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Abstract

We consider a general class of forecasting protocols, called “linear pro-

tocols”, and discuss several important special cases, including multi-class

forecasting. Forecasting is formalized as a game between three players:

Reality; Forecaster, whose goal is to predict Reality’s next move; and

Skeptic, who tries to make money on any lack of agreement between Fore-

caster and Reality. Our main mathematical result is that for any contin-

uous strategy for Skeptic in a linear protocol there exists a strategy for

Forecaster that does not allow Skeptic’s capital to grow. This result is a

meta-theorem that allows one to transform any constructive law of prob-

ability in a linear protocol into a forecasting strategy whose predictions

are guaranteed to satisfy this law. We apply this meta-theorem to a weak

law of large numbers in inner product spaces to obtain a version of the

K29 prediction algorithm for linear protocols and show that this version

also satisfies the attractive properties of proper calibration and resolution

under a suitable choice of its kernel parameter, with no assumptions about

the data-generating mechanism.

1 Introduction

In [14] we suggested a new methodology for designing forecasting strategies.
Considering only the simplest case of binary forecasting, we showed that any
constructive, in the sense explained below, law of probability can be translated
into a forecasting strategy that satisfies this law. In this paper this result
is extended to a general class of protocols including multi-class forecasting. In
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proposing this approach to forecasting we were inspired by [3] and papers further
developing [3], although our methods and formal results appear to be completely
different.

Whereas the meta-theorem stated in [14] is mathematically trivial, we have
to overcome some technical difficulties in the generalization considered in this
paper. Our general meta-theorem is stated in §4. The general forecasting pro-
tocols covered by this theorem are introduced and discussed in §§2–3.

In [14] we demonstrated the value of the meta-theorem by applying it to
the strong law of large numbers, obtaining from it a kernel forecasting strategy
which we called K29. The derivation, however, was informal, involving heuristic
transitions to a limit, and this made it impossible to state formally any prop-
erties of K29. In this paper we deduce K29 in a much more direct way from
the weak law of large numbers and state its properties. (For binary forecasting,
this was also done in [13], and the reader might prefer to read that paper first.)
The weak law of large numbers is stated and proved in §5, and K29 is derived
and studied in §6.

We call the approach to forecasting using our meta-theorem “defensive fore-
casting”: Forecaster is trying to defend himself when playing against Skeptic.
The justification of this approach given in this paper and in [13] is K29’s prop-
erties of proper calibration and resolution. Another justification, in a sense the
ultimate justification of any forecasts, is given in [12]: defensive forecasts lead
to good decisions; this result, however, is obtained for rather simple decision
problems requiring only binary forecasts.

The exposition of probability theory needed for this paper is given in [9].
The standard exposition is based on Kolmogorov’s measure-theoretic axioms
of probability, whereas [9] states several key laws of probability in terms of a
game between the forecaster, the reality, and a third player, the skeptic. The
game-theoretic laws of probability in [9] are constructive in that we explicitly
construct computable winning strategies for the forecaster in various games of
forecasting.

2 Forecasting as a game

Following [9] and [14] we consider the following general forecasting protocol:

Forecasting Game 1

Players: Reality, Forecaster, Skeptic
Parameters: X (object space), Y (label space), F (Forecaster’s move space),

S (Skeptic’s move space), λ : S× F×Y → R (Skeptic’s gain function and
Forecaster’s loss function)

Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Forecaster announces fn ∈ F.
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Skeptic announces sn ∈ S.
Reality announces yn ∈ Y.
Kn := Kn−1 + λ(sn, fn, yn).

END FOR
Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how the other players move.

This is a perfect-information protocol: the players move in the order indicated,
and each player sees the other player’s moves as they are made. It specifies
both an initial value for Skeptic’s capital (K0 = 1) and a lower bound on its
subsequent values (Kn ≥ 0). We will say that xn are the objects, yn are the
labels, (xn, yn) are the examples, and fn are the forecasts.

