For the first model (that of block sources), we construct
a general-purpose compiler that converts distributed al-
gorithms that assume perfect randomness, to ones that
work even with imperfect coins. The compiled protocol
has the same fault-tolerance and round-complexity as
the original protocol. For the second model (that of weak
sources), we construct Byzantine Agreement protocols in
a variety of scenarios (synchronous or asynchronous net-
works, with or without private channels). Our protocols
have comparable fault-tolerance and round complexity
as the best known Byzantine Agreement protocols that
expect perfect randomness.

Shafi Goldwasser’s work was supported in part by NSF
CNS-0430450, a Minerva Grant 8495, and a Cymerman-
Jakubskind award. Vinod Vaikuntanathan’s work was sup-
ported in part by NSF CNS-0430450.

MIT CSAIL, Cambridge MA 02139, USA.
E-mail: {shafi,madhu,vinodv}@theory.csail.mit.edu

1 Introduction

Randomization has proved useful in many areas of com-
puter science including algorithm design, cryptography,
and distributed computing. In algorithm design, ran-
domness has been shown to reduce the complexity re-
quirments for solving problems, but it is unclear whether
the use of randomization is inherently necessary. Indeed,
an extensive amount of research in the complexity the-
ory is dedicated to de-randomization : the effort to re-
place random strings by deterministic “random-looking”
strings.

In contrast, the case of using randomness within the
field of distributed computing is unambiguous. There are
central distributed computing problems for which there
are provably no deterministic solutions, whereas efficient
randomized solutions exist (Byzantine agreement in an
asynchronous network, for instance) [16].

The common abstraction used to model the use of
randomness by a protocol is to assume that each partici-
pant’s algorithm has access to its own source of unbiased
and independent coins. This abstraction, however, does
not seem to correspond exactly to the physically avail-
able sources of randomness. Physical sources instead gen-
erate an output that seems only to be “somewhat ran-
dom”.

1.1 Models of Randomness in the Real World

The gap between the abstract model and the physically
available sources of randomness has been addressed be-
ginning with the work of von Neumann [23] and Elias [12]
which deal with sources of independent bits of unknown
bias. In later works, sources of dependent bits were mod-
eled by Santha and Vazirani [21], Chor and Goldreich [7],
and finally Zuckerman [24] who presented the weak ran-
dom source generalizing all previous models.

Informally, for a weak random source, no sequence of
bits has too high a probability of being output. A weak
random source is a block source [7] if this is guaranteed

2

for every output block (for a block size which is a param-
eter of the source) regardless of the values of the previous
blocks. Namely, whereas a weak random source guaran-
tees some minimum amount of entropy if sampled exactly
once, a block source guarantees a minimum amount of
entropy each time a sample is drawn (where a sample
corresponds to a block).

Two natural questions arise.

1. Can weak random sources be used to extract a source
of unbiased and independent coins?

2. Even if not, can weak random sources be used within
applications instead of perfect random sources, with
the same guarantee of correctness and complexity?

The first question was addressed early on, in con-
juction with introducing the various models of imper-
fect randomness. It was shown that it is impossible to
extract unbiased random coins with access to a single
weak random source [21,7,24]. Researchers went on to
ask (starting with Vazirani [22]) whether, given two (or
more) weak random sources (all independent from each
other), extraction of unbiased random bits is possible.
Indeed, it was shown [22,7,24] that two sources suffice.
Whereas original works focus on in-principle results, re-
cent work by Barak, Impagliazzo, and Wigderson [1] and
others focuses on constructive protocols.

The second question is the type we will we focus on
in this work. In the context of probabilistic algorithms, it
was shown early on in [7,24] that a single weak random
source can be used to replace a perfect source of ran-
domness for any BPP algorithm. Very recently, Dodis et
al [10,9] initiated an investigation of the same question
in the context of cryptographic protocols. Namely, is it
possible for cryptographic appplications (e.g. encryption,
digital signatures, secure protocols) to exist in a world
where each participant has access to a single weak source
of randomness? Surprisingly, they show that even if these
sources are block sources which are independent of each
other, many cryptographic tasks such as encryption and
zero-knowledge protocols are impossible.

We thus are faced with a natural and intriguing ques-
tion in the context of distributed computing:

Are weak random sources strong enough to replace
perfect sources in distributed computing protocols?

This is the starting point of our research.

1.2 The Choice of our Randomness Model

The model of randomness we assume in this work is that
each player has its own weak source (or block source)
that is independent of the sources of all the other play-
ers, as was assumed in the work of [9] in the context
of cryptographic protocols. We feel that this model is a
natural starting point for the study of randomness in dis-
tributed computation. We note however that there is a

spectrum of models that may be assumed, and one such
alternative is discussed in the section on future directions
(Section 5.1.1).

1.3 Byzantine Agreement: Randomized versus
Deterministic Protocols

We briefly review the problem of Byzantine Agreement
and the best randomized protocols for this problem in
various settings.

The problem of Byzantine Agreement (BA) defined
by Pease, Shostak and Lamport [18] is for n players to
agree on a value, even if some t of them are faulty. In-
formally, for any set of initial values of the players, a BA
protocol should satisfy the following:

– Consistency: All non-faulty players agree on the same
value.

– Non-triviality: If all the players started with some
value v, they agree on v at the end of the protocol.

The faulty players might try to force the non-faulty play-
ers to disagree. The good players, in general, do not know
who the faulty players are. A protocol for Byzantine
Agreement should ensure that the good players agree,
even in the presence of such malicious players.

