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Abstract. In this paper, the semantic relationships between a predicate and its 
arguments in terms of semantic roles are employed to improve lexical-based 
named entity recognition (NER) in the molecular biology domain. The seman-
tic roles were realized in various sets of syntactic features used by a machine 
learning model to explore what should be the efficient way in allowing this 
knowledge to provide the highest positive effect on the NER. The empirical re-
sults show that the best feature set consists of predicate’s surface form, predi-
cate’s lemma, voice, and the united feature of subject-object head’s lemma and 
transitive-intransitive sense. The performance improvement from using these 
features indicates the advantage of the predicate-argument semantic knowledge 
on NER. There are still rooms to enhance NER by using this semantic knowl-
edge (e.g. to employ other semantic roles besides agent and theme and to ex-
tend the rules for efficient identification of an argument’s boundary). 

1   Introduction 

Named entity recognition (NER) is the task aiming to identify and categorize entities 
appearing in text. According to the Message Understanding Conferences (MUCs) [1], 
it is the lowest level in the task hierarchy of Information Extraction (IE) system. The 
entities to be recognized in the newswire domain include persons, organizations, 
locations, email addresses, and so on, whereas in the molecular biology domain, mo-
lecular entities such as genes, proteins, small molecules, chemical molecules, tissues, 
etc. need to be recognized. Not only is NER an important component of molecular 
biology IE to reach the goal of discovering biological pathways, but it is also benefi-
cial to other applications of biological text mining. For instance, document retrieval 
where a relevant subset of documents are obtained [2] and document clustering where 
similar documents are grouped together [3]. For example, after NER has been used to 
process the sentence “Cytokines bind to hematopoietin receptors and activate JAK 
kinases”, the fact that Cytokines, hematopoietin receptors and JAK kinases are re-
ferred to three different types of protein would be extracted. The different focus 
among researches gives variety to the granularity of concept classes to be distin-
guished. For example, to work with the GENIA ontology, 36 biologically nominal 
categories needed to be grouped [4]. 



Although, NER in the molecular biology domain has received wide scale attention 
by many researchers for nearly a decade, the overall performance is still far from 
human’s capability [5-12]. As can be seen from the most recently shared-task of NER 
in the molecular biology domain (JNLPBA-2004), the best performance is only 72.6 
for F-measure [9]. Contrastingly, the accuracy in general news-based NER is about 
96% in MUC-6 [1] which is at near human levels of performance. This lag should 
mainly be due to the lack of naming convention1 which leads to several sources of 
difficulties for NER. This work aims to handle two main difficulties as follows. First, 
the difficulty results from terminological variations i.e. molecular names may be 
formed by using a standard English word (e.g. “light”, “map”, “complement”) or 
using an amino acid sequence (e.g. “amino acids [aa] 1 to 25”) or using alpha nu-
meric (e.g. “9-cis retinoic acid”). Second, the difficulty is from polysemy which is 
the ambiguity of a name that can refer to two or more different entities. Polysemy is 
classified into two cases: homonymy and systematic polysemy. Homonymy relates to 
the ambiguity of a name referring to unrelated meanings or objects (e.g. the term 
“cat” can refer to “choline acetyltransferase protein” and “catalase gene”). System-
atic polysemy relates to the ambiguity of a name referring to the objects which sys-
tematically relate to each other (e.g. the term “BCL-6” can refer to “B-cell 
CLL/lymphoma 6 gene” and its protein product). These difficulties are expected to 
increase when we scale-up NER from an abstract to full text. Thus, most molecular 
NER systems now take place on MEDLINE abstracts. 

In this paper, we argue that to overcome the limits in what can be achieved by ex-
isting NER systems traditionally based on lexical features and context features de-
rived from neighboring words [7, 10-12], deeper knowledge such a predicate-
argument relationship should be taken into account. This hypothesis is motivated by 
the basic observation that events are realized as predicates2 and their participating 
named entities (NEs) as the predicates’ arguments. The semantic role each argument 
plays in the event should impose type restrictions on the entity within the argument. 
The investigation of how to efficiently transform the knowledge of predicate-
argument relations into features of training data for our NER system using a machine 
learning approach is the main focus in this work.  

The paper is organized as follows. Section 2 discusses how predicate-argument re-
lation is useful to NER and how other researchers have taken efforts to apply this 
knowledge. Section 3 outlines the transformation of predicate-argument relations into 
our machine learning features. Section 4 shows experimental results and the analysis 
on the results. Section 5 discusses concerning impediments to high performance im-
provement. Finally, Section 6 summarizes the conclusion. 