Book [9] contains several results (game-theoretic versions of limit theorems
of probability theory) of the following form: Skeptic has a strategy that guaran-
tees that either a property of agreement between the forecasts fn and examples
(xn, yn) is satisfied or Skeptic becomes very rich (without risking bankruptcy,
according to the protocol). All specific strategies considered in [9] have com-
putable versions. According to Brouwer’s principle (see, e.g., §1 of [11] for a
recent review of the relevant literature) they must be automatically continuous;
in any case, their continuity can be checked directly. In [14] we showed that,
under a special choice of the players’ move spaces and Skeptic’s gain function λ,
for any continuous strategy for Skeptic Forecaster has a strategy that guarantees
that Skeptic’s capital never increases when he plays that strategy. Therefore,
Forecaster has a strategy that ensures various properties of agreement between
the forecasts and the examples.

The purpose of this paper is to extend the result of [14] to a wide class of
Skeptic’s gain functions λ. But first we consider several important special cases
of Forecasting Game 1.

Binary forecasting

The simplest non-trivial case, considered in [14], is where Y = {0, 1}, F = [0, 1],
S = R, and

λ(sn, fn, yn) = sn(yn − fn). (1)

Intuitively, Forecaster gives probability forecasts for yn: fn is his subjective
probability that yn = 1. The operational interpretation of fn is that it is the
price that Forecaster charges for a ticket that will pay yn at the end of the nth
round of the game; sn is the number (positive, zero, or negative) of such tickets
that Skeptic chooses to buy.

Bounded regression

This is the most straightforward extension of binary forecasting, considered in
[9], §3.2. The move spaces are

Y = F = [A,B], S = R,
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where A and B are two constants, and the gain function is, as before, (1). This
protocol allows one to prove a strong law of large numbers ([9], Proposition 3.3)
and a simple one-sided law of the iterated logarithm ([9], Corollary 5.1).

Multi-class forecasting

Another extension of binary forecasting is the protocol where Y is a finite set,
F is the set of all probability distributions on Y, S is the set of all real-valued
functions on Y, and

λ(sn, fn, yn) = sn(yn)−
∫

sndfn.

The intuition behind Skeptic’s move sn is that Skeptic buys the ticket which
pays sn(yn) after yn is announced; he is charged

∫

sndfn for this ticket.
The binary forecasting protocol is “isomorphic” to the special case of this

protocol where Y = {0, 1}: Forecaster’s move fn in the binary forecasting
protocol is represented by the probability distribution f ′

n on {0, 1} assigning
weight fn to {1} and Skeptic’s move sn in the binary forecasting protocol is
represented by any function s′n on {0, 1} such that s′n(1) − s′n(0) = sn. The
isomorphism between these two protocols follows from

s′n(yn)−
∫

s′ndf
′

n = s′n(yn)− s′n(1)fn − s′n(0)(1 − fn)

= s′n(yn)− s′n(0)− snfn = sn(yn − fn)

(remember that yn ∈ {0, 1}).

Bounded mean-variance forecasting

In this protocol,
Y = [A,B], F = S = R

2

and

λ(sn, fn, yn) = λ((Mn, Vn), (mn, vn), yn) = Mn(yn−mn)+Vn((yn−mn)
2−vn).

Intuitively, Forecaster is asked to forecast yn with a numbermn and also forecast
the accuracy (yn −mn)

2 of his first forecast with a number vn. This protocol,
although usually without the restriction yn ∈ [A,B], is used extensively in [9]
(e.g., in Chaps. 4 and 5).

An equivalent representation of this protocol is

Y = {(t, t2) | t ∈ [A,B]}, F = S = R
2

and

λ(sn, fn, yn) = λ((s′n, s
′′

n), (f
′

n, f
′′

n ), (tn, t
2
n)) = s′n(tn − f ′

n) + s′′n(t
2
n − f ′′

n ).
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The equivalence of the two representations can be seen as follows: Reality’s
move (xn, tn) in the first representation corresponds to (xn, yn) = (xn, (tn, t

