

City, University of London Institutional Repository

Citation: van der Meulen, M., Strigini, L. & Revilla, M. A. (2005). On the effectiveness of

run-time checks. Computer Safety, Reliability and Security, 3688, pp. 151-164. doi:
10.1007/11563228_12

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/469/

Link to published version: https://doi.org/10.1007/11563228_12

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

On the Effectiveness of Run-Time Checks

Meine J.P. van der Meulen, Lorenzo Strigini1 and Miguel A. Revilla2

1 City University, Centre for Software Reliability, London, UK
WWW home page: http://www.csr.city.ac.uk

2 University of Valladolid, Valladolid, Spain
WWW home page: http://www.mac.cie.uva.es/∼revilla

Abstract. Run-time checks are often assumed to be a cost-effective way
of improving the dependability of software components, by checking re-
quired properties of their outputs and flagging an output as incorrect if
it fails the check. However, evaluating how effective they are going to
be in a future application is difficult, since the effectiveness of a check
depends on the unknown faults of the program to which it is applied. A
programming contest, providing thousands of programs written to the
same specifications, gives us the opportunity to systematically test run-
time checks to observe statistics of their effects on actual programs. In
these examples, run-time checks turn out to be most effective for unreli-
able programs. For more reliable programs, the benefit is relatively low
as compared to the gain that can be achieved by other (more expensive)
measures, most notably multiple-version diversity.

1 Introduction

Run-time checks are often proposed as a means to improve the dependability
of software components. They are seen as cheap compared to other means of
increasing reliability by run-time redundancy, e.g. N-version programming.

Run-time checks (also called executable assertions and other names) can be
based on various principles (see e.g. Lee and Anderson [3] for a summary), and
have wide application. For instance, the concept of design by contract [5] enables
a check on properties of program behaviour.

Some run-time checks can detect all failures, for example checks that perform
an inverse operation on the result of a software component [1,2]. If the program
computes y = f(x), an error is detected if x �= f−1(y). This is especially attrac-
tive when computing f(x) is complex, and the computation of the inverse f−1

relatively simple. The argument is then that because computing f−1 is simple,
the likelihood of failure of this run-time check is low. Also, it seems unlikely
that both the primary computation and the run-time check would fail on the
same invocation and in a consistent fashion. Together, these factors lead to a
high degree of confidence that program outputs that pass the check will be cor-
rect. However—as these authors readily admit—such theoretically perfect checks
do not exist in many cases, maybe even not in the majority of cases. Run-time
checks can then still be applied, but they will in general not be capable of finding
all failures. Examples of these partial run-time checks are given by e.g. [12].

Previous empirical evaluation of run-time checks have generally used small
samples of programs, or single programs [4,7,11]. Importantly, we run these mea-
sures on a large population of programs. Indeed, if we wish to learn something
general about a run-time check, we need this statistical approach. Measuring
the effectiveness of a run-time check on a single program could, given a certain
demand profile and enough testing, determine the fraction of failures that the
check is able to detect (coverage) for that program, given that demand profile.
But in practice, this kind of precise knowledge would be of little value: if one
could afford the required amount of testing, at the end one would also know
which bugs the program has, and thus could correct them instead of using the
run-time check. However, a software designer wants to know whether a certain
run-time check is worth the expense of writing and running it, without the ben-
efit of such complete knowledge. The run-time check can detect certain failures
caused by certain bugs: the coverage of the check depends on which faults the
program contains; and the designer does not usually know this. What matters
are the statistics of the check’s coverage, given the statistics of the bugs that may
be present in the program. If a perfect check cannot be had, a check that detects
most of the failures caused by those bugs that are likely to be in a program has
great value. A check that detects many failures that are possible but are not
usually produced, because programmers do not make the mistakes that would
cause them, is much less useful. In conclusion, the coverage of a check depends
on the distribution of possible programs in which it is to be used.