                                                           
1 Some efforts have been shown to standardize in naming biological entity (e.g. Guidelines of 

Human Gene Nomenclature, Drosophila Gene Nomenclature, etc., however many biologists 
often do not follow the recommended nomenclature. 

2 Hence, a predicate refers to a verb which can exist in a sentence in its verbal form (e.g. infini-
tive – to activate, present simple – activate or activates, past simple – activated, present or 
past participial – activating or activated), or its nominal form (e.g. activation). 



2 Predicate-argument Relation and Biological NER 

A frame of predicate-argument structure (PAS) represents a set of semantic relation-
ships in terms of the specified role each argument plays in the event indicated by a 
predicate. For example, the predicate-argument frame of the predicate recognize 
which is used to express the recognition event in the molecular biology domain would 
be as Fig. 1(a). Thus, deeper knowledge than surface syntax of sentence 1 and 2 can 
be obtained as shown in Fig. 1(b). That is the occurrence of a recognition event 
would be participated by two participants (i.e. Arg0 and Arg1). The first argument 
(Arg0) has a relationship to the predicate recognize as a recognizer or agent of the 
event and the second argument (Arg1) plays role as thing being identified or theme in 
the event. Sentence 1 shows the usage of predicate recognize in active voice. The 
sentence’s surface subject which is “transcriptional activators” plays role as agent 
and its surface object “common consensus motif” plays role as theme. On the contrary, 
a surface subject of sentence 2 which is “DNA binding sites” plays role as theme and 
a surface object “Ah receptor” plays role as agent as the predicate recognize is used 
in passive voice. 

 

Recognition
Event

( predicate
recognition )

Arg 0 Arg 1
Role: recognizer

or agent
Role: thing being

identified or theme

a) The predicate-argument frame for predicate recognize

Sentence 1 ...these [transcriptional activators]PROTEIN recognize a [common
                  consensus motif]DNA ...

            Arg0: transcription activators
            Arg1: common consensus motif

Sentence 2 [DNA binding sites]DNA are recognized by the [Ah receptor]PROTEIN.
            Arg0: Ah receptor
            Arg1: DNA binding sites

b) Instances of arguments in example sentences for predicate recognize
 

Fig. 1. The semantic relationships between predicate recognize and its argument 

As can be noticed from Fig. 1, the argument playing role as agent belongs to class 
PROTEIN in both sentences. Similarly, the argument with semantic roles of theme 
belongs to class DNA. This restriction of NE-types corresponding to arguments’ se-
mantic roles is a key concept to employ semantic relations in PAS for enhancing 
molecular NER system.3 As the NER system used in this work is based on Support 

                                                           
3  The empirical evidence observed on GENIA V3.02 corpus (http://www-tsujii.is.s.u-

tokyo.ac.jp/~genia/topics/Corpus/) shows that the frequency of occurrence for PROTEIN to 
be agent in an recognition event is about 53% and for DNA to be theme is about 26%. 



Vector Machines (SVMs) [13], this predicate-argument relationship knowledge is 
required in the form of machine learning features. 

Recently, due to the ability of PAS to straightforwardly represent the biological 
event, this knowledge has been used mostly as a reference frame to extract instances 
of biological events from text, e.g. the protein-protein interaction event [14-17]. To 
our knowledge, two previous works have shown the efforts to employ this knowledge 
for NER in the molecular biology domain [6, 8]. In the first approach [6], the verb 
complementation patterns between each verb and the arguments which their concept 
classes are known have been automatically learnt by using an iterative reasoning 
process based on a partial order relation induced by the domain-specific ontology. 
Then, an unknown class term will be classified to the potential class based on the 
similarity measure between this new term’s verb complementation patterns and the 
pre-analyzed known class term. This method still gets low performance to classify 
terms related to the small set of verbs that were studied (i.e. F-measure = 40.68%, 
26.28%, 21.85%, and 19.69% for bind, inhibit, interact, and mediate respectively). In 
the second approach [8], a set of verbs, such as inhibit, express, bind, and activate has 
been set as binary features in HMM-based model. Unexpectedly, the overall F-
measure has decreased by 1.8. One possible explanation for this result is that it could 
be due to the impractical way to represent predicate-argument relations in the model. 
The verb features represented only the knowledge that the verb exists in the context 
of the term or not. 

In this paper, we explore an efficient way to exploit the semantic relations between 
predicate and its argument for improving SVM-based NER system. 