The possibility of BA depends crucially on the model
of communication among the players. When the players
communicate via a synchronous network with point-to-
point channels, there are (t+ 1)-round deterministic BA
protocols (one in which no player tosses coins) even in
the presence of t < n

3 faults [17]. A lower bound of t+ 1
communication rounds is known for every deterministic
protocol. When the players communicate via an asyn-
chronous network, the celebrated result of Fischer, Lynch
and Paterson [15] shows that BA is impossible to achieve
even in the presence of a single faulty player.

Yet, Ben-Or [2] in 1983 showed how to achieve Byzan-
tine agreement in an asynchronous network tolerating a
linear number of faults via a randomized protocol with
expected exponential round complexity. More efficient
randomized protocols in asynchronous as well as syn-
chronous networks followed, some of which (due to [19,
4,11,14,13,5]) assume the existence of private communi-
cation channels between pairs of participants (or alterna-
tively cryptographic assumptions), and some do not re-
quire secret communication (notably Chor-Coan [6] and
Ben-Or et al. [3]).

To summarize these works, both synchronous and
asynchronous BA can be achieved via a randomized pro-
tocol in expected O(1) number of rounds tolerating an
optimal number of faults, assuming private channels of
communication exist. Without any secret communica-
tion requirements, for t < n/3 a randomized protocol ex-
ists for synchronous BA using O(t

logn) rounds, whereas

the best asynchronous BA protocol still requires expo-
nential number of rounds [2,4]. Table 1.3 summarizes
these results.

3

Private Channels Non-Private
Channels

Synchronous O(1) rounds [14] O(n
logn

) rounds [6]
(t < n

3
) (t < n

3
)

O(logn) rounds [3]
(t < n

4
)

Asynchronous O(1) rounds [5] 2O(n) rounds [4]
(t < n

3
) (t < n

3
)

Table 1 The Best Known Byzantine Agreement Algorithms

1.4 Overview of our Results and Techniques

We focus on the case where a distributed algorithm is run
on a complete network of n participants t of which can
be Byzantine faults. The case of an arbitrary network
can be handled assuming sufficient connectivity. We ad-
dress the settings of both synchronous and asynchronous
networks, and the cases of private channels (when each
pair of participants have a secret communication channel
between them) and of a full information network (when
no secrecy is assumed for any communication). We note
that by the results of Dodis et al. [9], making crypto-
graphic assumptions is doomed for failure.

1. In the case of block sources: Let Π be any random-
ized distributed algorithm. We construct a compiler

C that takes Π as input and outputs a protocol Π ′
def
=

C(Π) that simulates Π in a strong sense. Π ′ works
even when the players are given independent block
sources (as opposed to perfect randomness that Π
expects). Π ′ runs for just one extra round compared
to Π, and has the same fault-tolerance as Π.

2. In the case of weak sources: We focus on the spe-
cific problem of Byzantine Agreement. For the vari-
ous settings of network and communication models,
we design protocols for Byzantine Agreement that
work with weak sources and obtain the bounds on
fault-tolerance and round-complexity achieved by the
best randomized Byzantine Agreement protocols that
work with perfect randomness. In the private chan-
nels case, we show for both synchronous and asyn-
chronous networks an O(1) expected rounds proto-
col for t < n

3 faults (matching [14,5]). In the full-

information model, we show a protocol with O(t
logn)

expected rounds for synchronous networks (with t <
n
3 , matching [6]) and a O(2n) expected round proto-
col for t < n

3 (matching [4]).

The compiler constructed in the case of block sources
follows a 2-step Extract and Simulate approach. C utilizes
the first O(1) rounds for a pre-processing protocol, in
which the parties interact with each other so that at
the end, all of them obtain a private, uniformly random
string. The randomness so obtained is used to simulate
Π.

We construct various extraction protocols, in which
the players interact to obtain unbiased and independent

random bits. The problem that we will need to overcome
is naturally that when a player receives a sample from
another player (which may be faulty), he cannot assume
that the sample is good and not constructed to corre-
late with other samples being exchanged. We construct
extraction protocols that work even if some of the play-
ers contribute bad inputs which may depend on samples
that have seen sent by honest players (in the case of full
information protocols).

As building blocks, we will use the extractors of [24,
7,20] as well as the strong extractors of [8,20]. A strong
extractor ensures that the output of the extraction is
random even if one is given some of the inputs to the
extractor.

In the case of weak sources, we build in various ways
on top of the existing distributed algorithms for Byzan-
tine Agreement. Our extraction procedures will guaran-
tee that a certain fraction of the non-faulty players ob-
tain perfectly unbiased and independent coins. However,
this will not necessarily be the case for all the non-faulty
players, and thus one may fear that now when running
existing randomized BA protocols with perfect random-
ness only available to some of the non-faulty players, the
fault-tolerance of the final protocol may go down. Luckily
this is not the case, due the following interesting general
observation.

When we analyze the current usage of randomness in
[14,6], we find on closer look that one may distinguish
between how many non-faulty players truly need to have
access to perfectly unbiased and independent sources of
random coins, and how many non-faulty players merely
need to follow the protocol instructions. The number of
non-faulty players which need to have access to perfect
coins is drastically lower than the total number of non-
faulty players. In the Feldman-Micali protocol[14], it suf-
fices for t+1 players to posses good randomness whereas
we need all the n − t non-faulty players to follow the
protocol to prove correctness and expected O(1) termi-
nation. In the case of the Chor-Coan protocol [6], it suf-
fices for (1

2 + δ)n (for arbitrarily small constant δ > 0)
players to possess good randomness.