2
n))

in the second representation, Forecaster’s move (mn, vn) in the first repre-
sentation corresponds to (f ′

n, f
′′

n ) = (mn, vn + m2
n) in the second representa-

tion, and Skeptic’s move (s′n, s
′′

n) in the second representation corresponds to
(Mn, Vn) = (s′n + 2mns

′′

n, s
′′

n) in the first representation. This establishes a
bijection between Reality’s move spaces, a bijection between Forecaster’s move
spaces, and a bijection between Skeptic’s move spaces in the two representations;
Skeptic’s gains are also the same in the two representations:

s′n(tn − f ′

n) + s′′n(t
2
n − f ′′

n )

= s′n(tn −mn) + s′′n

(

(

(tn −mn)
2 + 2(tn −mn)mn +m2

n

)

−
(

vn +m2
n

)

)

= (s′n + 2mns
′′

n)(tn −mn) + s′′n
(

(tn −mn)
2 − vn

)

.

3 Linear protocol

Forecasting Game 1 is too general to derive results of the kind we are interested
in. In this subsection we will introduce a narrower protocol which will still be
wide enough to cover all special cases considered so far.

All move spaces are now subsets of a Euclidean space L (i.e., L = R
m for

some positive integer m), equipped with the usual dot product “·”. Reality’s
move space is a non-empty bounded subset Y ⊂ L, Forecaster’s move space F

is the whole of L, and Skeptic’s move space S is also the whole of L. Skeptic’s
gain function is

λ(sn, fn, yn) = sn · (yn − fn).

Therefore, we consider the following perfect-information game:

Forecasting Game 2

Players: Reality, Forecaster, Skeptic
Parameters: L (Euclidean space), X, Y (a non-empty bounded subset of L)
Protocol:

K0 is set to a positive number.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Forecaster announces fn ∈ L.
Skeptic announces sn ∈ L.
Reality announces yn ∈ Y.
Kn := Kn−1 + sn · (yn − fn). (2)

END FOR
Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative no matter how the other players move.

Let us check that the specific protocols considered in the previous section are
covered by this linear protocol. At first sight, even the binary forecasting proto-
col is not covered, as Forecaster’s move space is [0, 1] rather than R. It is easy to
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see, however, that Forecaster’s move fn /∈ coY outside the convex closure coY
of Reality’s move space (the convex closure coA of a set A is defined to be the
intersection of all convex closed sets containing A) is always inadmissible, in the
sense that there exists Skeptic’s reply sn making him arbitrarily rich regardless
of Reality’s move, and so we can as well choose F := coY. Indeed, suppose
that fn /∈ coY in the linear protocol. Then coY − fn is a compact convex set
not containing the origin. By the hyperplane separation theorem, there exists
a vector sn ∈ L such that

sn · (yn − fn) > 0, ∀yn ∈ coY.

By the compactness of coY,

inf
yn∈Y

sn · (yn − fn) ≥ min
yn∈coY

sn · (yn − fn) > 0.

Skeptic’s move Csn can make him as rich as he wishes as C can be arbitrarily
large. In what follows, we will always assume that Forecaster’s move space is
coY and use F as a shorthand for coY.

Now it is obvious that the binary forecasting, bounded regression, and
bounded mean-variance forecasting (in its second representation) protocols are
special cases of the linear protocol (with F = coY). For the multi-class fore-
casting protocol, we should represent Y as the vertices

y1 := (1, 0, 0, . . . , 0), y2 := (0, 1, 0, . . . , 0), . . . , ym := (0, 0, 0, . . . , 1)

of the standard simplex in R
m, where m is the size of Y, represent the proba-

bility distributions f on Y as vectors (f{y1}, . . . , f{ym}) in R
m, and represent

the real-valued functions s on Y as vectors (s(y1), . . . , s(ym)) in R
m.