3 Our Method 

Our SVM-based NER system develops from the learning model of Takeuchi and 
Collier [7] in which the Tiny SVM4 with the multi-class strategy of one-against-one 
was used. The context window was set to 1± providing features for the previous word, 
current word, and next word. Also, the two previous class assignments were taken 
into the model. The training data used in our system is in a form of a column format-
ted table of features with the NE classes provided in IOB2 format5. We form 6 sets of 
features (i.e. the Model 1 – Model 6) to be trained by SVMs. Model 1 contains only 
lexical-based features proposed in earlier studies to reduce known problems of ambi-
guity for term recognition. This model is used as a base model to be compared with 
the Model 2-6 in which predicate-argument related features are included in addition 
to lexical-based features. Thus, the significance of the semantic relationships repre-
sented in PAS to NER system can be evaluated. In order to evaluate the efficiency of 
different ways to convert this semantic knowledge into features of input data, Model 
3, 4, 5, and 6 will be compared to the Model 2. How each feature set is derived and 
what thought is underlying the forming of it will be explained in section 3.3. 

                                                           
4 The Tiny SVM package is available from http://chasen.org/~taku/software/TinySVM/.  
5 IOB2 format is a standard format for word-chunk. The tag “O” is given to words outside a 

chunk, “B-k” to the first word in a chunk of type k, and “I-k” to the remaining words. 



3.1   Data Set 

The GENIA corpus V3.02, the largest annotated corpus in the molecular biology 
domain available to public, is used as our data set of the NE tagged text. As the predi-
cate-argument relationship is a specific characteristic for each individual predicate, 
we decide to explore the influences of features derived from the knowledge of predi-
cate-argument relation separately for each predicate. In this paper, we mainly focus to 
a predicate in verbal form, thus a collection for each predicate will be retrieved from 
GENIA by using the criteria that the relevant sentences must contain a focus predi-
cate in verbal form at least once. With regard to the classes of NE used in evaluation, 
we follow the JNLPBA-2004 shared task [9] to use the conflated set of classes con-
sisting of 5 classes: protein, DNA, RNA, cell line, and cell type. 

3.2   Selection of Predicates to Be Explored 

We started selecting predicates by gathering predicates used in earlier works to cap-
ture biological events [14-16] and predicates used in our previous work to construct 
the PASBio6 resource [18]. Most predicates from the 44 predicates which have been 
gathered are found rarely in the GENIA corpus. In order to avoid having too small set 
of training data, we filtered out predicates containing less than 100 examples7. This 
filtering process results in a set of 19 predicates in which bind has a biggest and alter 
has a smallest volumes of training data, i.e. 825 and 102 examples respectively.  

Due to our intuition that the proportion of belonging to a NE class of an agent ar-
gument and a theme argument8 should be a key impact to the performance of NER 
system when predicate-argument related features are applied, we selected 6 predicates 
from the total 19 predicates to be the representative predicates of the 3 groups as 
follows. First, the predicates encode and recognize were selected to be the representa-
tives for a group of predicates having arguments both agent and theme with higher 
possibility to belong to a NE class than non-NE class. Second, the predicates block 
and lead were selected for a group of predicates having arguments both agent and 
theme with lower possibility to belong to a NE class than non-NE class. Third, the 
predicates regulate and associate were selected for a group of predicate having argu-
ments either agent or theme with higher possibility to belong to a NE class than non-
NE. Table 1 shows the proportion of the arguments of these representative predicates 
to 5 classes of NEs. 

                                                           
6 PASBio resource contains frames of predicate-argument structure analyzed from the litera-

tures in MB domain. Available online at http://research.nii.ac.jp/~collier/projects/PASBio/.  
7 The number of examples is a number of clauses containing a particular predicate. In a sen-

tence, it is possible to have more than one clause related to the predicate in focus.  
8 The agent argument refers to the argument which has syntactic role as subject in the case of 

active voice and refers to the argument having syntactic role as object introduced by the 
preposition “by” in the case of passive voice. The theme argument refers to the argument 
which has syntactic role as object in the case of active voice and refers to the argument hav-
ing syntactic role as subject in the case of passive voice. 



Table 1. The proportion of agent and theme arguments to 5 classes of NEs. 