Organization of this paper In Section 2 we describe the
communication models as well as the models of imper-
fect randomness considered in this paper. In Section 2.5
we descibe the technical ingredients used to extract pure
randomness from imperfect randomness. In particular,
we construct some new, though simple, extractors that
use a mix of imperfect randomness and adversarial in-
puts from multiple sources to extract pure randomness.
In Section 4 we construct the compiler that converts an
arbitrary distributed algorithm to one that works even
when the randomness comes from a block source. In Sec-
tion 5, we construct optimal Byzantine agreement pro-
tocol in various settings, that work with weak sources.

4

2 Definitions and the Model

2.1 Preliminaries

Throughout this paper, we use letters X and Y to denote
random variables. Probability distributions are denoted
by letters C and D. We sometimes identify a random
variable X with its distribution D.

The Statistical Distance between distributions C and
D on a set S,

‖ C − D ‖def=
1

2

∑
s∈S
|C(s)−D(s)|.

When ‖ C −D ‖≤ ε, we say that the distributions C and
D are ε-close, and denote it by C ≈ε D (or sometimes
simply C ≈ D).

We denote by Uk the uniform distribution on the set
{0, 1}k. We let X ◦Y denote the joint distribution of the
random variables X and Y . In particular, X ◦Uk denotes
the joint distribution of the random variable X and an
independent uniformly distributed random variable Uk.

2.2 Imperfect Random Sources

A k-bit source of randomness is simply a random variable
X whose support is the set {0, 1}k. The randomness con-
tained in a source is quantified by its min-entropy. The
min-entropy of a random variable X, supported on the
set {0, 1}k is defined as

H∞(X)
def
= minx∈{0,1}k

{
− log2(Pr[X = x])

}
.

Definition 1 (Weak Source) A (k, δ)-weak source
(or simply a (k, δ)-source) is a random variable X sup-
ported on the set {0, 1}k such that for any x ∈ {0, 1}k,
Pr[X = x] ≤ 2−δk.

A sequence of random variables X1 ◦X2 ◦ . . . ◦X` is
called a (k, δ)-block source if each block Xi has support
{0, 1}k and has min-entropy δk, even conditioned on any
values of all the other blocks. This notion corresponds to
sampling multiple times from a source of random bits,
wherein we are guaranteed that each sample has some
fresh entropy. The block-length k specifies how often new
entropy is generated by the source. Let Xi denote the
concatenation of all blocks excluding Xi.

Definition 2 (Block Source) A sequence of random
variables, X1◦X2◦. . .◦X` is called a (k, δ)-block source
if for all i, xi and xi, Pr[Xi = xi |Xi = xi] ≤ 2−δk.

2.3 The Network, Communication and Fault Models

A distributed system is a set of processors joined by bidi-
rectional communication channels. For simplicity, we al-
ways assume that the processors are fully connected to

each other. Let n be the number of processors and let

P
def
= {P1, P2, . . . , Pn} be the set of processors.
The communication channels in the network could

be either synchronous and asynchronous. In the syn-
chronous case, the communication proceeds in rounds.
At the beginning of round i, all the processors send mes-
sages to each other. The messages are delivered at the
end of round i, after which the processors perform lo-
cal computation and change state. In the case of asyn-
chronous communication, however, the only guarantee is
that the messages sent are eventually received by the re-
cipient. Messages can be arbitrarily re-ordered, and ar-
bitrarily delayed. We present a more formal model of
asynchronous systems in Section 4.

A further characterization of the channels depends on
whether they allow for private communication between
the pair of processors involved. In the private channels
model, the communication between players i and j is
invisible to all the players but i and j. In contrast, in the
full-information model, the communication between any
two players is visible to the adversary.

In this paper, we exclusively deal with Byzantine
faults. Byzantine players can deviate arbitrarily from the
prescribed protocol, and co-ordinate with each other so
as to mislead the good players into disagreement. The
coalition of Byzantine players is informally referred to
as the adversary. We do not assume that the adver-
sary is computationally bounded. In addition, in the syn-
chronous case, we allow the adversary to be rushing. i.e,
the adversary can see all the messages sent by the good
players in a round r, before deciding what to send in
round r. In other words, all the good players send mes-
sages in the beginning of a round, whereas the bad play-
ers can delay sending messages until later in the round,
when they (possibly) have had the chance to learn about
the good players’ messages.

2.4 Our Model of Randomness

Each player Pi has its own source of imperfect random-
ness Xi (which is either a block source or a weak source).
We assume that the random sources of any two players
are independent. That is, the random variables Xi and
Xj are independent for any i and j.

2.5 Extracting Pure Randomness

Naturally, the first thing to attempt, given a (k, δ)-source
X, would be to extract “pure randomness” from X. That
is, we would like to construct a deterministic function
Ext : {0, 1}k → {0, 1}m (for some m > 0) such that
for any (k, δ)-source X, ‖ Ext(X) − Um ‖ is small. The
condition that the extractor works for any (k, δ)-source
corresponds to the natural limitation that we cannot as-
sume anything about the structure of the source except
that it has a certain min-entropy.

