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Abstract. We introduce a novel framework for automatic 3D facial expression 
analysis in videos. Preliminary results demonstrate editing facial expression 
with facial expression recognition. We first build a 3D expression database to 
learn the expression space of a human face. The real-time 3D video data were 
captured by a camera/projector scanning system. From this database, we extract 
the geometry deformation independent of pose and illumination changes. All 
possible facial deformations of an individual make a nonlinear manifold 
embedded in a high dimensional space. To combine the manifolds of different 
subjects that vary significantly and are usually hard to align, we transfer the 
facial deformations in all training videos to one standard model. Lipschitz 
embedding embeds the normalized deformation of the standard model in a low 
dimensional generalized manifold. We learn a probabilistic expression model 
on the generalized manifold. To edit a facial expression of a new subject in 3D 
videos, the system searches over this generalized manifold for optimal 
replacement with the ‘target’ expression, which will be blended with the 
deformation in the previous frames to synthesize images of the new expression 
with the current head pose. Experimental results show that our method works 
effectively. 

1   Introduction 

Facial expression analysis and synthesis is an active and challenging research topic in 
computer vision, impacting important applications in areas such as human-computer 
interaction and data-driven animation. We introduce a novel framework for automatic 
facial expression editing in 3D videos. The system recognizes the expressions and 
replaces them by expression mapping functions smoothly. We expect to use this 3D 
system in the future as the core element of a facial expression analysis that takes 2D 
video input. 

3D information is becoming widely used in this field [1-3]. A combination of 
image texture and 3D geometry can be used to considerably reduce the variation due 
to pose and illumination changes. Recent technical progress allows the capture of 
accurate dense 3D data in real time, which enables us to build a 3D expression 
database for learning the deformation space of human faces. The data capture system 



was developed by [4]. A coarse mesh model is fitted to track the inter-frame point 
motion and a dense mesh is used for synthesis of new expressions. 

The nonlinear expression manifolds of different subjects share a similar structure 
but vary significantly in the high dimensional space. Researchers have proposed 
many approaches, such as locally linear embedding (LLE) [5] and Isomap [6] to 
embed the nonlinear manifolds in a low dimensional space. Expression manifolds 
from different subjects remain difficult to align in the embedded space due to various 
causes: (1) subjects have different face geometries; (2) facial expression styles vary 
by subject; (3) some persons cannot perform certain expressions; and (4) the whole 
expression space is large including blended expressions, so only a small portion of it 
can be sampled. Considering these factors, bilinear [7] and multi-linear  [8] models 
have been successful in decomposing the static image ensembles into different 
sources of variation, such as identity and content. Elgammal and Lee [9] applied a 
decomposable generative model to separate the content and style on the manifold 
representing dynamic objects. It learned a unified manifold by transforming the 
embedded manifolds of different subjects into one. This approach assumes that the 
same kind of expression performed by different subjects match each other strictly. 
However, one kind of expression can be performed in multiple styles, such as 
laughter with closed mouth or with open mouth. The matching between these styles is 
very subjective.  

To solve this problem, we built a generalized manifold that is capable of handling 
multiple kinds of expressions with multiple styles. We transferred the 3D deformation 
from the models in the training videos to a standard model. Sumner and Popovic [10] 
designed a special scheme for triangle meshes where the deformed target mesh is 
found by minimizing the transformation between the matching triangles while 
enforcing the connectivity. We added a temporal constraint to ensure the smooth 
transfer of the facial deformations in the training videos to the standard model. This 
model is scalable and extensible. New subjects with new expressions can be easily 
added in. The performance of the system will improve continuously with new data. 

We built a generalized manifold from normalized motion of the standard model. 
Lipschitz embedding was developed to embed the manifold to a low dimensional 
space. A probabilistic model was learned on the generalized manifold in the 
embedded space as in [11].  

In this framework, a complete expression sequence becomes a path on the 
expression manifold, emanating from a center that corresponds to the neutral 
expression. Each path consists of several clusters. A probabilistic model of transition 
between the clusters and paths is learned through training videos in the embedded 
space. The likelihood of one kind of facial expression is modeled as a mixture density 
with the clusters as mixture centers. The transition between different expressions is 
represented as the evolution of the posterior probability of six basic expression paths. 
In a video with a new subject, the deformation can be transferred to the standard 
model and recognized correctly. 

