
Model-Based Safety Analysis of Simulink
Models Using SCADE Design Verifier?

Anjali Joshi and Mats P.E. Heimdahl

Department of Computer Science and Engineering, University of Minnesota
200 Union St SE, Minneapolis, MN 55455, U.S.A.

Phone: 1 612 624 7590, Fax: 1 612 625 0572
{ajoshi,heimdahl}@cs.umn.edu

Abstract. Safety analysis techniques have traditionally been performed
manually by the safety engineers. Since these analyses are based on an
informal model of the system, it is unlikely that these analyses will be
complete, consistent, and error-free. Using precise formal models of the
system as the basis of the analysis may help reduce errors and provide a
more thorough analysis. Further, these models allow automated analysis,
which may reduce the manual effort required.
The process of creating system models suitable for safety analysis closely
parallels the model-based development process that is increasingly used
for critical system and software development. By leveraging the existing
tools and techniques, we can create formal safety models using tools that
are familiar to engineers and we can use the static analysis infrastructure
available for these tools. This paper reports our initial experience in using
model-based safety analysis on an example system taken from the ARP
Safety Assessment guidelines document.

1 Introduction

Traditionally, safety engineers manually perform analyses, such as fault tree anal-
ysis, based on informal design models and requirements documentation. Unfor-
tunately, these analyses are highly subjective and dependent on the skill of the
practitioner. We hypothesize that by redirecting the effort to build models of the
system under study and its fault model we can both reduce the effort involved
and increase the quality of the analysis. To this end, we propose a model-based
safety analysis process in which engineers create formal models for both the
system design and safety analysis, and use automated analysis tools to analyze
their behavior. We describe our early experience towards this goal in this paper.

Our approach is to adapt model-based development techniques using formal
modeling languages and tools such as SCADE [9] and Simulink [5] for safety
analysis. By integrating these tools into safety analysis, it is possible to cre-
ate system models that can be simulated and analyzed using a variety of static
analysis techniques. This combination allows an analyst to quickly explore dif-
ferent “what-if” scenarios on combinations of faults using simulation, and also
? This work has been partially supported by NASA contract NCC-01-001.



allows formal verification of different aspects of fault tolerance and, potentially,
autogeneration of safety analysis artifacts such as fault trees.

We describe our preliminary experiences using model-based safety analysis
with a wheel brake system example adopted from ARP 4761 [1], a standards
document for safety analysis in the avionics industry. With the help of this
example, we illustrate how we can derive benefits from a model-based safety
analysis in a practical setting using existing tools. At the same time, this exercise
exposes several issues and shortcomings that need to be addressed to make formal
safety analysis acceptable in practice.

2 Safety Assessment Process

The overall safety assessment process that is followed in practice in the avionics
industry is described in the SAE standard ARP 4761 [1]. Our summary in this
section is largely adopted from ARP 4761.

PSSAs
 SSAs


System Requirements and

Objectives


Aircraft FHA


System FHAs


System FTAs


Derived Safety

Requirements


Design


System FMEAs


Aircraft FTA


System FTAs


Certification


Aircraft Integration Cross-check


System Integration Cross-check


FC&C


FC&C


FE&P


FE&P


Fig. 1. Traditional “V” Safety Assessment Process

Figure 1 shows an overview of the safety assessment process as recommended
in ARP 4761. The process includes safety requirements identification (the left
side of the “V” diagram) and verification (the right side of the “V” diagram), that
support the aircraft development activities. An aircraft level Functional Hazard
Analysis (FHA) is conducted at the beginning of the aircraft development cy-
cle, which is then followed by system level FHA for individual sub-systems. The
FHA is followed by Preliminary System Safety Assessment (PSSA), which de-
rives safety requirements for the subsystems, primarily using Fault Tree Analysis
(FTA). The PSSA process iterates with the design evolution, with design changes
necessitating changes to the derived system requirements (and also to the fault
trees) and potential safety problems identified through the PSSA leading to de-
sign changes. Once design and implementation are completed, the System Safety



Assessment (SSA) process verifies whether the safety requirements are met in the
implemented design. The system Failure Modes and Effects Analysis (FMEA)
is performed to compute the actual failure probabilities on the items. The ver-
ification is then completed through quantitative and qualitative analysis of the
fault trees created for the implemented design, first for the subsystems and then
for the integrated aircraft.