Group 1 Group 2 Group 3 
Agent and theme with 

High NE% 
Agent and Theme with 

Low NE% 
Only Agent or Theme 

with High NE% 

 
Predicate 

encode recognize block lead regulate associate 
Total Agent 228 113 209 241 381 39 
Protein% 03.51 53.10 28.71 06.64 54.33 41.03 
DNA% 47.81 00.00 02.39 00.41 08.92 00.00 
RNA% 04.82 00.00 00.00 00.00 00.00 00.00 
Cell line% 00.44 07.08 00.48 01.24 00.00 05.13 
Cell type% 00.44 14.16 00.48 00.83 01.05 05.13 
Total NE% 57.02 74.34 32.06 09.13 64.30 51.29 A

ge
nt

 A
rg

um
en

t 

Non-NE% 42.98 25.66 67.94 90.87 35.70 48.71 
Total Theme 234 94 234 296 482 614 
Protein% 66.67 25.53 11.54 02.36 10.17 16.61 
DNA% 00.85 25.53 01.71 00.68 10.17 05.05 
RNA% 00.85 00.00 00.85 00.00 00.21 00.00 
Cell line% 00.00 00.00 00.00 00.00 00.41 00.49 
Cell type% 00.00 00.00 01.28 00.34 00.41 01.95 
Total NE% 68.37 51.06 15.38 03.38 21.37 24.10 Th

em
e 

A
rg

um
en

t 

Non-NE% 31.63 48.94 84.62 96.62 78.63 75.90 
 
Moreover, if the number of examples for predicates from each group is not in bal-

ance, it could be difficult to compare their results. The intention to balance the num-
ber of examples of predicates to be investigated had been applied for selecting these 
representative predicates as well. More precisely, these 6 predicates were selected 
because they also conform to the condition that they have the numbers of examples 
nearly the average value for the total 19 predicates. 

3.3   Derivation of Feature Sets 

The Conexor FDG parser [19] which is widely used and is considered to be a state-
of-the-art commercial parser is used to parse our NE tagged text. In addition to each 
word’s morphological information (i.e. surface form and lemma form) and lexical 
category (i.e. part-of-speech), this parser also provides functional dependency rela-
tions between words which is one of a key syntactic information for acquiring seman-
tic relationships between a predicate and its arguments. These parsing results are used 
to derive a set of features used in the Model 1-6 as follows. 

Model 1. This model composes of 6 features widely recognized as important for NER 
task. These features include surface word, lemma form, head word of noun phrase, 
part-of-speech, orthographic feature, and phrase-chunk. This model is named lexical-
based model as it is based mainly on lexical information. As stated before, this model 
is used as a base model for evaluating the importance of the semantic knowledge 
represented in PAS to NER system. 

Model 2. This model contains all lexical-based features used in the Model 1, with 
additional set of features constituted from syntactic information to represent 
arguments’ semantic roles). These supplementary features consist of predicate 



surface form, predicate lemma, voice and surface syntactic role. The voice feature is 
used to distinguish between active and passive voice of the predicate. The tag “ACT” 
represents active voice and “PAS” represents passive voice. The surface syntactic 
role feature describes syntactic functions (i.e. surface subject or surface object) of the 
head word of a noun-phrase which is bound as the predicate’s argument. Tags used 
are “SSUBJ” for surface subject and “SOBJ” for surface object which is found as 
direct object. Moreover, the tag “PCOMP” used for surface object which is found as 
a prepositional complement. For instance, from sentences “A binds B.” and “A binds 
to B.”, “A” will be tagged with “SSUBJ” in both sentences but “B” will be tagged 
with “SOBJ” for the former sentence and “PCOMP” for the latter. The procedures 
used to identify the argument’s boundary are illustrated in section 3.4. The semantic 
roles of arguments can be determined partially from a combination of the 4 additional 
features used in this model. Only if both surface subject and surface object co-occur 
with a target verb, the argument with syntactic function as subject and the argument 
with  syntactic function as object will be confidently concluded that they semantically 
plays role as agent and theme respectively in case of active voice and vice versa in 
case of passive voice. The correct determination of semantic role would lead to the 
correct NE classification; underlying our hypothesis that semantic relationships in 
PAS (arguments’ semantic roles) for each predicate confine classes of NEs 
participating the event indicated by the predicate. However, as the arguments with the 
same semantic role possibly belong to different NE classes, the lexical-based features 
and semantic relationships are required altogether to solve this ambiguity. This model 
is a PAS-based model which will be extended to the Model 3-6 by adding features of 
several kinds of syntactic information in order to decrease the ambiguity in 
determining semantic roles. 