Here, we choose three program specifications for which we have large numbers
of programs, and for each of the three we choose a few run-time checks, then
study their coverage. We thus intend to provide some example “data points”
of how the coverage can vary between populations of programs. In addition
to such anecdotal evidence—evidence that certain values or patterns of values
may occur—such experiments may contribute to software engineering knowledge
if they reveal either some behaviour that runs contrary to the common-sense
expectations held about run-time checks, and/or some apparent common trend
among these few cases, allowing us to conjecture general laws, to be tested by
further research.

For lack of space, we only discuss coverage, or equivalently the probability
of undetected failure. We will also not discuss other dependability issues like
availability (possibly reduced by false alarms from run-time checks), although
these should be taken into account when selecting fault tolerance mechanisms.

2 The Experiment

2.1 The UVa Online Judge

The “UVa Online Judge”-Website [8] is an initiative of one of the authors (Re-
villa). It contains program specifications for which anyone may submit programs
in C, C++, Java or Pascal intended to implement them. The correctness of a
program is automatically judged by the “Online Judge”. Most authors submit

2

Table 1. Some statistics on the three problems.

3n+1 Factovisors Prime Time
C C++ Pascal C C++ Pascal C C++ Pascal

Number of authors 5,897 6,097 1,581 212 582 71 467 884 183
First submission correct 2,479 2,434 593 112 294 41 345 636 125

programs repeatedly until one is judged correct. Many thousands of authors con-
tribute and together they have produced more than 3,000,000 programs for the
approximately 1,500 specifications on the website.

We study the C, C++ and Pascal programs written to three different specifi-
cations (see Table 1 for some statistics, and http://acm.uva.es/problemset/
for more details on the specifications). We submit every program to a test set,
and compare the effectiveness of run-time checks in detecting their failures.

There are some obvious drawbacks from using these data as a source for
scientific analysis. First, these are not “real” programs: they solve small, mostly
mathematical, problems. Second, these programs are not written by professional
programmers, but typically by students, which may affect the amount and kind
of programming errors. We have to be careful not to overinterpret the results.

All three specifications specify programs that are memory-less (i.e. earlier
demands should not influence program behaviour on later ones), and for which
a demand consists of only two integer input values. Both restrictions are useful
to keep these initial experiments simple and the computing time within reason-
able bounds. The necessary preparatory calculations for the analysis of these
programs took between a day and two weeks, depending on the specification.

2.2 Running the Programs

For a given specification, all programs were run on the same set of demands.
Every program is restarted for every demand, to ensure the experiment is not
influenced by history, e.g. when a program crashes for certain demands or leaves
its internal state corrupted after execution of a demand (we accept the drawback
of not detecting bugs with history-dependent behaviour). We set a time limit
on the execution of each demand, and thus terminate programs that are very
slow, stall, or crash. We only use the first program submitted by each author
and discard all subsequent submissions by the same author. These subsequent
submissions have shown to have comparable fault behaviour and this dependence
between submissions would complicate any statistical analysis.

For each demand, the outputs generated by all the programs are compared.
Programs that produce exactly the same outputs on every demands form an
“equivalence class”. We evaluate the performance of each run-time check for each
equivalence class.

For all three specifications, we chose the equivalence class with the highest
frequency as the oracle, i.e. the version whose answers we consider correct. We
challenged each oracle in various ways, but never found any of them to have

3

Table 2. Classification of execution results with plausibility checks.

Output of Output Plausibility Effect from
primary valid check system viewpoint
Correct Yes Accept Success
Correct Yes Reject False alarm
Incorrect Yes Accept Undetected failure
Incorrect Yes Reject Detected failure
Incorrect No - Detected failure

failed. For each specification, the test data were chosen to exhaustively cover a
region in the demand space. In other words, we assume (arbitrarily) a demand
profile in which all demands that occur are equiprobable.

2.3 Outcomes of Run-Time Checks

Run-time checks test properties of the output of a software component (the
primary), based on knowledge of its functionality. In the rest of this paper we
distinguish two types of run-time checks: plausibility checks and self-consistency
checks (SCCs). The latter, inspired by Blum’s “complex checkers” [12], use ad-
ditional calls to the primary to validate its results, by checking whether some
known mathematical relationship that must link its outputs on two or more
demands does hold.