We propose to modify this traditional “V” process so that the lower level
PSSA and SSA activities are performed based on a formal model of the system
under consideration. Figure 2 shows the modified “V” diagram for model-based
safety analysis. The shaded blocks are those activities that will be modified or
added.

System Requirements

and Objectives


Aircraft FHA


System FHAs


Qualitative

System FTAs


Formal

Model


System FMEAs


Aircraft FTA


System FTAs


Certification


Aircraft Integration Cross-check


System Integration Cross-check


FC&C


FC&C


FE&P


FE&P


Automated 
Fault Tree

Generation


Derived Safety

Requirements


Automated Requirements

Verification


Fault

Model


Formal Model

with Faults


Fault

Injection


Automated Fault

Tolerance Verification


Fig. 2. Modified “V” Safety Assessment Process

As we can observe from Figure 2, the parts of the analysis that are primarily
affected are at the bottom of the “V”. The biggest difference is that the safety
analysis activities at this level are now focused around a formal model of the
system behavior, and that many of the artifacts of the safety analysis can be
derived from this model. The idea is to try to pose the right verification questions
to formal tools (such as model checkers and theorem provers) so that it is possible
to derive the necessary safety analysis information. We then wish to turn the
results of these analyses back into artifacts that can be easily understood and
used by safety engineers.

3 Model-Based Safety Analysis Process

The primary step in a model-based safety analysis is creating a formal specifica-
tion of the system model. The behavior of the system can be specified in formal
specification languages supporting graphical and/or textual representation; e.g.,



synchronous (textual) languages like RSML−e [10] and Lustre [6], and graphical
tools like Simulink [5] and SCADE [9]. The logical and physical architecture of
the system can be specified in an architecture description language.

The derived safety requirements are determined in the same way as in the
traditional “V” process. To support automated analysis, the safety properties
must be expressed in some formal notation. There are several candidate nota-
tions, including temporal logics like CTL/LTL or higher order predicate logics.
One can also specify safety requirements as small behavioral models in some
formal specification language.

To be able to apply formal verification tools to perform safety analysis, in ad-
dition to formalizing the system model, we also need to formalize the fault model.
The fault model, in addition to common failure modes like non-deterministic,
inverted, stuck at etc, could encode information regarding fault propagation,
simultaneous dependent faults and fault hierarchies, etc.

After specifying the fault model and composing it with the original system
model, the safety analysis involves verifying whether the safety requirements
hold in presence of the faults defined in the fault model. The safety engineer can
perform exploratory analysis using formal verification tools, e.g., what is the
largest n such that the particular safety requirement holds in face of n faults?.
The notion could also be specialized to a specific combination of faults rather
than random combinations. With adequate tool support, the formal verification
results could be represented in the form of familiar safety artifacts like fault
trees.

In the following sections, we illustrate some of our early results in applying
the model based safety analysis process on a wheel brake system (WBS) example
derived from the ARP safety analysis guidelines [1]. In section 4, we describe the
informal requirements of the example. Next, in Sections 5 and 6, we describe
how the system model without failures can be encoded in Simulink and how we
can verify safety properties of interest on the model. In section 7, we describe
a simple fault model for the WBS components and extend our system model
to include component faults. Section 8 briefly describes the exploratory safety
analysis performed on the extended model using the SCADE Design Verifier.

4 Wheel Brake System Example

We illustrate some of the basic activities involved in model based safety analysis
with the help of an example of a Wheel Brake System (WBS), as described in
ARP 4761 - Appendix L [1]. We chose this example primarily because the ARP
4761 document is used as the main reference for safety assessment by majority
of the safety engineers in the avionics community.

This section consists of excerpts from the ARP 4761 document giving the
informal requirements for WBS. The informal WBS diagram taken from the
ARP 4761 document is shown in Figure 3. The WBS is installed on the two
main landing gears. Braking on the main gear wheels is used to provide safe
retardation of the aircraft during taxiing and landing phases, and in the event of a



Fig. 3. Wheel Brake System as shown in ARP 47-61

rejected take-off. Braking on the ground is either commanded manually, via brake
pedals, or automatically (autobrake) without the need for pedal application. The
Autobrake function allows the pilot to pre-arm the deceleration rate prior to
takeoff or landing. When the wheels have traction, the autobreak function will
control break pressure to provide a smooth and constant deceleration.