For expression editing, the user can define any expression mapping function F: 
66 RR → , where the domain and range are the likelihood of one kind of facial 

expression. We currently use 3D videos as input data. Many algorithms [12,13] have 
been proposed to fit 3D deformable models on 2D image sequences. So the next step 



will be to take 2D videos as input with a system (such as [13]) used as a 
preprocessing module.  

When the expression in the domain of F is detected, the system will search over 
the generalized manifold for an optimal replacement in the ‘range’ expression. The 
deformation of the standard model is transferred back to the subject, and blended with 
the facial deformation in the previous frame to ensure smooth editing. Fig. 1 
illustrates the overall system structure. 

 

 
Fig. 1. System diagram. 

The main contributions of this paper are the following: (1) We constructed a 3D 
expression database with good scalability. (2) We proposed and defined a generalized 
manifold of facial expression. Deformation data from different subjects complement 
each other for a better description of the true manifold. (3) We learned a probabilistic 
model to automatically implement the expression mapping function.  

The remainder of the paper is organized as follows. We present the related work in 
Section 2. We then describe how to construct the 3D expression database in Section 
3. Section 4 presents how to build generalized expression manifold. Section 5 
discusses the probabilistic model. Section 6 presents the experimental results. Section 
7 concludes the paper with discussion. 

2   Related Work 

Many researchers have explored the nature of the space of facial expressions. Zhang 
et al. [14] used a two-layer perceptron to classify facial expressions. They found that 
five to seven hidden perceptrons are probably enough to represent the space of facial 
expressions. Chuang et al. [15] showed that the space of facial expression could be 
modeled with a bilinear model. Two formulations of bilinear models, asymmetric and 
symmetric, were fit to facial expression data.  

There are several publicly available facial expression databases: Cohen-Kanade 
facial expression database [16] provided by CMU has 97 subjects, 481 video 



sequences with six kinds of basic expressions. Subjects in every video began from a 
neutral expression, and ended at the expression apex. FACS coding of every video is 
also provided. The CMU PIE database [17] includes 41,368 face images of 68 people 
captured under 13 poses, 43 illuminations conditions, and with 3 different 
expressions: neutral, smile, and blinking. The Human ID database provided by USF 
has 100 exemplar 3D faces. The exemplar 3D faces were put in full correspondence 
as explained by Blanz and Vetter [1].  

Facial animation can be generated from scratch, or by reusing existing data. Noh 
and Neumann [18] proposed a heuristic method to transfer the facial expression from 
one mesh to another based on 3D geometry morphing. Lee and Shin [19] retargeted 
motions by using a hierarchical displacement mapping based on multilevel B-spline 
approximation. Zhang [20] proposed a geometry-driven photorealistic facial 
expression synthesis method. Example-based motion synthesis is another stream of 
research. Ryun et al. [21] proposed an example-based approach for expression 
retargeting. We improve the deformation transfer scheme in [10] by adding temporal 
constraints to ensure smooth transfer of source dynamics.   

We were inspired by the work of Wang et al. [3]. The main difference is that we 
build a generalized expression manifold by deformation transfer, which is capable of 
handling multiple expressions with multiple styles. The probabilistic model also takes 
the blended expression into consideration and enables automatic expression editing. 

3   3D Expression Database 

To our knowledge, there is no 3D expression database publicly available, so we built 
our own 3D database by capturing real-time range data of people making different 
facial expressions. The database includes 6 subjects and 36 videos, with a total of 
2581 frames. Each subject performed all six basic expressions from neutral to apex 
and back to neutral. The range data were registered by robust feature tracking and 3D 
mesh model fitting. We intend to make the database publicly available with more 
subjects in the near future. 

3.1   Real-time 3D scanner 

To construct a high quality 3D expression database, the capture system should 
provide high quality texture and geometry data in real-time. Quality is crucial for 
accurate analysis and realistic synthesis. Real-time is important for subtle facial 
motion capture and temporal study of facial expression. 

The system used for obtaining 3D data [4] is based on a camera/projector pair and 
active stereo. It was built with off-the-shelf NTSC video equipment. The key of this 
system is the combination of the color code (b,s)-BCSL [22] with a synchronized 
video stream. 
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Fig. 2: Decoding stripe transitions. 