Checks on the values output by the primary are only meaningful if the output
satisfies some minimal set of syntactic properties, one of which is that an output
exists. Other required properties will be described with each specification. We
call an output that satisfies this minimal set of properties “valid” (in principle
this validaty check also constitutes a run-time check). We separate the check for
“validity” from the “real” run-time checks, because it otherwise remains implicit
and a fair comparison of run-time checks is not possible.

Table 2 shows how we classify the effects of plausibility checks. There are
two steps: first, a check on the validity of the output of the primary; second, if
this output is valid, a plausibility check on the output. There is an undetected
failure (of the primary) if both the primary computes an incorrect valid output
and the checker fails to detect the failure. Our plausibility checks did not cause
any false alarms. Also note that a correct output cannot be invalid.

With self-consistency checks, the classification is slightly more complex (Ta-
ble 3): we have to consider that one way the self-consistency check may fail is
because its additional calls to the primary do not elicit valid outputs (e.g., they
cause the primary to crash). We then assume that the self-consistency check will
fail to reject the primary’s output, i.e., that an undetected failure ensues. We
could have made the decision to reject the output of the primary if the self-
consistency check fails in this way; this would lead to slightly different results.
False alarms did occur, which we do not analyse here for lack of space.

4

Table 3. Classification of execution results with self-consistency checks.

Output of Output Output of second call to primary Effect from
primary valid by self-consistency check system viewpoint
Correct Yes Consistent Success
Correct Yes Inconsistent False alarm
Correct Yes Invalid output Success
Incorrect Yes Consistent Undetected failure
Incorrect Yes Inconsistent Detected failure
Incorrect Yes Invalid output Undetected failure
Incorrect No - Detected failure

3 Results for the “3n+1” specification

Short specification. A number sequence is built as follows: start with a given
number n; if it is odd, multiply by 3 and add 1; if it is even, divide by 2.
The sequence length is the number of required steps to arrive at a result of 1.
Determine the maximum sequence length (max) for all values of n between two
given integers i, j, with 0 < i, j ≤ 100, 000. The output of the program is the
triple: i, j, max.

We tested “3n+1” with 2500 demands (i, j ∈ 1..50). The outputs of the
programs were deemed correct if the first three numbers in the output exactly
matched those of the oracle. We consider an output “valid” if it contains at least
three numbers. In the experiment we discard non-numeric characters and the
fourth and following numbers in the output. The programs submitted to “3n+1”
have been analysed in detail in [9]; this paper provides a description of the faults
present in the equivalence classes.

3.1 Plausibility Checks

We use the following plausibility checks for the “3n+1”-problem:

1. The maximum sequence length should be larger than 0.
2. The maximum possible sequence length (given the range of inputs) is 476.
3. The maximum sequence length should be larger than log2(max(i, j)).
4. The first output should be equal to the first input.
5. The second output should be equal to the second input.

We measure the effectiveness of a run-time check as the improvement it
produces on the average probability of undetected failure on demand (pufd).
Without run-time checks, a program’s probability of undetected failure equals
its probability of failure per demand (pfd).

Figure 1 shows the improvement in average pufd given by these plausibility
checks, depending on the average pufd of a pool of programs. We manipulate
this average by removing, one by one, from the original pool of 13575 programs,

5

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3

Valid output
Result larger than 0
Result smaller than 477
1st input = 1st output
2nd input = 2nd output
Result larger than 2log of max

Fig. 1. The improvement of the pufd of the primary for the various plausibility checks
for “3n+1”. The curves for “1st input = 1st output” and “2nd input = 2nd output” are
invisible because they coincide with the curve for “Valid output”.

the programs with the highest pufd. The more programs have been removed, the
lower the average pufd of the remaining pool.

The graph clearly shows that many of these run-time check are very effective
for unreliable programs (the right-hand side of the graph). More surprising is
that the impact is quite pronounced at a pufd of the pool around 10−4, while it
is much lower for the rest of the graph. Apparently, these checks are effective for
some equivalence classes that are dominant in the pool for that particular pufd
range. Upon inspection, it appears that these programs fail for i = j.