4 Meta-theorem

In this section we prove the main mathematical result of this paper: for any
continuous strategy for Skeptic there exists a strategy for Forecaster that does
not allow Skeptic’s capital to grow, regardless of what Reality is doing. As in
[14], we make Skeptic announce his strategy at the outset of each round rather
than at the beginning of the game, and we drop all restrictions on Skeptic. Fore-
caster’s move space is restricted to F = coY. The resulting perfect-information
game is:

Forecasting Game 3

Players: Reality, Forecaster, Skeptic
Parameters: L (Euclidean space), X, Y ⊂ L (non-empty and bounded)
Protocol:

K0 is set to a real number.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
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Skeptic announces continuous Sn : coY → L.
Forecaster announces fn ∈ coY.
Reality announces yn ∈ Y.
Kn := Kn−1 + Sn(fn) · (yn − fn).

END FOR

Theorem 1 Forecaster has a strategy in Forecasting Game 3 that ensures K0 ≥
K1 ≥ K2 ≥ · · · .

5 A weak law of large numbers in the feature

space

Unfortunately, the usual law of large numbers is not useful for the purpose of
designing forecasting strategies (see the discussion in [14]). Therefore, we state
a generalized law of large numbers; at the end of this section we will explain
connections with the usual law of large numbers. In this section we consider
Forecasting Game 2 without the requirement K0 > 0 and with the restriction
on Skeptic dropped. If we fix a strategy for Skeptic and Skeptic’s initial capital
K0 (not necessarily a positive number), Kn defined by (2) becomes a function of
Reality’s and Forecaster’s moves. Such functions will be called capital processes.

Let Φ : F × X → H (as usual, F = coY) be a feature mapping into an
inner product (typically Hilbert) space H. The next theorem uses the notion of
tensor product; the relevant definitions and facts can be found in Appendix C.

Theorem 2 The function

Kn :=

∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

2

−
n
∑

i=1

‖(yi − fi)⊗ Φ(fi, xi)‖2 (3)

is a capital process (not necessarily non-negative) of some strategy for Skeptic.

Proof We start by noticing that

Kn −Kn−1 =

∥

∥

∥

∥

∥

n−1
∑

i=1

(yi − fi)⊗ Φ(fi, xi) + (yn − fn)⊗ Φ(fn, xn)

∥

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∥

n−1
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

2

− ‖(yn − fn)⊗ Φ(fn, xn)‖2

= 2

(

n−1
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

)

· ((yn − fn)⊗ Φ(fn, xn))

= 2

n−1
∑

i=1

((yi − fi) · (yn − fn)) (Φ(fi, xi) · Φ(fn, xn))

7



(in the last equality we used Lemma 2). Introducing the notation

K((f, x), (f ′, x′)) := Φ(f, x) · Φ(f ′, x′), (4)

where (f, x), (f ′, x′) ∈ F×X, we can rewrite the expression for Kn −Kn−1 as

(

2
n−1
∑

i=1

K((fi, xi), (fn, xn))(yi − fi)

)

· (yn − fn).

Therefore, Kn is the capital process corresponding to Skeptic’s strategy

2
n−1
∑

i=1

K((fi, xi), (fn, xn))(yi − fi), (5)

which completes the proof.

More standard statements of the weak law

In the rest of this section we explain connections of Theorem 2 with more
standard statements of the weak law of large numbers; in this part of the paper
we will use some notions introduced in [9]. The rest of the paper does not depend
on this material, and the reader may wish to skip the rest of this section.

Let us assume that

C := sup
(f,x)∈F×X

‖Φ(f, x)‖ < ∞.

We will use the notation

diam(Y) := sup
y,y′∈Y

dist(y, y′),

where dist(y, y′) = ‖y − y′‖ stands for the Euclidean distance in L.
For any initial capital K0, the function

Kn := K0 +

∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

2

−
n
∑

i=1

‖(yi − fi)⊗ Φ(fi, xi)‖2

= K0 +

∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

2

−
n
∑

i=1

‖yi − fi‖2‖Φ(fi, xi)‖2

is the capital process of some strategy for Skeptic. Suppose a positive integer
N (the duration of the game, or the horizon) is given in advance and K0 :=
diam2(Y)C2N . Then, in the game lasting N rounds, Kn is never negative and

KN ≥
∥

∥

∥

∥

∥

N
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

2

.
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If we do not believe that Skeptic can increase his capital 1/δ-fold for a small
δ > 0 without risking bankruptcy, we should believe that

∥

∥

∥

∥

∥

N
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

2

≤ diam2(Y)C2N/δ,

which can be rewritten
∥

∥

∥

∥

∥

1

N

(

N
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

)∥

∥

∥

∥

∥

≤ diam(Y)C(Nδ)−1/2. (6)

In the terminology of [9], the game-theoretic lower probability of the event (6)
is at least 1− δ.