Model 3. Path feature representing the syntactic path from the subject argument to 
the related predicate and from the related predicate to the object argument is added to 
all features used in Model 2. The path is derived from the flat structure of dependency 
tree resulting from the parser. For example, the path between the subject constituent 
and the predicate is “NP_VP_ADVP_VP” and the path between the object 
constituent and the predicate is “VP_PP_NP” for the sentence “[Increased cytokine 
secretion]NP  [was]VP  [specifically]ADVP [inhibited]VP [by]PP [G1]NP”.  

Model 4. A feature representing a pair of subject and object’s heads is added to the 
Model 2 instead of path feature. This feature is designed following the intuition that a 
NE class of an agent should restrict a possible type of a NE playing role as theme and 
vice versa. The using of a subject-object head pair in lemma form would help to 
reduce data sparseness problem compared to the using in surface form. For the 
sentence in Fig. 2, the subject-object head feature will be “compound_complex”. 

Model 5. This model augments the Model 2 with a feature representing if a predicate 
is used in transitive or intransitive sense. For each surface subject’s constituent, a tag 
“fobj” is set if the surface object is found in the current clause. A tag “O” is set if the 
surface object is not found. However, this feature helps just in part to correctly 
determine transitive or intransitive sense implicit in the usage of a predicate. It is due 
to the object argument can be omit in a clause although a predicate is used in 



transitive sense. For instance, the predicate “eat” is used in transitive sense without 
mentioning an object in the sentence “Yesterday, John ate at ABC restaurant”. 

Model 6. This model is considered as a joining of the Model 4 and the Model 5. A 
pair of subject and object’s heads is used to be assigned to a column of transitive-
intransitive feature instead of “fobj” when the object is found in the clause. 
 

The lexical-based features used in Model 1 will be given to every word or token in 
a sentence. Contrastingly, the PAS-related features proposed in Model 2-6 will be 
assigned to only the constituents bound as the arguments having syntactic function as 
surface subject and surface object of the focus predicate. How to identify the bound-
ary of these constituents is as follows. 

3.4 Sub-structure Recognition 

The sub-structure recognition is the process to identify the tokens that constitute ar-
guments of predicates. In our study, we have focused mainly on a predicate in verbal 
form but not nominal form. Therefore, for a predicate such as activate, the surface 
forms of this predicate to be analyzed include activate, activates, activated, and acti-
vating¸ but not activation. Furthermore, only an argument corresponding to the syn-
tactic relation of either subject or object is bound in this study. At present, there is a 
lack of practical semantic role labeling systems to identify arguments of a predicate, 
especially for the molecular biology domain. Thus, this study which is to investigate 
the constitution of semantic relationship between predicate and its arguments simpli-
fies its scope to arguments as grammatical subject or object. 

The algorithm used to find a subject constituent and an object constituent of each 
predicate is based mainly on the functional dependency relations between words 
obtained from the parser as shown in Fig. 2. It comprises of several steps as follows. 
First, find a position of target predicate which must be in a verbal form. Second, in-
terpret the verb’s voice by checking at the column Surface Syntactic (Fig. 2, C. 6) of 
the verb token (Word No. 3). If it is %VA, the verb is an active verb. On the other 
hand, if it is %VP, the verb is a passive verb. Third, find a token functioning as a 
subject or object of the target verb by traversing through syntactic relations given by 
the parser (Fig. 2, C. 4). Basically, the system will traverse up until subj:># is found 
in case of subject and traverse down until obj:># is found in case of object.9 From 
Fig. 2, the token compounds is found to have subject relation to the verb alter and the 
token complex is found to be an object. Subsequent to founding the head of subject or 
object, the full boundary of a subject or an object is identified by propagating to the 
premodifiers of a noun which is a subject head or an object head. These premodifiers 
will have @A> at the column Functional Tag in parsing data (Fig. 2, C. 5). All modi-
fiers except determiners are included in surface subject or surface object boundary as 
shown in Fig. 2 that NFAT-1 and transcriptional are included but the is not included 
in the boundary of surface object containing complex as the object head. A determiner 
is not included into both boundary of object and subject because any determiners 

                                                           
9 Hence, the symbol # refers to the word number of the target verb. 



never ever are parts of the biological terms. This rule not to include a determiner is 
also used by Rindflesch and colleagues to extract binding relationships [17]. 