Based on the requirement that loss of all wheel braking is less probable
than 5 · 10−7 per flight, a design decision was made that each wheel has a
brake assembly operated by two independent sets of hydraulic pistons. One set
is operated from the GREEN pump and is used in the NORMAL braking mode. The
ALTERNATE braking system is on standby and is selected automatically when the
NORMAL system fails. The ALTERNATE system is supplied pressure by both the
BLUE pump and an ACCUMULATOR, both of which can be used to drive the brake.
The accumulator is the reserve pressure reservoir with built up pressure that
can be reliably released if both of the two primary pumps (the Blue and Green
pumps) fail. The accumulator drives the ALTERNATE system in the EMERGENCY
braking mode.

Switch-over between the hydraulic pistons and the different pumps is auto-
matic under various failure conditions, or can be manually selected. Reduction
of GREEN pressure below a threshold value, either from loss of the GREEN pump
itself or from its removal by the Break System Control Unit (BSCU) due to the
presence of faults, causes an automatic selector to connect the BLUE supply to
the ALTERNATE brake system. If the BLUE pump fails, then the ACCUMULATOR is
used to supply hydraulic pressure.



An anti-skid facility is available in both the NORMAL and ALTERNATE system
modes. The anti-skid function is similar to the anti-lock brakes common on
passenger vehicles and operates largely in the same manner.

In the NORMAL mode, the brake pedal position is electronically provided to
a braking computer. This in turn produces corresponding control signals to the
brakes. In addition, the braking computer monitors various signals that denote
certain critical aircraft and system states to provide correct brake functions
and improve system fault tolerance, and generates warnings, indications and
maintenance information to other systems.

5 Nominal Wheel Brake System in Simulink

The informal requirements of the WBS as specified in the ARP document were
not found to be particularly rigorous. To implement a working model, we had
to make several assumptions about the system that still need to be confirmed
with the authors of ARP 4761. Figure 4 illustrates how we can model the WBS
in Simulink. The model captures both digital and mechanical components of the
system and reflects the informal structure of the system as given in the ARP
document.

WBS (the highest level component/system) consists of a digital control unit,
the BSCU, and two hydraulic pressure lines, NORMAL (pressured by the Green
Pump) and ALTERNATE (pressured by the Blue Pump and the Accumulator)
line. The system takes the following inputs from the environment - PedalPos1,
PedalPos2, AutoBrake, DecRate, ACSpeed, Skid, and MechPedal. All of the
above inputs, except MechPedal, are forwarded to the BCSU for computing the
brake commands. There are also a number of mechanical components along the
two hydraulic lines, for example different types of valves. We have defined a
library of common components such as the MeterValve, IsolationValve, Pump,
etc., which are then instantiated at various locations in the WBS. The outputs
of the WBS are Normal Pressure (hydraulic pressure at the end of the Normal
line), Alternate Pressure (hydraulic pressure at the end of the Alternate line)
and System Mode (computed by the BSCU).

Due to lack of space, we cannot describe the Simulink model in full detail1.
To illustrate some aspects of fault modelling, we explain the implementation of
the MeterValve component, which is used in three places in Figure 4: the CMD/AS
MeterValve on the Normal hydraulic line and the AS MeterValve and Manual
MeterValve on the Alternate hydraulic line. The meter valve implementation
takes two inputs, the incoming pipe pressure and the valve position command,
and generates an output pressure which depends on the valve position.

1 We will publish the complete Simulink model on our web site:
http://www.cs.umn.edu/crisys



System_Mode


2

Alternate_Pressure


1

Normal_Pressure


z


1


z


1


z


1


S
el

ec
to

rO
ff


N
or

_P
re

ss
ur

e


A
lt_

P
re

ss
ur

e


N
or

_P
re

ss
ur

e_
O

ut



A
lt_

P
re

ss
ur

e_
O

ut



SelectorValve


ValidPower


ValidPower


Pos
Cmd


MechanicalPedal


P
ip

eP
re

ss
ur

e_
In




C
m

dP
os



P

ip
eP

re
ss

ur
e_

O
ut




Manual

MeterValve


NOT


V
al

ve
S

hu
t


P
ip

eP
re

ss
ur

e

P

re
ss

ur
e_

O
ut




Green Pump

IsolationValve


Green

Pump


[Green_P]