The game-theoretic version of Bernoulli’s law of large numbers is a special
case of (6) corresponding to Φ(f, x) = 1, for all f and x, Y = {0, 1}, and |X| = 1
(the last two conditions mean that we are considering the binary forecasting
protocol with the xs absent); as usual, we assume that fi are chosen from
[0, 1]. As explained in [9], in combination with the measurability of Skeptic’s
strategy guaranteeing (6), this implies that the measure-theoretic probability of
the event (6) is at least 1−δ, assuming that the yi are generated by a probability
distribution and that each fi is the conditional probability that yi = 1 given
y1, . . . , yi−1. This measure-theoretic result was proved by Kolmogorov in 1929
(see [5]) and is the origin of the name “K29 strategy”.

We will see in the next section that the feature-space version (6) of the weak
law of large numbers is much more useful than the standard version for the
purpose of forecasting; in particular, we will see that K29 guarantees (6) with
δ = 1.

6 The K29 strategy and its properties

According to Theorem 1, under the continuity assumption there is a strategy
for Forecaster that does not allow Kn to grow, where Kn is defined by (3).
Fortunately (but not unusually), this strategy depends on the feature mapping
Φ only via the corresponding Mercer kernel K defined by (4). The continuity
assumption needed is that K((f, x), (f ′, x′)) is continuous in f ; such kernels will
be called forecast-continuous. According to (5), the corresponding forecasting
strategy, which we will call the K29 strategy with parameter K, is to output,
on the nth round, a forecast fn satisfying

S(fn) :=

n−1
∑

i=1

K((fi, xi), (fn, xn))(yi − fi) = 0

(or, if such fn does not exist, the forecast is chosen to be a point fn ∈ ∂F where
S(fn) is normal and directed exteriorly to F).

The protocol of this section is essentially that of Forecasting Game 3; as
Skeptic ceases to be an active player, it simplifies to:

9



FOR n = 1, 2, . . .:
Reality announces xn ∈ X.
Forecaster announces fn ∈ coY.
Reality announces yn ∈ Y.

END FOR

Theorem 3 The K29 strategy guarantees that always

∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

≤ diam(Y)Cn1/2, (7)

where C := sup(f,x)∈F×X
‖Φ(f, x)‖ is assumed to be finite.

Proof The K29 strategy ensures that (3) never increases; therefore,

∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

2

≤
n
∑

i=1

‖(yi − fi)⊗ Φ(fi, xi)‖2

=

n
∑

i=1

‖yi − fi‖2 ‖Φ(fi, xi)‖2

≤ diam2(Y)C2n

(we have used Lemma 2).

Remark The property (7) is a special case of (6) corresponding to δ = 1; we
gave an independent derivation to make our exposition self-contained and to
avoid the extra assumptions used in the derivation of (6), such as the horizon
being finite and known in advance.

Calibration and resolution

Two important properties of a forecasting strategy are its calibration and reso-
lution, which we introduce informally. Our discussion in this section extends the
discussion in [13], §5, to the case of linear protocols (in particular, to the case
of multi-class forecasting). Forecaster’s move space is assumed to be F = coY.