 
 C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7  
 Word 

No. 
Surface 
Form 

Lemma 
Form 

Syntactic 
Relation 

Functional 
Tag 

Surface 
Syntac-
tic 

Part-of- 
Speech 

 

 1 Both Both det:>2 @DN> %>N DET -  
 2 compounds compound subj:>3 @SUBJ %NH N 

NOM_PL 
Subject 

 3 altered Altered main:>0 @+FMAINV %VA V PAST Verb 
 4 the The det:>7 @DN> %>N DET -  
 5 NFAT-1 NFAT-1 attr:>6 @A> %>N N 

NOM_SG 
Object 

 6 transcrip-
tional 

transcrip-
tional attr:>7 @A> %>N A ABS  

 7 complex Complex obj:>3 @OBJ %NH A ABS  
 8 , ,      
 9 causing Causing ha:>3 @-FMAINV %VA V ING  

 10 its Its attr:>11 @A> %>N 
PRON 
GEN_SG
3 

 

 11 retarded retarded attr:>12 @A> %>N A ABS  
 12 mobility Mobility obj:>9 @OBJ %NH N 

NOM_SG 
 

 13 on On loc:>9 @ADVL %EH PREP -  
 14 gels Gel pcomp:>13 @<P %NH N 

NOM_PL 
 

 15 . .      

Fig. 2. Boundaries of surface subject and object of the verb alter recognized by the system 
(thick squares) using the FDG parsing result of a sentence “Both compounds altered the 
NFAT-1 transcriptional complex, causing its retarded mobility on gels.” 

To look for subj:>#  or obj:>#, at the column Syntactic Relation (Fig. 2, C. 4), to 
get a subject head or an object head is practical for a simple clause. In some cases, a 
token holding subj:># or obj:># is not found as a subject head or an object head has 
a direct dependency relation to another token but not to a target verb. The more com-
plex criterion needs to be processed to recover the relations between a subject and an 
object to the target verb. These cases are as follows: 1) an auxiliary verb (e.g. be, do, 
have, etc.) or a verb phrase functioning similar to auxiliary verb (e.g. play a role in, is 
required to, have been shown to, etc.) precedes a target verb, 2) a target verb shares 
its subject or object with other verbs, 3) a target verb is a main verb in a subordinate 
clause of which the relative pronoun presents as the subject, and 4) an object of a 
target verb is introduced by a preposition following a target verb10. 

                                                           
10 Due to the space limitation, the details of the extended criterion for these complicated cases 

to identify the boundaries of subject and object arguments cannot be explained here. 



4 Experimental Results and Analysis 

All results reported here are given as F1-scores calculated using 10-fold cross valida-
tion. F1-score is defined as F1= (2PR)/(P+R) where P, called as Precision, is the 
ratio of the number of correctly found NE chunks to the number of found NE chunks 
and R, called as Recall, is the ratio of the number of correctly found NE chunks to the 
number of true NE chunks. 

Table 2. F1-scores of the 6 representative predicates trained with features in Models 1-6 

Group 1 Group 2 Group 3 
Agent and Theme with 

High NE% 
Agent and Theme with 

Low NE% 
Only Agent or Theme 

with High NE% 
       Predicates 
 
Model encode 

(265) 
recognize

(121) 
block 
(270) 

lead 
(288) 

regulate 
(525) 

associate 
(377) 

Model 1 (Lexical-based) 56.60 47.24 51.19 57.01 61.87 52.09 
Model 2 (PAS-based) 57.56 49.39 51.47 57.40 60.48 51.48 
Model 3 (Path) 58.38 48.47 52.23 56.70 60.13 51.29 
Model 4 (Head Pair) 57.16 49.54 51.85 57.12 60.72 50.43 
Model 5 (Trans/Intrans) 57.69 49.16 52.02 57.53 60.01 51.40 
Model 6 (M4+M5) 57.64 49.39 51.95 57.49 60.37 50.97 

 
The results of 6 predicates using the feature sets from the Models 1-6 are shown in 

Table 2. In each column, the F1-score of a corresponding predicate is given for 
Model 1 (Lexical-based model), Model 2 (PAS-related model), Model 3 (the Model 2 
added with Path feature), Model 4 (the Model 2 added with Pair of subject and ob-
ject’s heads feature), Model 5 (the Model 2 added with Transitive/Intransitive fea-
ture) and the Model 6 (the Model 4 is embodied into the Model 5). For each predicate, 
the higher F1-scores from the models which outperform the Model 1 are shown in 
bold number. The models with bold number indicate the positive effect of PAS-
related features to NER. Moreover, if the F1-scores in any models among Models 3-6 
are higher than in Model 2, the scores will be highlighted with gray background. This 
helps to notice which PAS-related feature in addition to features used in PAS-based 
model (Model 2) has capability to increase positive effect of semantic relations be-
tween predicate and its arguments. 