[Acc_P]


[Alt_Active]


[AltP_Feedback]

[NorP_Feedback]


[NorValveCmd]


[AltValveCmd]


[Nor_Out]


[Blue_P]


[Nor_Out]


[Acc_P]


[Alt_Active]


[AltP_Feedback]


[NorP_Feedback]


[NorValveCmd]


[AltValveCmd]


[Green_P]


[Blue_P]


P
ip

eP
re

ss
ur

e_
In




C
m

dP
os



P

ip
eP

re
ss

ur
e_

O
ut




CMD/AS

MeterValve


V
al

ve
S

hu
t


P
ip

eP
re

ss
ur

e

P

re
ss

ur
e_

O
ut




Blue Pump

IsolationValve


Blue

Pump


Pwr1


Pwr2


Pedal1


Pedal2


AutoBrakeOn


DecRate


AC_Speed


Skid


Nor_Pressure


Alt_Pressure


Green_Pressure


Blue_Pressure


Acc_Pressure


Out_NorP


Sel_Alt


Nor_Cmd


Alt_Cmd


SystemMode


BSCU


P
re

ss
ur

e_
In




R
es

P
re

ss
ur

e


A
ltA

ct
iv

e


P
re

ss
ur

e_
O

ut

AccumulatorValve


Accumulator

Pump


P
ip

eP
re

ss
ur

e_
In




C
m

dP
os



P

ip
eP

re
ss

ur
e_

O
ut




AS

MeterValve


AC_Speed


Skid


DecRate


AutoBrake


MechPedal


PedalPos2


PedalPos1


2


1


4


5


7


6


3


3


Fig. 4. Nominal Wheel Brake System in Simulink



6 System Verification

After creating the system model, we would like to verify that some basic safety
properties hold on the nominal system, an idealized system containing no faults.
As a first step, we need to formalize the derived safety requirements as safety
properties. Simulink does not directly support any model-checking tools, so to
perform this step, we import the Simulink model into SCADE, which contains
the Design Verifier model checker. The properties can be formalized in Lustre,
which is the underlying textual notation for SCADE.

Throughout this paper, we use an example safety requirement that is given
in the ARP 4761 document,

Loss of all wheel braking (unannunciated or annunciated) during landing
or RTO shall be less than 5 · 10−7 per flight.

Since we are not considering annunciations in this model and we are not
considering any quantitative analysis at this stage, let us simplify this safety
requirement and state the undesirable event we are trying to prevent as simply,

Loss of all wheel braking during landing or RTO shall not occur.

We consider that the hydraulic pressure at the output should be above some
minimum constant threshold to have any effect on the braking. Recall from
Section 4 that we have variables PedalPos1, PedalPos2, and MechPedal, that
describe the electric and mechanical pedal positions, respectively. We can state
our safety property as,

When all pedals are pressed, then either the normal pressure or the al-
ternate pressure should be above the threshold.

We first define two intermediate variables in Lustre to represent whether all of
the pedals are being pressed (AllPed) and whether any pressure is being provided
to the brakes (SomePressure).

AllPed = (IS_PedalPressed(PedalPos1) and IS_PedalPressed(PedalPos2)

and IS_PedalPressed(MechPedal));

SomePressure = (Normal_Pressure > threshold) or

(Alternate_Pressure > threshold);

IS PedalPressed is a predicate that returns true when pedal is pressed. AllPed
and SomePressure are then used in the property SomePressure Property as

SomePressure_Property = Implies(AllPed,SomePressure);

We used Design Verifier in an attempt to verify this property, which was initially
found to be falsifiable. If the wheels do not have traction, the anti-skid function-
ality will be activated and the pressure at the wheels may indeed be lowered
below the threshold to allow the wheels to regain traction. Since this is expected
and acceptable behavior, we modify our safety property accordingly, by extend-
ing AllPed to AllPedNoSkid, where we require that the pedals are pressed and
that we are not skidding.



AllPedNoSkid = (IS_PedalPressed(PedalPos1) and IS_PedalPressed(PedalPos2)

and IS_PedalPressed(MechPedal) and not (Skid));

Now, the SomePressure property is verified by Design Verifier: if all pedals are
pressed and we are not skidding then we will have some pressure at the brakes.