5

Unfortunately, it is easy to show that this task is
impossible in general. Thus, it is natural to ask if one
can extract uniform randomness given two independent
(k, δ)-sources. Chor-Goldreich [7] answered this in the
affirmative for the case when δ > 1

2 . In particular, they

built a function Ext : ({0, 1}k)2 → {0, 1} such that for
some ε > 0, ‖ Ext(X,Y)− U1 ‖≤ ε. We call such an Ext
a two-source (deterministic) extractor.

More recently, Raz [20] showed this for the case when
one of the two sources has min-entropy at least k

2 and the
other has min-entropy at least log k. Below, we formally
define the notion of a deterministic two-source extractor,
which is a key tool in our constructions.

Definition 3 A function Ext : ({0, 1}k)2 7→ {0, 1}m is
called a (k, δ)-two-source extractor if for any two in-
dependent (k, δ)-sources X and Y ,

‖ Ext(X,Y)− Um ‖≤ ε.

A strong extractor is a generalization of this notion.
A strong two-source extractor is one in which the out-
put of the extractor is independent of each of the inputs
separately. In other words, the output of the extraction
is random even given one of the inputs. More formally,

Definition 4 A function Ext : ({0, 1}k)2 7→ {0, 1}m is
a (k, δ)-two-source strong extractor if for any two
independent (k, δ)-sources X and Y ,

‖ Ext(X,Y) ◦X − Um ◦X ‖≤ ε.

Dodis and Oliveira [8] show that some well-known
constructions of two-source deterministic extractors in-
deed yield two-source strong extractors. In a recent re-
sult, Raz [20] shows how to construct very general two-
source strong extractors.

3 Extracting Randomness in a Network

Each player participating in a randomized distributed
protocol is traditionally assumed to have a uniformly dis-
tributed string that is independent of the random strings
of the other players. In addition, some protocols assume
that the randomness of each player is private. i.e, the
faulty players have no information on the randomness of
the good players. There is no guarantee on the behavior
of the protocol if the players use an imperfect random
source or if the randomness is public.

Our goal would be to run a distributed extraction
protocol among the players such that the good players
help each other extract a uniform random string collec-
tively from their (mutually independent) weak random
sources, even in the presence of some malicious parties.
The malicious colluding parties could each contribute an
arbitrary string, possibly correlated with what they see
in the network, as input to the extraction protocol.

The main building block in our randomness extrac-
tion protocols is a multi-source extractor whose output is
random even if an arbitrary subset of the input sources
do not have any min-entropy.

Definition 5 (Immune Extractor) Let X be a (k, δ)-
block source, and let Y1, Y2, . . . , Yp be random variables,
at least q of which are (k, δ)-block sources. Assume that
all the sources are independent. Then, a function Ext :
({0, 1}∗)p+1 7→ {0, 1}m is called a (p, q)-immune (k, δ)-
extractor if ‖ Ext(X,Y1, . . . , Yp) − Um ‖≤ ε for some
ε > 0.

In the above definition, we are guaranteed that the
p− q “bad” sources are independent of the q+ 1 “good”
sources. We will need an extractor that works even if all
the q sources Yi are not independent of each other (We
still need to assume that all the Yi’s are independent of
X). A (p, q)-strongly immune extractor extracts uniform
randomness under these more stringent conditions.

Definition 6 (Strongly Immune Extractor) Let X
be a (k, δ)-block source, and let Y1, Y2, . . . , Yp be random
variables, at least q of which are (k, δ)-block sources. As-
sume that, ∀i, Yi is independent of X. Then, a function
Ext : ({0, 1}∗)p+1 7→ {0, 1}m is called a (p, q)-strongly
immune (k, δ)-extractor if ‖ Ext(X,Y1, . . . , Yp)−Um ‖≤ ε
for some ε > 0.

We can define the notions of a (p, q)-immune strong
extractor and a (p, q)-strongly immune strong extractor
by requiring the stronger condition that

‖ Ext(X,Y1, . . . , Yp)◦Y1 ◦ . . .◦Yp−Um ◦Y1 ◦ . . .◦Yp ‖≤ ε.

The motivation for these definitions is as follows.
Some distributed protocols might require the players to
have private randomness. But, if the players are con-
nected by non-private channels, most of the inputs to
the extraction protocols will be visible to the adversary.
If the output of the extraction protocol indeed depends
on the values that were publicly transmitted, then the ex-
tracted randomness is not private. We need to construct
(p, q)-strongly immune strong extractors to ensure that
the randomness extracted is indeed private. Table 3 gives
the construction of the immune extractor. We show that,

– If Ext is a two-source extractor, then IExt is a (p, 1)-
immune extractor, and

– If Ext is a two-source strong extractor, then IExt is a
(p, 1)-strongly immune strong extractor.

Theorem 1 Suppose Ext is any (k, δ)-two source extrac-
tor. Then, IExt is a (p, 1)-immune (k, δ)-extractor.

Proof Without loss of generality, let Y1 be the (k, δ)-
source. Denote by X ′1 the distribution of X conditioned
on all the Xi (i > 1). Since X is a block source, it follows
that H∞(X ′1) ≥ δk. Thus Ext(X ′1, Y1) is ε-close to Um.

6

The Construction of IExt(Ext, X, Y1, . . . , Yp)
Inputs:

– An extractor Ext(·, ·).
– Let X1, X2, . . . , Xp denote p distinct blocks of the

(k, δ)-block source X.
– Let Y1, . . . , Yp be one block each from p other sources.

IExt({Xi}pi=1, Y1, . . . , Yp) =
⊕p

i=1
Ext(Xi, Yi).