We say that the forecasts fn are properly calibrated if, for any f∗ ∈ F,

∑

i=1,...,n:fi≈f∗ yi
∑

i=1,...,n:fi≈f∗ 1
≈ f∗

provided
∑

i=1,...,n:fi≈f∗ 1 is not too small. (We shorten (1/c)v to v/c, where v
is a vector and c 6= 0 is a number.) Proper calibration is only a necessary but
far from sufficient condition for good forecasts: for example, a forecaster who
ignores the objects xn can be perfectly calibrated, no matter how much useful
information xn contain. (Cf. the discussion in [2].)
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We say that the forecasts fn are properly calibrated and resolved if, for any
(f∗, x∗) ∈ F×X,

∑

i=1,...,n:(fi,xi)≈(f∗,x∗) yi
∑

i=1,...,n:(fi,xi)≈(f∗,x∗) 1
≈ f∗ (8)

provided
∑

i=1,...,n:(fi,xi)≈(f∗,x∗) 1 is not too small.

Instead of “crisp” points (f∗, x∗) ∈ F × X we will consider “fuzzy points”
I : L → [0, 1] such that I(f∗, x∗) = 1 and I(f, x) = 0 for all (f, x) outside
a small neighborhood of (f∗, x∗). A standard choice would be something like
I := IE , where E ⊂ L is a small neighborhood of (f∗, x∗) and IE is its indicator
function, but we will want I to be continuous (it can, however, be arbitrarily
close to IE).

Let (f∗, x∗) be a point in F × X; we would like the average of yi, i =
1, . . . , n, such that (fi, xi) is close to (f∗, x∗) to be close to f∗. (Cf. (8).) Fix
a forecast-continuous Mercer kernel K : (F ×X)2 → R and consider the “soft
neighborhood”

I(f∗,x∗)(f, x) := K((f∗, x∗), (f, x)) (9)

of the point (f∗, x∗). The following is an easy corollary of Theorem 3.

Corollary 1 The K29 strategy with parameter K ≥ 0 ensures
∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi)I(f∗,x∗)(fi, xi)

∥

∥

∥

∥

∥

≤ diam(Y)C2
√
n (10)

for each point (f∗, x∗) ∈ (F×X), where I is defined by (9) and C is defined as
in Theorem 3.

We can rewrite (10) as
∥

∥

∥

∥

∑n
i=1(yi − fi)I(f∗,x∗)(fi, xi)
∑n

i=1 I(f∗,x∗)(fi, xi)

∥

∥

∥

∥

≤ diam(Y)C2
√
n

∑n
i=1 I(f∗,x∗)(fi, xi)

(11)

(assuming the denominator
∑n

i=1 I(f∗,x∗)(fi, xi) is positive); therefore, we can
expect proper calibration and resolution in the soft neighborhood of (f∗, x∗)
when

n
∑

i=1

I(f∗,x∗)(fi, xi) ≫
√
n. (12)

In conclusion, we will illustrate (11) on a simple example. Choose the scale
σ > 0 at which calibration and resolution are sought, and consider the Gaussian
kernel (obviously forecast-continuous)

K((f, x), (f ′, x′)) := exp

(

−‖(f, x)− (f ′, x′)‖2
2σ2

)

; (13)

the corresponding soft neighborhoods I(f∗,x∗) will be Gaussian bells of size σ.
Fix (f∗, x∗) ∈ F×X. If n is large enough, we expect (12) to hold (indeed, the
left-hand side of (12) typically grows as Θ(n) as n → ∞), and so we expect
proper calibration and resolution at (f∗, x∗).
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7 Further research

The main result of this paper is an existence theorem: we did not show how
to compute Forecaster’s strategy ensuring K0 ≥ K1 ≥ · · · . (The latter was
easy in the case of binary forecasting considered in [14].) It is important to
develop computationally efficient ways to find zeros of vector fields. There are
several popular methods for finding zeros, such as the Newton–Raphson method
(see, e.g., [7], Chap. 9), but it would be ideal to have efficient methods that are
guaranteed to find a zero (or a near zero) in a prespecified time.

In this paper we considered only the case where Y is a subset of a finite-
dimensional space L. There are important protocols (such as the one in [9],
p. 360) in which Y, F, and S are subsets of, e.g., a Banach space. The proof
techniques used in this paper, however, depend on the assumption that L is
finite-dimensional in an essential way.