7 Extension with a Fault Model

In Section 5, we created a model describing the nominal behavior of the system.
To perform the safety analysis on this model, we would like to extend it to
describe possible fault behavior. This section illustrates specification of the fault
model and extension of the nominal model with this fault behavior in Simulink.

Failure modes are introduced in the analysis to capture the various ways in
which the components of the system can malfunction. We want to be able to
model both persistent and intermittent failures and also multiple simultaneous
failures. Traditionally, failure modes specify predefined ways in which compo-
nents can fail, e.g., the output from a digital component might be stuck at
a particular value, inverted, take on a nondeterministic value (unconstrained
value), etc. In the WBS example, the mechanical failures considered include
different variants of stuck valves corresponding to the different kinds of valves,
power failure to the BSCU, and pump failures. We also consider one digital fail-
ure mode for the BSCU component, an inverted signal for the Boolean Sel Alt
(select alternate system) output.

Let us consider the notion of a valve stuck open or closed in more detail.
The manifestation of this failure must consider the original input pressure to
the component (in case the valve is stuck open) and override the normal output
of the valve. We create a simple fault model in which a component can either
be stuck open or closed in Figure 5. Binary Stuck at failure mode switches be-
tween the stuck value and the nominal value depending on the boolean Fail Flag
(fault trigger). The stuck value could be either Stuck Val 1 (open) or Stuck Val 0
(closed) depending on the boolean Stuck Choice. Thus, we define two ‘special’
outputs for the failure mode depending on whether the component is stuck open
or closed; if it is not stuck, we output the nominal value of the original com-
ponent. We then extend the MeterValve component to MeterValve Stuck using
this failure mode (Figure 5). When Stuck Choice is 1 the meter valve is stuck
open and the input pressure is forwarded as is to the output, ignoring the valve
position command. When Stuck Choice is 0 the valve is stuck closed and the
output pressure is set to 0.

To extend the original model, the nominal mechanical components from the
original model (Figure 4) are replaced by the corresponding components ex-
tended with failure modes. To control the fault behavior of the extended model,
a number of fault inputs need to be added to the system. For example, all the
valve components, extended by the stuck at failure mode, have two additional
inputs: Stuck Flag and Stuck Val. The rest of the failure modes require a single
input signaling the occurrence of a fault. After extension, the model looks fairly



1


Out


5


Stuck_Choice


4


Fail_Flag


3


Nominal_In


2


Stuck_Val_0


1


Stuck_Val_1


 

Binary_Stuck_at


1


Out


zero


ZERO


Stuck_Val_1


Stuck_Val_0


Nominal_In


Fail_Flag


Stuck_Choice


Out


Binary_Stuck_at
PipePressure_In


CmdPos


Pip
ePressure_Out


MeterValve


4


Cmd


3


Pressure


2


Stuck_at_Val


1


Stuck_Flag


Fig. 5. Binary Stuck at failure mode and MeterValve fault extension

similar to Figure 4, but adds some complexity and clutter due to the number of
additional inputs necessary to describe the possible faults.

8 Exploratory Safety Analysis

After extending the model with the faults, we would like to check the fault
tolerance of our system, i.e., we want to check that the system is tolerant to a
certain maximum number of faults. More specifically, we would like to investigate
two types of faults using this approach—transient single step faults and faults
lasting over an arbitrary number of steps, which can simulate permanent faults.
For this example we again formalize our safety properties in Lustre and use the
SCADE Design Verifier for verification. To make it easier to specify properties,
we extend our model to compute the total number of fault inputs that are true
in the current step (this number given by NumFails).

First, let us verify if our safety requirement holds in the presence of one fault.

If there is one fault and all pedals are pressed in absence of skidding,
then either the normal pressure or the alternate pressure should be above
the threshold.

We can formalize this in Lustre as,

Prop_Orig = fby(Implies(((NumFails = 1) and AllPedNoSkid),

SomePressure), 1, true) ;



Lustre expressions always look at the current and past instants. Implies encodes
implication and pre operator examines values of variables from previous steps.
The fby operator looks at the n-th previous value of an expression (in this case,
the Implies expression). The second argument (1) of the fby expression is the
value for n. The third argument (true) describes the value of the fby operator
in the initial state.