The gain in pufd is for most of the graph only about 20%, but the peak
reaches a factor of 3.2 for the plausibility check “Result > log2(max(i, j))”, a
significant improvement over a program without checks. The check “Result>0”
is mainly effective for programs that initialise the outcome of the calculation of
the maximum sequence length to 0 or −1, if they abort the calculation before
setting the result to a new value. This appears to be caused by an incorrect
“for”-loop which fails when i > j. The check “Result<477” is not very effective.
The failures it detects have mostly to do with integer overflow and uninitialised
variables.

The check “Result > log2(max(i, j))” is the most effective of all. It catches
a few more programming faults than “Result > 0”, especially of those programs
that do not cover the entire range between the two inputs i and j for the calcu-
lation of the maximum sequence length.

Figure 2(a) gives some more detail of the performance of this plausibility
check. It shows the percentage of failures detected for each equivalence class. We
can make various observations. First, for many equivalence classes there is no
effect (many crosses with a coverage of 0%). Second, since there are more crosses

6

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

pfd of equivalence class

P
er

ce
nt

ag
e

of
 fa

ilu
re

s
de

te
ct

ed

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

pfd of equivalence class

P
er

ce
nt

ag
e

of
 fa

ilu
re

s
de

te
ct

ed

(a) (b)

Fig. 2. Values of the error detection coverage of (a) the plausibility check “Result >
log2(max(i, j))” for the equivalence classes of “3n+1” programs, and (b) the plausibility
check “i ≤ j” for the equivalence classes of “Factovisors” programs. Each cross repre-
sents an equivalence class. The horizontal axis gives the average pfd of the equivalence
class, the vertical axis the percentage of its incorrect outputs that the check detects.

in the right-hand side of the graph, this check seems to be more effective when
the primary programs tend to be less reliable (i.e., for development processes
that tend to deliver poor reliability). We must say “seem” here, because this
graph lacks information about the frequencies of the various programs (sizes of
the equivalence classes). Third, this plausibility check still detects faults in the
left-hand side of the graph, i.e. for the more reliable programs.

The plausibility check “First output equals first input” mainly catches prob-
lems caused by incorrect reading of the specification: some programs do not
return the inputs, or not always in the correct order. These faults lead to very
unreliable programs, and the effects of this plausibility check are not visible in
Figure 1 because they manifest themselves (i.e. differ from the curve for “Valid
output”) for average pufds larger than 0.1.

The result of the plausibility check “Second output equals second input” is
almost equal to the previous one. There are a few exceptions, for example when
the program returns the first input twice.

3.2 Self-Consistency Checks

If we denote the calculation of the maximum sequence length as f(i, j), then:

f(i, j) = f(j, i) (1)

and:
f(i, j) = max(f(i, k), f(k, j)) for k ∈ i..j (2)

7

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3

Valid output
f(i,j)=f(j,i)
f(i,j)=max(f(i,k), f(k,j))
f(i,j)=max(f(j,k), f(k,i))

Fig. 3. Improvement in the average pufd of the primary for the various self-consistency
checks for “3n+1”.

and, if we combine these two properties:

f(i, j) = max(f(j, k), f(k, i)) for k ∈ i..j (3)

Figure 3 presents the effectiveness of these self-consistency checks (for the
experiment, we choose k = �(i + j)/2�). Like our plausibility checks, these self-
consistency checks appear to be very effective for unreliable programs.

The first self-consistency check mainly detects failures of programs in which
the calculation of the maximum sequence length results in 0 or -1 for i > j. The
second mainly finds failures caused by incorrect calculations of the maximum
sequence length.

The third self-consistency check attains an improvement comparable to that
of the plausibility check “Result > log2(max(i, j))”, but with a shifted peak. It
appears that they catch different faults in the programs. As already stated, the
peak of “Result > log2(max(i, j))” is caused by programs failing for i = j (which
none of our self-consistency checks can detect) while this self-consistency check
detects failures caused by faults in the calculation of the maximum sequence
length as well as programs that systematically fail for i > j.