As can be observed from Table 2, the simple representation of PAS-related knowl-
edge such in Model 2 improve the performance for all predicates except the predi-
cates regulate and associate which have only agent or theme argument with higher 
possibility to belong to a NE class than non-NE. Moreover, these Group 3’s predi-
cates do not show any improvement in other models using PAS-related features 
(Model 3-6) compared to the lexical-based model (Model 1). Therefore, they will not 
be covered in the following discussion of how the extra PAS-related features used in 
Models 3-6 help to improve the performance of PAS-based features used in Model 2. 

With regard to Path feature (Model 3), the performance is improved for only the 
model training on data set of predicate encode and block. Empirically, one reason we 
found for this is the surface subject and surface object of these two predicates are 
located close to the predicate in most of the cases. For example, the path patterns 
between arguments and the predicate encode of “…[proteins]NP [encoded]VP [by]ADVP 



[these two latter genes]NP…” are “NP_VP” for the subject argument and 
“VP_ADVP_NP” for the object argument. Due to short path patterns, so the path 
patterns can be generalized throughout the data sets. On the contrary, long path pat-
terns are mostly found in the samples of other predicates (i.e. recognize and lead). For 
example, from the sentence “[Control peptides]NP [corresponding]VP [to]ADVP [the 
normal pml]NP [and]O [RAR alpha proteins]NP [were]VP [not]ADVP [recognized]VP.”, the 
path from the subject argument “Control peptides” to the predicate recognize is 
“NP_VP_ADVP_NP_O_NP_VP_ADVP_VP”.  This long path pattern would causes 
data sparseness problems for the path feature. 

The next feature, the Head Pair feature, does not show its usefulness for predicates 
encode and lead. The reason for the predicate lead is that its arguments both as agent 
and theme are prone to be non-NE rather than to belong to NE class, thus the pair of 
its arguments’ head words can have many variants. It causes this feature ineffective to 
constrain NE functioning as subject with NE functioning as object and vice versa. In 
case of predicate encode, although both arguments of it are prone to belong to NE 
classes rather than to be non-NE, the Head Pair feature does not show its positive 
effect. As the predicate encode used in the molecular biology domain has its specific 
meaning to describe relationships between genes and gene products, the head pair of 
arguments for this predicate is mostly found as gene_protein. Therefore, this feature 
contains too general information to be helpful for encode.  

In case of Transitive/Intransitive feature, we believe that this feature should be 
useful to improve performances of all predicates. This feature is important to cor-
rectly interpret semantic role of an argument. For instance, the subject in the sentence 
“John broke the window” has the semantic role as agent but the subject in the sen-
tence “The window broke” has semantic role as theme. These two sentences illustrate 
that to know only syntactic function as subject or object cannot have a correct deter-
mination on semantic role. The difference between these two sentences is that the 
predicate break is used in transitive sense in the former sentence and intransitive 
sense in the latter. Therefore, to give information stating if the object is found in a 
sentence or not would help to some extent to imply sense in which the predicate is 
used. The performance of the model having this feature (Model 5) should outperform 
the PAS-based model (Model 2). However, the performance for recognize has de-
creased when this feature is applied. From our analysis, the problem originates from 
parsing error of failing to provide syntactic relations between words. For instance, the 
FDG parser fails to give the constituent “DNA binding sites” syntactic relation as the 
object of “recognizes” in the sentence “The Ah receptor recognizes DNA binding 
sites for the B cell transcription factor” This causes subsequent problem to the Transi-
tive/Intransitive feature, i.e. this feature is set to “O” to represent that the predicate 
recognize is used in intransitive sense, whereas it does not. This incomplete parsing 
result accounts for decreasing F1-score of recognize when using the Transi-
tive/Intransitive feature (Model 5) compared to when not using it (Model 2). 

In order to evaluate the contribution of PAS-related features from different models, 
the average F1-score from each PAS-related model (Model 2-6) is compared to the 
average F1-score of the lexical-based model (Model 1). Without considering the mix 
model (Model 6), the results show that the Transitive/Intransitive feature (Model 5) 
gives the highest contribution as expected. Some more improvement can be obtained 



in Model 6 when the Head Pair feature (Model 4) is embedded in the Transi-
tive/Intransitive feature (Model 5). Thus far, the Model 6 is considered to be the best 
model in this work with the improvement, on average, in F1-score of 1.11 as shown 
in Table 3. Furthermore, each predicate reflects the benefit from using PAS-related 
features in different levels of improvement, listed in descending order as recognize, 
encode, block, and lead.  