When attempting to verify Prop Orig using Design Verifier, it returns a
counterexample. We realize that, due to some latency, the system cannot respond
to most faults in the same step in which they occur. Unfortunately, even after
extending the number of steps to respond, if our only constraint is on the number
of faults, the model checker finds a counterexample. It gives a scenario in which
the fault migrates: the system toggles between faults on the Normal line and the
Alternate line and can never recover. Since this situation is highly unlikely, we
rule it out. We do so by stating that any transient fault will be followed by a
few steps in which no other transient fault occurs. In other words,

If there is one single step fault and in the next step all pedals are pressed
in absence of skidding, then in the next step either the normal pressure
or the alternate pressure should be above the threshold.

The encoding in Lustre is as follows:

Antecedent = pre(NumFails = 1) and AllPedNoSkid and (NumFails = 0);

Consequent = SomePressure ;

Prop_SingleStepSingleFail = fby(Implies(Antecedent, Consequent),2,true) ;

However, the Design Verifier still returns with a counterexample. We observe
that there is an additional step delay for the system to detect failures located
on the NORMAL system and switch to the ALTERNATE system. We deem this delay
acceptable and modify our property again. After allowing for an additional delay
in the property, the Deign Verifier verifies it. Thus, we can formally verify that
our system can recover from one transient fault in at most three steps.

Now, we want to investigate how our system responds to persistent faults.
To describe this fault scenario, we define a boolean variable, Changed, which
takes on the value true when one of more of the fault trigger inputs change their
values. Using this variable, we can describe persistent faults in which the same
fault occurs for an arbitrary number of steps. The following property is the same
as the earlier transient property, except that now we have not(Changed) instead
of (NumFails = 0) to encode that the same fault persists in the following two
steps.

Antecedent = pre(pre(NumFails = 1)) and pre(AllPedNoSkid and not(Changed))

and AllPedNoSkid and not(Changed) ;

Consequent = pre(SomePressure) or SomePressure ;

Prop_MultiStepSingleFail = fby(Implies(Antecedent,Consequent),3,true) ;

Design Verifier again finds a counterexample, and from this, we observe that
there is an additional delay required for the system to respond to some persistent



faults, in the situation when the system is switching back to the NORMAL hydraulic
system from the ALTERNATE system. In this instance, it takes an additional step
to check if a persistent fault on the NORMAL line is still present. To handle this
case, we add one additional step for the system to stabilize. Design verifier no
verifies that the system will behave as expected. Thus, we verify that the system
can recover from single transient or persistent faults within an acceptable time
frame.

However, we can easily observe that the system is not tolerant to two (or
more) simultaneous continuous failures. Design Verifier immediately comes back
with a counter-example where two meter valves fail along both the normal and
the alternate hydraulic lines. Note that, the safety engineer can explore different
combinations of faults that the system can tolerate. There will not be even a
glitch in the output pressure if all the components on the Alternate line fail when
no component along the Normal line fails.

9 Related Work

Most of the work in automating safety analysis has been in automatically gener-
ating fault trees. FSAP/NuSMV-SA [4] is a tool, developed as part of the ESACS
project [3], for automating the generation of fault trees. The ESACS methodol-
ogy supports integrated design and safety analysis of systems. The FSAP tool
requires the system model to be specified in NuSMV and has support for failure
mode definition and model extension through automatic failure injection. FSAP
uses the NuSMV model checker to generate a fault tree given a top level event
in temporal logic. Though FSAP is a very powerful tool, it has disadvantages,
which might limit its applicability to practical systems. A fault tree generated
by FSAP has a flat structure; the structure of the generated fault trees is an
“or-and” structure, i.e., it is a disjunction of all the minimum cut sets, with
each minimum cut set being a product of basic events. A fault tree generated
by a traditional manual analysis is usually more intuitive to read as the analyst
creates the fault tree to correspond to the structure of the system. Also, we
observed that there isn’t a lot flexibility in defining the fault model - no good
way of specifying fault propagation, simultaneous/dependent faults, and persis-
tent/intermittent faults. Also, FSAP cannot describe even moderately complex
faults, such as stuck at, as it can only affect the output of a component.

HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Stud-
ies) [8] [7] is a method for safety analysis that enables integrated assessment of a
complex system from the functional level through to the low level of component
failure modes. The failure behavior of components in the model is analyzed using
a modification of classical FMEA called Interface Focused-FMEA (IF-FMEA).
One of the strong points of this approach is that the fault tree synthesis algo-
rithm neatly captures the hierarchical structure of the system in the fault tree.