Table 2 Construction of an Immune Extractor

Now, all the Yi are independent of Y1. Therefore,
for any i, Ext(xi, Yi) is independent of Ext(X ′1, Y1). A
straightforward consequence is that

⊕p
i=1 Ext(Xi, Yi) is

ε-close to Um.

Now, suppose the Yi are allowed to depend on each
other. Using a simple (not necessarily strong) extractor
in the construction of IExt is not guaranteed to work,
since a ”‘bad”’ Yi could be chosen such that Ext(Xi, Yi) is
non-trivially correlated with Ext(X ′1, Y1). However, using
a strong extractor eliminates this difficulty – informally,
a strong extractor guarantees that Ext(X ′1, Y1) is inde-
pendent of Y1. Thus, even though Ext(Xj , Yj) depends
on Y1, it has no influence on the output of IExt.

Theorem 2 Suppose Ext is any (k, δ)-two source strong
extractor. Then, IExt is a (p, 1)-strongly immune (k, δ)-
strong extractor.

Proof Without loss of generality, let Y1 be the (k, δ)-
source. Denote by X ′ the distribution of X1 conditioned

on arbitrary values of the other blocks. That is, let X ′1
def
=

[X1|X2 = x2, . . . , Xp = xp]. Then, since X is a block
source with min-entropy δk, it follows that the distribu-
tion X ′1 has min-entropy δk. Thus Ext(X ′1, Y1) is ε-close
to Um.

Let D1 = Ext(X ′1, Y1) and let Di = Ext(Xi, Yi) for
i > 1. From the fact that Ext is a strong extractor, we
have that

[
D1, Y1

]
≈
[
Um, Y1

]
.

Now, an adversary generates Yi (i > 1) as a function
of Y1. Thus, by Proposition 1,[

D1, Y1, Y2, . . . , Yp
]
≈
[
Um, Y1, Y2, . . . , Yp

]
.

Recall that D1 = Ext(X ′1, Y1), and that both X ′1 and Y1
are independent of X2, . . . , Xp. Thus,[

D1, X2, X3, . . . , Xp

]
≈
[
Um, X2, X3, . . . , Xp

]
.

Since the Xi are independent of the Yi,[
D1, Y1, . . . , Yt, X2, . . . , Xt

]
≈
[
Um, Y1, . . . , Yt, X2, . . . , Xt

]
.

Therefore, again by Proposition 1,[
D1, Y1, Y2, . . . , Yt,Ext(X2, Y2), . . . ,Ext(Xt, Yt)

]
≈[

Um, Y1, Y2, . . . , Yt,Ext(X2, Y2), . . . ,Ext(Xt, Yt)
]
.

Construction of the Compiler C(Π)

Input: A Protocol Π.
Output: A Protocol Π ′, whose code is as below:

1. (Each player Pi) Sample n − 1 blocks of randomness

Y j
i and send the jth block Y j

i to player Pj .
2. (Each player Pi) Wait to receive messages from t + 1

players.
3. (Each player Pi) Denote by Y i

j the block received from

player Pj (If no message is received from Pj , set Y i
j =

0). Sample n blocks from the source and denote the
sample as X = (X1, . . . , Xn).

4. – Private Channels Case: Let Ext be some two-source
extractor. Set Ri = IExt(Ext, X, Y1, . . . , Yn).

– Non-private Channels Case: Let Ext be
some two-source strong extractor. Set
Ri = IExt(Ext, X, Y1, . . . , Yn).

5. Run Π with Ri as the random tape of player Pi.

Table 3 The Compiler C for the case of Block Sources

Note that Di
def
= Ext(Xi, Yi). This means that, D1 ≈

Um, even given Di (i > 1) and the Yi. Thus,

[t⊕
i=1

Di, Y1, . . . , Yt
]
≈
[
Um, Y1, . . . , Yt

]
.

Proposition 1 Assume X1, X2, Y and Z are random
variables such that Z is independent of X1 and X2. If
(X1, Y) ≈ (X2, Y), then (X1, f(Y,Z)) ≈ (X2, f(Y, Z)).

4 Simulating Distributed Algorithms with Block
Sources

We are ready to show how to execute randomized dis-
tributed algorithms, assuming that the players have in-
dependent block sources. We exhibit a compiler C which,
when given any distributed algorithm Π as input, out-
puts an algorithm Π ′ that “behaves exactly like” Π, but
works even when the randomness comes from a block
source.

The compiler first runs a 1-round pre-processing pro-
tocol, at the end of which all the honest players obtain
perfectly random and independent strings. Moreover, the
randomness extracted by a player is independent of the
views of all the other players (and is thus, private). This
randomness can now be used to simulate any distributed
protocol Π. See Table 4 for the construction of the com-
piler C.

First of all, we need to define what it means for the
protocol Π ′ to simulate protocol Π. The view of a player
P in a protocol Π, denoted as viewΠ(P) is the set of all
messages received by P , the inputs of P in the protocol
Π and the random tape of P . The view of a set S of
players is simply ∪P∈SviewΠ(P).

The following definition captures what it means for a
protocol to have the same outcome as another protocol.

7

Informally, we say that Π ′ simulates Π, if for any adver-
sary that produces some effect on the protocol Π ′, there
is another adversary (simulator) that produces the same
effect in protocol Π. Formally,

Definition 7 (Π ′ simulating Π) A protocol Π ′ is said
to simulate a protocol Π, if for any adversary A for the
protocol Π, there exists an adversary A′ for the protocol
Π ′ such that viewΠ′(P) ≈ viewΠ(P).