Table 3. The improvement in F1-scores of Model 6 (the best of PAS-related model) compared 
to Model 1 (the lexical-based model) 

Predicates Number of Exam-
ples 

Model 1 (Lexical-based) Model 6 (M4+ 
M5) 

Improvement 

Encode 265 56.60 57.64 1.04 
Recognize 121 47.24 49.39 2.15 
block 270 51.19 51.95 0.76 
lead 288 57.01 57.49 0.48 

Average of Improvement 1.11 

5 Discussions 

In Table 3, the experimental results have shown that the PAS-related features make 
only small progress in NER. However, it is not because semantic relationship be-
tween predicate and its argument is not an important knowledge to improve lexical-
based NER. The incorrect identification of an argument boundary is an impediment 
for the system to acquire the actual performance improvement. This impediment is 
mainly caused by a failing of parser to provide syntactic relation information between 
tokens. One of its examples has already been shown in the previous section to explain 
why the Transitive/Intransitive feature degrades the performance of recognize. To 
investigate the contribution of PAS-related features without the impact from parsing 
error, the arguments agent and theme are identified manually on training examples of 
predicates recognize and encode (100 examples for each predicate). These two predi-
cates are selected for this experiment because they obtain higher performance im-
provement than other predicates. The 2 sets of training data are trained by using fea-
tures in Model 1 and Model 6 to calculate the performance improvement. The predi-
cate encode obtains performance improvement of 2.40 from training on only 100 
manual-examples (about 38% of parsing-examples) 11. This performance improve-
ment is about 2 times of what obtained from 265 parsing-examples (Table 3). In case 
of predicate recognize, from training on 100 manual-examples, the performance im-
provement increase to 6.12 which is about 3 times of what is obtained from 121 pars-
ing-examples. The size of manual-examples of recognize is nearly equal to the pars-
ing-examples’ size, thus it can be implied that the parsing error can decrease the per-
formance improvement at least 3 times. 

                                                           
11 Hence, the training examples are called manual-examples when argument boundaries are 

identified manually and are called parsing-examples when argument boundaries are identi-
fied automatically based on syntactic relation information given by the parser. 



In addition to the parsing error, the more complex rule to identify an argument 
boundary is required for some specific cases. For example, the constituent “multiple 
isotypes” in the sentence “T cells express multiple isotypes of protein kinase C” will 
be bounded to be theme argument of predicate express after the general algorithm for 
sub-structure recognition is applied. However, the real argument playing semantic 
role as theme which is related to NE-type protein is the constituent “protein kinase C”. 
Therefore, a set of rules to distinguish between a quantifier (e.g. “multiple isotypes”) 
and a real argument (e.g. “protein kinase C”) is required. Moreover, a rule set to in-
clude or not to include an entity’s abbreviation name (always mentioned in a bracket) 
in an argument boundary is required as well. For instance, in GENIA corpus V3.02 
the constituent “cytokine receptor gamma chain (gamma c) gene” of a sentence 
“…cytokine receptor gamma (gamma c) gene encodes a component of …” is hand-
annotated as one named entity, but the constituent “Sterol regulatory element (SRE)” 
of a sentence “….Sterol regulatory element (SRE) has been recognized …” is sepa-
rated into two named entities (i.e. “Sterol regulatory element” and “SRE”). 

In order to allow semantic knowledge of predicate-argument relationship covering 
semantic roles of agent and theme to express its actual contribution, the sources of 
errors in identifying an argument boundary as mentioned above must be handled. 

6 Conclusions 

In this work, we have shown that the deeper knowledge of semantic relationship 
between a predicate and its argument is benefit for NER. The choice of syntactic 
features to represent the PAS semantic knowledge is the key issue underlying the 
efficient employment of this knowledge. So far, the best set of syntactic features 
consists of features predicate’s surface form, predicate’s lemma, voice, and the united 
feature of subject-object head’s lemma and transitive-intransitive sense. The highest 
improvement is found from applying these features to the training examples of predi-
cate recognize. Without parsing error which is one of the problems that can impede 
the contribution of the predicate-argument semantic knowledge to NER system, the 
highest improvement for recognize can reach to 6.12 F1-score. 

Besides dealing with an argument’s boundary identification discussed in this work, 
there are still rooms to enhance NER by using this PAS knowledge such as employ-
ing syntactic features to represent other semantic roles in addition to agent and theme. 
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