Finally, it is interesting to study performance guarantees for K29 when used
in conjunction with universal kernels [10]. The disadvantage of kernel (13), for
example, is that it is not clear how to choose σ: too large σ are useless ((12)
holds but calibration and resolution are not useful at a crude scale) and too
small σ are not achievable ((12) does not hold). In the binary case, this work
is started in [13].
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Appendix A Proof of Theorem 1

Fix a round n and Skeptic’s move Sn : F → L (we will refer to Sn as a vector
field in F). Our task is to prove the existence of a point fn ∈ F such that, for
all y ∈ Y, Sn(fn)(y − fn) ≤ 0.

If for some f ∈ ∂F (we use ∂A to denote the boundary of A ⊆ L) the vector
Sn(f) is normal and directed exteriorly to F (in the sense that Sn(f)·(y−f) ≤ 0
for all y ∈ F), we can take such f as fn. Therefore, we assume, without loss
of generality, that Sn is never normal and directed exteriorly on ∂F. Then by
Lemma 1 below there exists f such that Sn(f) = 0, and we can take such f as
fn.

Remark Notice that Theorem 1 will not become weaker if the first move by
Reality (choosing xn) is removed from each round of the protocol.

Zeros of vector fields

The following lemma is the main component of the proof of Theorem 1.

Lemma 1 Let F be a compact convex set in L and S : F → L be a continuous
vector field on F. If at no point of the boundary ∂F the vector field S is normal
and directed exteriorly then there exists f ∈ F such that S(f) = 0.

Proof If the boundary ∂F were assumed to be smooth, the lemma would follow
from [6], Theorem A0 on p. 170; without smoothness, we will have to give an
independent proof, starting with a modification of a simple trick from [6].
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For each ǫ > 0 we define

Fǫ := {z |dist(z,F) ≤ ǫ},

where, as usual, dist(z,F) := inff∈F dist(z, f); Fǫ is called the tube of radius ǫ
around F ([4]) or the local parallel set of radius ǫ around F ([8], §4). Note that
Fǫ can be written as the Minkowski sum Fǫ = F+ ǫU of F and the ball ǫU of
radius ǫ. Therefore, the convexity of F implies that Fǫ is also convex.

Following [6], we extend the vector field S from F to F1 (Fǫ with ǫ = 1) as
follows: for any point f ∈ ∂F1 and any t ∈ [0, 1), set

S (ty + (1− t)f) := tS(y) + (1 − t)S(f), (14)

where y ∈ F is the unique closest point to f and S(f) is defined as y − f .
Let us first prove that this extension is well defined, i.e., that each point

p ∈ F1 \F has a unique representation in the form ty+(1− t)f , as above. Such
a representation exists since we can take y to be the closest point of F to p and
f to be the point lying on the straight line connecting y and p at a distance of
1 from y in the direction of p; it is clear that y is the closest point to f in F and
that f ∈ ∂F1. Such a representation is unique since y is uniquely determined as
the closest to p point of F, f is uniquely determined as the point lying on the
straight line connecting y and p at a distance of 1 from y in the direction of p,
and t is uniquely determined as the distance between f and p.

Let us now prove that the extension of S to F1 is continuous. Let

p ∈ (F1 \ F) ∪ ∂F, pk ∈ F1 \ F, k = 1, 2, . . . ,

be such that pk → p as k → ∞; we are required to prove that S(pk) → S(p).
Represent each pk and p in the form pk = tkyk+(1− tk)fk and p = ty+(1− t)f ,
as above (i.e., f and fk are in ∂F1 and y and yk are the corresponding closest
points in F). It is easy to check that yk → y (as yk and y are the closest points
in F to pk and p, respectively), then to check that fk → f (provided f /∈ ∂F),
and finally to check that tk → t (this is true even if f ∈ ∂F, in which case t = 1
and tk → 1). This immediately implies S(pk) → S(p).

Since S is never normal and directed exteriorly on ∂F, S will have no zeros
inside F1 \ F. Since the vector field S is interiorly directed on ∂F1 (we will
never need a formal definition of “interiorly directed” in this paper), our task
would be accomplished if we assumed that the boundary of F1 is smooth: we
would apply the Poincaré–Hopf theorem to deduce that S has at least one zero
in F1 and, therefore, at least one zero in F. We will, however, give an argument
that does not depend on any smoothness assumptions.