Theorem 3 (Block Sources) Suppose Π is a distributed
protocol. Then, the protocol Π ′ = C(Π) simulates Π.

The key fact we use is that, for each honest player Pi, the
randomness extracted Ri is independent of the messages
passed in the network before Step 5 (See Table 4). This
fact follows trivially from Theorems 1 and 2.

Proof Given any adversary A′ = (A1,A2) for Π ′, we
construct an adversary A for Π as follows. A gener-
ates, for every honest player, n blocks of randomness,
and sends t of them to the A1. It then runs A2 with the
output of A1 as its input.

Denote by Rh the joint distribution of the random
tapes of all the honest players after Steps 1–4 of pro-
tocol Π ′, and by RA the view of the adversary in the
protocol Π ′. We first observe that the joint distribution

(Rh, RA)
s≡ (U`, RA) for some ` > 0. Thus, since the

input distribution of the players in both cases is ε-close,
the views at the end of the protocols are ε-close too, by
Proposition 1.

As a corollary, we get that the best known Byzantine
Agreement protocols can be executed even when the
randomness of each player comes from a block source,
with an overhead of one round, and with the same fault-
tolerance.

Corollary 1 If n ≥ 3t+1, then there exist BA protocols
that tolerate t faults, when the players have (k, δ) block-
sources with δ > 1

2 , and

– run in O(1) rounds, in a synchronous network with
private channels,

– run in O(1) rounds, in an asynchronous network with
private channels,

– run in O(log n) rounds, in a synchronous network
with non-private channels,

– run in O(2n) rounds, in an asynchronous network
with non-private channels.

5 Simulating Distributed Algorithms with Weak
Sources

This section deals with simulating distributed algorithms
using a weak random source. We would not be able to
simulate arbitrary distributed algorithms this way. In-
stead, we show how to construct randomized Byzantine

Protocol Private-Channels-Extract

1. Group the players P1, P2, . . . , Pn into pairs
(P1, P2), . . . , (Pn−1, Pn). Let Ext be a two-source
extractor.

2. (Each player Pi)
– If i is even, sample a k-bit string Xi from the

source, and send it to Pi−1.
– If i is odd, sample a k-bit stringXi from the source,

and receive a k-bit string Xi+1 from Pi+1. Com-
pute an m-bit string Ri ← Ext(Xi, Xi+1). Send to
Pi+1 the first m

2
bits of Ri and store the remaining

bits.

Table 4 Pre-processing protocol for the Synchronous, Pri-
vate Channels case

agreement (BA) protocols that work even when the play-
ers have access to weak sources. The protocols we con-
struct have running time and fault-tolerance that match
the best known randomized BA protocols that use per-
fect randomness.

Our transformations are fairly generic and we de-
scribe a general class of distributed algorithms on which
they can be applied. First of all, we need the following
proposition that shows us how to get a block source with
a small number of blocks from a weak source with a high
enough min-entropy. Proposition 2 says exactly that.

Proposition 2 Fix a constant c > 0. Assume X is
a (k, δ)-weak source, where δ > 1 − 1

2c . Then, we can
deterministically construct a (k′, δ′)-block source Y =
Y1 ◦ . . . ◦ Yc from X, where k′ = k

c and δ′ > 1
2 .

We run a pre-processing protocol, just as in the case
of block sources, but among a small number of players.
This will guarantee that a sufficiently large fraction of
the honest players get truly random strings at the end of
the pre-processing. We conclude by showing that some
Byzantine Agreement protocols do not require all the
honest players to have random strings – it is sufficient
that a large fraction of the honest players have random
strings.

5.1 Byzantine Agreement Protocols

The protocol Synch-PC-Extract ensures that, in the pres-
ence of at most t faults, at least 2bn2 c − 2t good players
get private random strings.

Theorem 4 (Synchronous, Private Channels) Let
n ≥ 3t + 2. then there exists a BA protocol that runs
in expected O(1) rounds tolerating t faults, assuming the
players are connected by a synchronous network with pri-
vate channels, and have (k, δ) block-sources with δ > 1

2 .

Proof In the first round, the players run the protocol
Synch-PC-Extract. Let Ri denote the output of player
i after running Synch-PC-Extract. Now, the players run

8

Protocol Asynch-Extract

1. Each player pi does the following: (Note: Ext is either a
(t+1, t)-immune extractor or a (t+1, t)-strongly immune
strong extractor).
– Wait to receive t + 1 strings Y1, Y2, . . . , Yt+1 from
t+ 1 different players.

– Sample blocks X1
1 , X

2
1 , . . . , X

t+1
1 from the random

source.
– Compute and Store Ri ←

Ext({Xj
1}

t+1
j=1, Y1, Y2, . . . , Yt+1).

Table 5 Pre-processing protocol for the Asynchronous case

Protocol Synch-FI-Extract

1. Group the players into 4-tuples (p1, p2, p3, p4), . . .,
(pn−3, pn−2, pn−1, pn). Let SI-ext be a (3, 2)-strongly
immune strong extractor. (Note: Assume for simplic-
ity that n is a multiple of four. If not, add at most two
dummy players.)