The (b,s)-BCSL code provides an efficient camera/projector correspondence 
scheme. Parameter b is the number of colors and s is the number of patterns to be 
projected. Two patterns is the minimum, giving the best time coherence compromise. 
The complementary patterns are used to detect stripe transitions and colors robustly. 
Our system applies six colors that can be unambiguously detected through zero-
crossings: RGBCMY. In our experiments, we use a (6,2)-BCSL code that features 
two patterns of 900 stripes.  

To build camera/projector correspondence, we project a subsequence of these two 
patterns onto the scene and detect the projected stripe colors and boundaries from the 
image obtained by a high-speed camera. The four projected colors, two for each 
pattern, detected close to any boundary are uniquely decoded to the projected stripe 
index p (Fig. 2). The correspondent column in the projector space is detected in O(1) 
by  using (6,2)-BCSL decoding process. The depth is then computed by the 
camera/projector intrinsic parameters and the rigid transformation between their 
reference systems. 

We project every color stripe followed by its complementary color to facilitate the 
robust detection of stripe boundaries from the difference of the two resulting images. 
The stripe boundaries become zero-crossings in the consecutive images and can be 
detected with sub-pixel precision. One complete geometry reconstruction is obtained 
after the projection of the pattern 1 and its complement followed by pattern 2 and its 
complement.  

The (6,2)-BCSL can be easily combined with video streams. Each 640x480 video 
frame in NTSC standard is composed of two interlaced 640x240 fields. Each field is 
exposed/captured in 1/60 sec. The camera and projector are synchronized using 
genlock. For projection, we generate a frame stream interleaving the two patterns that 
is coded with its corresponding complement as fields in a single frame. This video 
signal is sent to the projector and connected to the camera’s genlock pin. The sum of 
its fields gives a texture image and the difference provides projected stripe colors and 
boundaries. The complete geometry and texture acquisition is illustrated in Fig. 3. 
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Fig. 3. Input video frames, and the texture and geometry output streams at 30 fps. 

This system is suitable for facial expression capture because it maintains a good 
balance between texture, geometry and motion detection. Our videos were obtained 
by projecting 25-35 stripes over the face and the average resolutions are: vertical = 12 
points/cm and horizontal = 1.25 points/cm (right bottom window of Fig. 4). We used 
a Sony HyperHAD camera and an Infocus LP-70 projector. 

3.2   3D Data Registration  

 
Fig. 4. An example of 3D data viewer with fitted mesh 

The acquired range data need to be registered for the following analysis. The range 
points are first smoothed by radial basis functions (RBF). We build a coarse mesh 
model with 268 vertices and 244 quadrangles for face tracking. A coarse generic 
model is fitted manually at the first frame. A robust feature tracker from 
Nevengineering [23] provides the 2D positions of 22 prominent feature points. The 
mesh’s projection was warped by the 22 feature points. The depth of the vertex was 
recovered by minimizing the distance between the mesh and the range data [24].  

An example of the 3D viewer is shown in Fig. 4. The left bottom window shows 
the range data with the fitted mesh. The right bottom window is the texture image 
with the projected 3D points. Fig. 5 (a) shows the texture image with the 22 tracked 



feature points. Fig. 5 (b) shows the dense mesh with 4856 vertices and 4756 
quadrangles. The dense model is used for the synthesis of new expressions. 

 

   
(a) (b) 

Fig. 5. (a) The 2D tracking results.  (b) The dense mesh model. 

4   Generalized Expression Manifold 

We built the generalized expression manifold by transferring the facial deformations 
in the training videos to a standard model. The standard model serves as the interface 
between the models in the training videos and models in the testing videos. The 
generalized manifold, that is the expression manifold of the standard model, includes 
all information in the training videos.  The more training data we have, the better it 
approximates the true manifold. We can define expression similarity on this manifold 
and use it to search the optimal approximation for any kind of expression. The 
expression synthesis will involve only the standard model and target model.  