The fact that the plausibility checks and the self-consistency checks tend to
detect different faults is highlighted by Figure 4, which shows the performances
of the combined plausibility checks, the combined self-consistency checks and
the combination of all run-time checks.

4 Results for the “Factovisors” specification

Short specification. For two given integers 0 ≤ i, j ≤ 231, determine whether
j divides i! (factorial i) and output “j divides i!” or “j does not divide i!”.

8

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3
4

5
6

7 Valid output
All run−time checks
All SCCs
All checks

Fig. 4. Improvement in the average pufd of the primary for combinations of run-time
checks for “3n+1”.

We tested “Factovisors” with the 2500 demands (i, j ∈ 1..50). We consider
an output “valid” if it contains at least two strings and the second is “does” or
“divides”. The main reason for invalid outputs appears to be absence of outputs.

4.1 Plausibility Checks

We use the following plausibility check for “Factovisors”:

1. If i ≥ j, the result should be “j divides i!”.

Figure 2(b) shows the coverage of the run-time check “i ≥ j” for each equiv-
alence class. It is remarkable, again, that the crosses are spread over the entire
plane: this check has some effect for equivalence classes with a large range of
reliabilities. We also again observe the large number of crosses for a coverage of
0%, showing the check to detect no failure at all for that class of programs.

Figure 5 shows the pufd improvement caused by the plausibility check. As
for “3n+1”, we observe that the run-time check is very effective for unreliable
programs. For pools of programs with average pufd between 10−4 and 10−2 the
reliability improvement varies between 1 and 1.6.

The graph shows a peculiarity for pufds smaller than 10−4: the improvement
approaches infinity. This is because as we remove programs from the pool, the
faulty programs in the pool eventually become a “monoculture”, a single equiv-
alence class, and the check happens to detect all the failures of this class of
incorrect programs. Here, the pool with the lowest non-zero average pufd con-
tains 447 correct programs and 21 incorrect ones in the same equivalence class;
the plausibility check detects the failures of these 21 incorrect programs.

9

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3

Valid output
i<=j
g(i−1,j) => g(i,j)

Fig. 5. The effectiveness of the run-time checks for “Factovisors”.

4.2 Self-Consistency Checks

If we call g(i, j) the Boolean representation of the output of the program, with
g(i, j) = true ≡ “j divides i!”, g(i, j) = false ≡ “j does not divide i!”, then:

g(i − 1, j) =⇒ g(i, j) with i �= 1 (4)

As can be seen in Figure 5, the effect of this self-consistency check is minimal:
the reliability improvement is never substantially greater than that given by the
validity check.

5 Results for the “Prime Time ” specification

Short specification. Euler discovered that the formula n2 + n + 41 produces
a prime for 0 ≤ n ≤ 40; it does however not always produce a prime. Calculate
the percentage of primes the formula generates for n between two integers i and
j with 0 ≤ i ≤ j ≤ 10, 000.

We tested “Prime Time” on 3240 demands (i ∈ 0..79, j ∈ i..79). The outputs
were deemed correct if they differed by most 0.01 from the output of the oracle,
allowing for round-off errors (the answer is to be given with two decimal digits).

The output is considered “valid” when it contains at least one number. We
discard all non-numeric characters and subsequent digits from the output.

5.1 Plausibility Checks

The programs for “Prime Time” calculate a percentage, therefore:

1. The result should be larger than or equal to zero.

10

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3
4 Valid output

Result >= 0
Result <= 100
SCC
All Checks

Fig. 6. The effectiveness of the run-time checks for “Prime Time”. The curve for the
plausibility check “Result ≥ 0” is not visible, because it coincides with the one for
“Valid output”.

2. The result should be smaller than or equal to a hundred.

Figure 6 presents the effectiveness of the plausibility checks for “Prime Time”.
The plausibility check “Result ≥ 0” appears to have virtually no effect. The
plausibility check “Result ≤ 100” has some effect, but not very large.