2. Each player pi does the following: (Assume that pi is
in a 4-tuple with pi+1, pi+2 and pi+3.)

– Samples six blocks Xj
1 (j = 1, . . . , 6) from its ran-

dom source.
– Send Xj

1 to pi+j (for j = 1, . . . , 3). Store Xj
1 (j =

4, . . . , 6).
– Receive k-bit strings Yj from pi+j (j = 1, . . . , 3).
– Compute Ri ← SI-ext({X4

1 , X
5
1 , X

6
1}, Y1, Y2, Y3)

and store Ri.

Table 6 Pre-processing protocol for the Synchronous, Full-
Information case

the BA protocol of Feldman and Micali [14] using Ri as
randomness.

There are at least bn2 c − t ≥ b
t
2c+ 1 pairs such that

both the players in the pair are good. In each pair, the
players extract uniform and independent random strings.
Thus, there are at least 2(b t2c+ 1) ≥ t+ 1 players at the
end of the protocol with m-bit strings that are ε-close to
uniform. Because of the private channels assumption, the
inputs used to compute Ri are invisible to the adversary,
and therefore, the randomness extracted is private.

Theorem 5 (Synchronous, Full-Information) As-
sume n ≥ 3t + 1. Then, there exists a BA protocol that
runs in expected O(t

logn) rounds tolerating t faults, as-

suming the players are connected by a synchronous net-
work with non-private channels, and have (k, δ) block
sources with δ > 1

2 .

Proof In the first round, the players run the protocol
Synch-FI-Extract. Using the randomness so obtained, run
the BA protocol guaranteed by Lemma 1.

Consider the set of 4-tuples of players such that at
most two players in the 4-tuple are bad. There are at
least bn4 c−b

t
3c ≥ b

5t
12c such tuples. In each such pair, the

good players extract uniform and independent random
strings, since there are at least two good players in such
a 4-tuple and Ext is a (3, 2)-strongly immune extractor.

There are at least 4b 5t12c ≥
5
9n = (1

2 + Θ(1))n players
at the end of the protocol with m-bit strings that are
ε-close to uniform. Moreover, the random strings Ri of
these players are private, since Ext is a strong extractor.
Now, invoke Lemma 1 to complete the proof.

Lemma 1 If n ≥ 3t+ 1, there exists a BA protocol that
runs in expected O(t

logn) rounds tolerating t faults in a

synchronous network with non-private channels, even if
only (1

2 + δ)n good players have private randomness (for
some δ > 0).

Proof The protocol of Chor and Coan [6] is such a BA
protocol. We first sketch the protocol and then prove
that it indeed has the claimed property.

The players are divided into fixed disjoint groups
of size g. The ith group consists of the set of players
{p(i−1)g+1, . . . , pig}. For any player pi, let GROUP(pi)
denote the group that pi belongs to. The protocol pro-
ceeds in phases where, in each phase, the players try to
reach agreement on their values. In each phase, one of
the groups is said to be active. The purpose of the play-
ers in the active group is (among other things) to toss
coins and send it to all the other players.

1. For e = 1 to ∞, each player pi does the following:
(Note: e is the current phase.)
(a) Sends the message (e,Phase1, bi) to every player.
(b) Receive messages from every other player of the

form (e,Phase1, ∗).
(c) If for some v, there are ≥ n − t messages of the

form (e,Phase1, v), then set bi ← v, else set bi ←
“?”

(d) If GROUP(pi) ≡ e (mod bng c) then set coin ← b,

else set coin← 0 {Note : b is a random bit}
(e) Send the message (e,Phase2, bi, coin) to all play-

ers.
(f) Receive messages of the form (e,Phase2, c, coin)

from every player.
{ Note: Let NUM(c) be the number of messages
received that contain c. }

(g) If NUM(c) ≥ n− t for some bit c, decide c.
(h) Else, if NUM(c) ≥ t + 1 and NUM(c) > NUM(c̄),

set bi ← c.
(i) Else, set bi ← majority of the coinj ’s from the

group x, where x ≡ e(mod bn/gc).
The following properties of the protocol are easily ver-
ified: (a) If a player pi decides at the end of a phase,
all players decide by the end of the next phase. (b) If
a player sets bi ← c at the end of a phase (instruction
h, above), then no player pj sets bj ← c̄. Given this,
it is easy to see that agreement is reached when all the
remaining players (ones who set bi to be the coin-toss
from a group) set bi to c (in instruction i). It remains
to analyze the expected number of rounds in which this
event happens.

Set the size of a group to be g = 2m = log n. Call a
group e good if more than m+ 1 players in the group are

9

non-faulty. Call a coin-toss good if at least m + 1 good
players in a group tossed the same coin (with a fixed
value – 0 or 1).

Pr[group e’s coin is good | e is a good group] ≥ 1

2m+1
.

Now, lets analyze how many bad groups there can be.
There are at most t < (1

2 − ε)n players who have no

randomness, and these players can make at most t
m+1 <

(1
2 − ε)

2n
logn = (1 − 2ε) n

logn groups bad. Since there are
n

logn groups in total, the number of good groups is at

least 2εn
logn .

The protocol terminates as soon as there is a good
coin-toss. The expected number of good groups that have
to toss coins before they get a good coin is precisely
2m+1 ≤ 2

√
n. The probability that a good coin is not

formed after n3/4 groups tossing coins is negligible, by a
Chernoff Bound. Thus, the expected number of rounds
to each agreement is 2t

logn + n3/4 +O(1).