The proof will be complete if we show that the continuous vector field S in
the closed convex set F1, which is normal and interiorly directed on ∂F1, always
has at least one zero. We consider the tube F2 of radius 2 around F and extend
the vector field S to F2 \F1 by

S (ty + (1− t)f) := S(f)

14



in the notation of (14) but with t ∈ [−1, 0) (as before, f ranges over ∂F1 and
y ∈ F is the closest point to f). Again, it is easy to check that this extension is
well defined and continuous.

By the compactness of F2,

C := max

(

sup
f∈F2

‖S(f)‖, 1
)

< ∞.

Notice that f + tS(f) ∈ F2 for all f ∈ F2 and all t ∈ [0, 1/C) (for f ∈ F2 \ F1

this follows from the fact that f+ tS(f) lies between the closest points to f in F

and in F1, and for f ∈ F1 this follows from the fact that the distance between
f and the complement of F2 is at least 1). The function

G : F2 → F2

f 7→ f +
1

2C
S(f)

is continuous and so, by Schauder’s fixed point theorem (see, e.g., [1], Chap. 4),
has a fixed point; it is clear that such a fixed point will be a zero of S.

Appendix B Proof of Corollary 10

Let Φ : F ×X → H be a function taking values in an inner product space H

and satisfying (4). Theorem 3 then implies

∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi)I(f∗,x∗)(fi, xi)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi) (Φ(fi, xi) · Φ(f∗, x∗))

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

i=1

((yi − fi)⊗ Φ(fi, xi))Φ(f
∗, x∗)

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

n
∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥

∥

∥

∥

∥

‖Φ(f∗, x∗)‖

≤ diam(Y)C2√n

(the second equality follows from Lemma 4 and the first inequality from
Lemma 3).

Appendix C Tensor product

In this appendix we list several definitions and simple facts about tensor prod-
ucts, in the form used in this paper.

The tensor product L ⊗ H of L = R
m and H (an inner product space,

perhaps infinite-dimensional) is the vector space Hm with the addition and
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scalar multiplication defined component-wise,

(a1, . . . , am) + (b1, . . . , bm) := (a1 + b1, . . . , am + bm),

c(a1, . . . , am) := (ca1, . . . , cam),

and the inner product

(a1, . . . , am) · (b1, . . . , bm) := a1 · b1 + · · ·+ am · bm.

The tensor product of (t1, . . . , tm) ∈ L and h ∈ H is defined to be

(t1, . . . , tm)⊗ h := (t1h, . . . , tmh).

Lemma 2 For any t1, t2 ∈ L and h1, h2 ∈ H,

(t1 ⊗ h1) · (t2 ⊗ h2) = (t1 · t2)(h1 · h2).

Proof Immediate from the definition.

If v ∈ L⊗H and h ∈ H, we define the product vh ∈ L by the equality

(v1, . . . , vm)h := (v1 · h, . . . , vm · h),

where (v1, . . . , vm) := v. The following lemma generalizes (and is an easy im-
plication of) the Cauchy–Schwarz inequality.

Lemma 3 For any v ∈ L⊗H and h ∈ H,

‖vh‖ ≤ ‖v‖‖h‖.

Proof Our goal is to prove

‖(v1 · h, . . . , vm · h)‖ ≤ ‖(v1, . . . , vm)‖‖h‖,

which is equivalent to

(v1 · h)2 + · · ·+ (vm · h)2 ≤ ‖v1‖2‖h‖2 + · · ·+ ‖vm‖2‖h‖2;

the last inequality follows from (vi · h)2 ≤ ‖vi‖2‖h‖2 (a special case of the
Cauchy–Schwarz inequality).

Lemma 4 For any t ∈ L and a, b ∈ H,

(a · b)t = (t⊗ a)b. (15)

Proof If t = (t1, . . . , tm), both sides of (15) equal (t1(a · b), . . . , tm(a · b)).
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