The Altarica language was designed to formally specify the behavior of sys-
tems when faults occur [2]. An Altarica model can be assessed by means of
complementary tools such as fault tree generator and model-checker. In terms of



fault modeling, there seems to be no good support for simultaneous and depen-
dent failures. Altarica does not differentiate between transient and permanent
faults.

10 Summary and Conclusion

We describe Model-Based Safety Analysis, an approach for automating portions
of the safety analysis process using executable formal models of the system.
This approach is based on existing commercial tools and techniques that are
increasingly used for systems and software engineering for safety-critical systems.
We have modelled the Wheel Brake System example from ARP 4761 - Appendix
L [2]. We illustrated how this system can be modelled and investigated for safety
and fault tolerance. We believe that the model-based safety analysis approach
has several benefits to offer to a next-generation safety analysis process. For
instance,

– A tighter integration between systems and safety analysis based on common
models of system architecture and failure modes.

– The ability to simulate the behavior of system architectures early in the
development process to explore potential hazards.

– The ability to exhaustively explore all possible behaviors of a system ar-
chitecture with respect to some safety property of interest using automated
analysis tools.

– The ability to automatically generate many of the artifacts that are man-
ually created during a traditional safety analysis such as fault trees and
FMEA/FMECA charts.

Although we have received positive feedback from our industry partners,
there are several research challenges that must be addressed before the full ben-
efits of model-based safety analysis can be fully realized. First, there are ques-
tions as to which languages and tools are most suitable and how much modeling
detail is necessary to perform useful analysis. Second, we observed that directly
composing the fault model with the system model clutters the ‘nominal’ model
with failure information, which obscures the nominal system functionality. This
complexity may make model evolution difficult, error prone, and costly. In our
opinion, the system model and the fault model should be defined separately and
some automatic composition mechanism should be created allowing the system
model and fault model to be easily merged for analysis. Third, although we were
able to successfully analyze a realistic example, there are serious questions about
the scalability of the analysis tools.

Acknowledgements

We would like to thank Dr. Steven Miller and Dr. Michael Whalen of Rockwell
Collins Inc. for their valuable insights and feedback in course of our collaboration
with them on this project.



References

1. SAE ARP4761. Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment. SAE International, December
1996.

2. Pierre Bieber, Charles Castel, and Christel Seguin. Combination of fault tree anal-
ysis and model checking for safety assessment of complex system. In In Proceedings
of the 4th European Dependable Computing Conference on Dependable Computing,
pages 19 – 31. Springer-Verlag, 2002.

3. M. Bozzano, A. Villafiorita, O. kerlund, P. Bieber, C. Bougnol, E. Bde,
M. Bretschneider, A. Cavallo, C. Castel, M. Cifaldi, A. Cimatti, A. Griffault,
C. Kehren, B. Lawrence, A. Ldtke, S. Metge, C. Papadopoulos, R. Passarello,
T. Peikenkamp, P. Persson, C. Seguin, L. Trotta, L. Valacca, and G. Zacco. Esacs:
an integrated methodology for design and safety analysis of complex systems. In
In Proceedings of ESREL 2003, pages 237–245. Balkema Publishers, June 15-18
2003.

4. Marco Bozzano and Adolfo Villafiorita. Improving system reliability via model
checking: the fsap / nusmv-sa safety analysis platform. In In Proceedings of SAFE-
COMP 2003, pages 49–62, Edinburgh, 2003. Springer.

5. James Dabney and Thomas Harmon. Mastering Simulink. Prentice Hall, Upper
Saddle River, NJ, 2004.

6. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, Septem-
ber 1991.

7. Yiannis Papadopoulos and Matthias Maruhn. Model-based synthesis of fault trees
from matlab-simulink models. In The International Conference on Dependable
Systems and Networks (DSN’01), July 01 - 04 2001.

8. Yiannis Papadopoulos and John A. McDermid. Hierarchically performed hazard
origin and propagation studies. In In Proceedings of the 18th International Con-
ference, SAFECOMP’99, volume LNCS 1698. Springer-Verlag, 1999.

9. Esterel Technologies. Scade suite product description. http://www.esterel-
technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDevelopment/index.html.

10. Michael W. Whalen. A formal semantics for RSML−e. Master’s thesis, University
of Minnesota, May 2000.