Theorem 6 (Asynchronous Network) If n ≥ 3t +
1, then there exist BA protocols that tolerate t faults in
an asynchronous network, when the players have (k, δ)
block-sources with δ > 1

2 , and

– run in O(1) rounds, with private channels, and
– run in O(2n) rounds, with non-private channels.

Proof
In the private channels case: In the first round, the players
run the protocol Asynch-Extract with a (t+ 1, t)-immune
extractor in the place of Ext. Let Ri denote the output of
player i after running Asynch-Extract. Now, the players
run the O(1)-round BA protocol of [5], with player i
using Ri as the randomness to the [5] protocol.

Each player pi gets t + 1 strings, eventually. This is
because n ≥ 2t+1 and there are at most t faulty players.
At least one of the t + 1 strings is “good”. i.e, it comes
from a (k, δ) block-source which is independent from pi’s
source. By the (t+1, t)-immunity of Ext, this means that
the output Ri of player i is ε-close to uniform. Further,
the output Ri of pi is private, informally because one of
the inputs to Ext is unknown to the faulty players.
In the non-private channels case: The players run the
protocol Asynch-Extract with a (t+1, t)-strongly immune
strong extractor in the place of Ext.

5.1.1 Discussion and Future Work

An intriguing question is whether one can achieve a gen-
eral simulation of an arbitrary distributed algorithm,
even when one is given weak sources. In this paper, we
answer this question for some specific type of distributed
algorithms (such as the best known Byzantine Agree-
ment protocols in some settings).

Models of randomness other than what we chose to
focus on in this paper may have been assumed. The one

we find particularly appealing is where each player has
a weak random source, but the sources are correlated.
Namely, the only guarantee is that the randomness sam-
pled by player i has a large min-entropy even conditioned
on the values for random strings sampled by all other
players. The model considered in this paper is a first ap-
proximation to this more general model. Note that the
correlation is adversarial and cannot be used to our ad-
vantage in any way.

Acknowledgments. The authors wish to acknowledge
initial conversations on this topic with Adi Akavia and
Oded Goldreich.

References

1. Boaz Barak, Russell Impagliazzo, and Avi Wigderson.
Extracting randomness using few independent sources.
In FOCS, pages 384–393, 2004.

2. Michael Ben-Or. Another advantage of free choice: Com-
pletely asynchronous agreement protocols (extended ab-
stract). In PODC, pages 27–30, 1983.

3. Michael Ben-Or, Elan Pavlov, and Vinod Vaikun-
tanathan. Byzantine agreement in the full-information
model in o(logn) rounds. unpublished manuscript.

4. Gabriel Bracha. An asynchronous [(n-1)/3]-resilient con-
sensus protocol. In PODC, pages 154–162, 1984.

5. Ran Canetti and Tal Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In STOC, pages 42–
51, 1993.

6. Benny Chor and Brian A. Coan. A simple and effi-
cient randomized byzantine agreement algorithm. IEEE
Trans. Software Eng., 11(6):531–539, 1985.

7. Benny Chor and Oded Goldreich. Unbiased bits from
sources of weak randomness and probabilistic communi-
cation complexity. FOCS, pages 429–442, 1985.

8. Yevgeniy Dodis and Roberto Oliveira. On extracting pri-
vate randomness over a public channel. In RANDOM-
APPROX, pages 252–263, 2003.

9. Yevgeniy Dodis, Shien Jin Ong, Manoj P, and Amit Sa-
hai. On the (im)possibility of cryptography with imper-
fect randomness. In FOCS, pages 196–205, 2004.

10. Yevgeniy Dodis and Joel Spencer. On the
(non)universality of the one-time pad. In FOCS,
pages 376–, 2002.

11. Cynthia Dwork, David B. Shmoys, and Larry J. Stock-
meyer. Flipping persuasively in constant time. SIAM J.
Comput., 19(3):472–499, 1990.

12. P. Elias. The efficient construction of an unbiased random
sequence. Ann. Math. Statist., 43(3):865–870, 1972.

13. Paul Feldman. Asynchronous byzantine agreement
in expected constant number of rounds. unpublished
manuscript.

14. Pesech Feldman and Silvio Micali. An optimal probabilis-
tic protocol for synchronous byzantine agreement. SIAM
J. Comput., 26(4):873–933, 1997.

15. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson.
Impossibility of distributed consensus with one faulty
process. In PODS, pages 1–7, 1983.

16. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, 1985.

17. Juan A. Garay and Yoram Moses. Fully polynomial
byzantine agreement for > processors in + 1 rounds.
SIAM J. Comput., 27(1):247–290, 1998.

10

18. M. Pease, R. Shostak, and L. Lamport. Reaching agree-
ment in the presence of faults. Journal of the ACM.,
27:228–234, 1980.

19. Michael O. Rabin. Randomized byzantine generals.
FOCS, pages 403–409, 1983.

20. Ran Raz. Extractors with weak random seeds. STOC,
to appear, 2005.

21. M. Santha and U. V. Vazirani. Generating quasi-random
sequences from slightly-random sources. In FOCS, pages
434–440, Singer Island, 1984.

22. Umesh V. Vazirani. Towards a strong communication
complexity theory or generating quasi-random sequences
from two communicating slightly-random sources (ex-
tended abstract). In STOC, pages 366–378, 1985.

23. J. von Neumann. Various techniques for use in connection
with random digits. In von Neumann’s Collected Works,
volume 5, pages 768–770. Pergamon, 1963.

24. David Zuckerman. General weak random sources. In
FOCS 1990, pages 534–543, 1990.