5.2 Self-Consistency Checks

If we denote the result of the calculation of the percentage with h(i, j), then:

h(i, j) =
h(i, k) × (k − i + 1) + h(k + 1, j) × (j − k)

j − i + 1
for i ≤ k < j (5)

Obviously, this check is not available when i = j. It is quite elegant: the comput-
ing time will not be excessively more than computing h(i, j). For the experiment,
we choose k = �(i + j)/2�.

The effectiveness of the self-consistency check is shown in Figure 6. It is
much more effective than the plausibility check “Result ≤ 100”. We observe the
same phenomenon for low pufds as for “Factovisors”: the effectiveness of the self-
consistency check approaches infinity. When we combine the plausibility checks
and the self-consistency check, we observe that the two complement each other:
the combination is (slightly) more effective than the self-consistency check alone.

11

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
10

10
0

10
00

Fig. 7. Improvement of the pufd of a pair of randomly chosen C programs for “3n+1”,
relative to a single version. The horizontal axis shows the average pufd of the pool from
which both C programs are selected. The vertical axis shows the pufd improvement
(pufdA/pufdAB). The diagonal represents the theoretical reliability improvement if the
programs fail independently, i.e. pufdAB = pufdA.pufdB . (This figure is based on [10].)

6 Run-Time Checks vs. Multiple-Version Diversity

A question that begs answering is: how do run-time checks compare to other
forms of run-time fault tolerance? Using results we reported previously [10], we
can compare our run-time checks against multiple-version diversity for “3n+1”.

We observed (see Figure 7) that two-version diversity would become more
effective with decreasing mean probability of failure on demand of the pool of
programs from which the pair is selected, until a “plateau” is reached (between
a pufd of 10−5 and 10−3) with an improvement factor of about a hundred (note
that the opposite trend—effectiveness decreasing with decreasing mean pfd—is
also possible, as proved by models and empirical results [6]). For run-time checks
the opposite occurs: their effectiveness decreases with decreasing average pufd of
the primary reaching a fairly low improvement factor. The improvement factor
of using diversity is significantly higher than that of applying run-time checks.

For these programs, it seems that these run-time checks could be the better
choice for testing in the early phases of development, when the pufd of programs
is still high, and multiple-version diversity when pufds of programs become low.

7 Conclusion

The results in this paper are of course specific to these three specifications,
the programs submitted by these anonymous authors, the run-time checks we
devised, and the demand profiles we used (uniform in a subset of the demand

12

space). There are however some commonalities among the three sets of results,
and we will tentatively discuss these here, while keeping in mind the limitations
of this research.

First, we observe that the majority of the run-time checks considered are
very effective for unreliable programs or have no effect at all.

Then, if we only look at pools of primaries with average pufd between 10−4

and 10−2, the pufd improvement factor of the primary-checker pair is compa-
rable for all three specifications: in the range 1–4. Over this range, the average
improvement is less than 2 for all run-time checks considered.

Some run-time checks provide almost no benefit. It would be of great impor-
tance to be able to predict which checks are effective and which are not, but for
the time being this seems not to be possible.

These plausibility checks appear to detect a different set of failures than the
self-consistency checks, so that combining them is more effective than applying
either one alone. So, the apparent “diversity” between the two kinds of checks
did bring the benefit of some complementarity.

For pools of primaries with an average pufd lower than 10−2, the pufd im-
provement achieved by the run-time checks considered for “3n+1” is far less than
would have been achieved by applying multiple-version redundancy. In these
analyses, the pufd improvement realised by multiple-version redundancy is at
least a factor of a hundred better.

A natural comment on this work could be that since we have implemented
simple-minded checks, it is not surprising that they only catch the simple-minded
programming errors that cause highly unreliable programs. But this is actually
a non sequitur. It is true that we do not expect expert programmers to pro-
duce highly unreliable programs, but our checks are “simple-minded” only in
being based on simple mathematical properties of these specifications. There is
no a priori reason why they should only catch simple-minded implementation
errors: implementation errors are often caused by misunderstanding details of
the specification or of the program itself, not of some mathematical property of
the specification that is of little interest to the programmers. Likewise, there is
no a priori reason for naive errors normally to cause faults which cause very high
failure rates.

A tempting conjecture generalising the results we observed is that for some
reason simple run-time checks tend (in some types of programs?) only to detect
the failures in very unreliable programs. This would be an attractive “natural
law” to believe and would simplify many decisions on applying run-time checks,
so that it may be worth exploring further, since without some solid, plausible
explanation (e.g. based on the psychology of programmers) or overwhelming
empirical evidence, it would appear wholly unjustified.

Our measure of effectiveness as average improvement in pufd may be ques-
tioned. It is such that even if a check C has 100% coverage for the failures
produced by a set of dangerous possible bugs, B, it will still be assessed as hav-
ing negligible effectiveness if the bugs in set B occur with negligible probability
in actual software development. Some may object that if C is the only check

13

that can detect the effects of B-type bugs, and given the uncertainty on the
probabilities of B these bugs being actually produced, a prudent designer will
still use C. This objection is certainly right if C has negligible cost (implementa-
tion cost, cost in run-time resources, risk of bugs in C causing false alarms, etc).
But whenever these costs are non-negligible, they must be weighted against C’s
potential benefits, as we do.

Acknowledgement

This work was supported in part by the U.K. Engineering and Physical Sci-
ences Research Council via the Interdisciplinary Research Collaboration on the
Dependability of Computer Based Systems (DIRC), and via the Diversity with
Off-The-Shelf Components (DOTS) project, GR/N23912.

References
1. M. Blum and H. Wasserman. Software reliability via run-time result-checking.

Technical Report TR-94-053, International Computer Science Institute, October
1994.

2. A. Jhumka, F.C. Gärtner, C. Fetzer, and N. Suri. On systematic design of fast
and perfect detectors. Technical Report 200263, École Polytechnique Fédérale de
Lausanne (EPFDL), School of Computer and Communication Sciences, September
2002.

3. P.A. Lee and T. Anderson. Fault Tolerance; Principles and Practice, volume 3 of
Dependable Computing and Fault-Tolerant Systems. Springer, 2nd edition, 1981.

4. N.G. Leveson, S.S. Cha, J.C. Knight, and T.J. Shimeall. The use of self checks
and voting in software error detection: An empirical study. In IEEE Transactions
on Software Engineering, volume 16(4), pages 432–443, 1990.

5. B. Meyer. Design by contract. Computer (IEEE), 25(10):40–51, October 1992.
6. P. Popov and L. Strigini. The reliability of diverse systems: A contribution using

modelling of the fault creation process. DSN 2001, International Conference on
Dependable Systems and Networks, Göteborg, Sweden, July 2001.

7. M. Rela, H. Madeira, and J.G. Silva. Experimental evaluation of the fail-silent
behavior of programs with consistency checks. In FTCS-26, Sendai, Japan, pages
394–403, 1996.

8. S. Skiena and M. Revilla. Programming Challenges. Springer Verlag, March 2003.
9. M.J.P. van der Meulen, P.G. Bishop, and M. Revilla. An exploration of software

faults and failure behaviour in a large population of programs. In The 15th IEEE
International Symposium of Software Reliability Engineering, 2–5 November 2004,
St. Malo, France, pages 101–12, 2004.

10. M.J.P. van der Meulen and M. Revilla. The effectiveness of choice of programming
language as a diversity seeking decision. In EDCC-5, Fifth European Dependable
Computing Conference, Budapest, Hungary, 20–22 April, 2005, April 2005.

11. J. Vinter, J. Aidemark, P. Folkesson, and J. Karlsson. Reducing critical failures
for control algorithms using executable assertions and best effort recovery. In DSN
2001, International Conference on Dependable Systems and Networks, Goteborg,
Sweden, 2001.

12. H. Wasserman and M. Blum. Software reliability via run-time result-checking.
Journal of the ACM, 44(6):826–849, 1997.

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