4.1   Deformation Transfer with Temporal Constraints 

Sumner [10] proposed a novel method to transfer the deformation of the source 
triangle mesh to the target one by minimizing the transformation between the 
matching triangles while enforcing the connectivity. This optimization problem can 
be rewritten in linear equations: 
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where the matrix norm 
F|||| •  is the Frobenius norm, or the square root of the sum 

of the square matrix elements. nvv ,...,1  is the vertex of the unknown deformed target 
mesh. x is a vector of the locations of  

nvv ,...,1
. c is a vector containing entries from 

the source transformations, and A is a large sparse matrix that relates x to c, which is 



determined by the undeformed target mesh. This classic least-square optimization 
problem has closed form solution as  

bSx = , where cAbAAS ',' == .                                             (2) 
The result is unique up to a global translation. We fix the rigid vertex, such as 

inner eyes corners to resolve the global position. x can be split as ]'''[ xmxfx =  
where xf corresponds to the fixed vertex, and xm to all the other vertices. Thus  
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Our goal is to transfer the deformation of a training subject in a video sequence to 
a standard face smoothly. The vertex 

iv  at frame t is represented as 
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where σ  is the weight for temporal smoothing. tc  is the source transformation at 
frame t,  xfAfcd tt *−= . 

This problem can be solved in a progressive way by approximating  
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where 0xm  is the vertex locations of the undeformed target mesh.  
Eq. (3) can be rewritten as 
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σ  is chosen to guarantee IAmAm σ+'*  is symmetric positive matrix. Q always 
exists, while it is not needed to solve Q explicitly. Eq. (4) has a closed solution: 

tt pQxmQQ '*' = . For efficiency, we compute and store the LU factorization of Q’Q 
only once. 

We separate the motion of the tracked source mesh into a global transformation 
due to head movement and a local deformation due to facial expression. The local 
deformation is used for facial expression (deformation) transfer. 

Fig. 6 shows an example of transferring the source mesh to the target mesh with 
synthesized texture data. 



  

Fig. 6. Example of deformation transfer with texture synthesis. The first row is the texture 
image of the source video at frames 1, 12, and 24. The second row is the dense mesh of the 
target face with transferred deformation. The first image of the third row is the texture image of 
the undeformed target model. The second and the third images are the corresponding 
synthesized faces by the deformed dense mesh. 

4.2   Lipschitz embedding 

We get the deformation vectors of the standard model as ktRx nts ,...1,3*, =∈ , where n 
is the number of vertices; s is the number of videos and k  is the length of the video. 
We normalize the duration of every video by re-sampling the deformation vectors at 
equal intervals. The interpolation is implemented by a cubic spline. We build the 
manifold by using the coarse mesh such that expression can be recognized quickly. 
The dense mesh of the standard model is saved for synthesis of the new expression.   

Lipschitz embedding [25] is a powerful embedding method used widely in image 
clustering and image search. For a finite set of input data S , Lipschitz embedding is 
defined in terms of a set R of subsets of S , },...,,{ 21 kAAAR = . The subsets iA  are 
termed the reference sets of the embedding. Let );( Aod  be an extension of the 
distance function d  to a subset SA ⊂ , such that )},({min),( xodAod Ax∈= . An 



embedding with respect to R  is defined as a mapping F  such 
that ));();...,;();;(()( 21 kAodAodAodoF = .  

For our experiments, we used six reference sets, each of which contains only the 
deformation vectors of one kind of basic facial expression at its apex. The embedded 
space is six dimensional. The distance function in the Lipschitz embedding should 
reflect the distance between points on the manifold. We use the geodesic manifold 
distance [5] to preserve the intrinsic geometry of the data. After we apply the 
Lipschitz embedding with geodesic distance to the training set, there are six basic 
paths in the embedded space, emanating from the center that corresponds to the 
neutral image. The images with blended expression lie between the basic paths.  

An example of the generalized expression manifold projected on its first three 
dimensions can be found in the middle of the second row of Fig. 1. Points with 
different colors represent embedded deformation vectors of different expressions. 
Anger: red; Disgust: green; Fear: blue; Sad: cyan; Smile: pink; Surprise: yellow. In 
the embedded space, expressions can be recognized by using the probabilistic model 
described in the following section. 

5   Probabilistic Model on the Generalized Manifold 

The goal of the probabilistic model is to exploit the temporal information in video 
sequences in order to recognize expression correctly and find the optimal replacement 
for expression editing.  

5.1. Model Learning 

On the standard model, assume there are K  videos sequences for each kind of basic 
expression }6,...,1{, =SS . The embedded vector for the ith frame in the jth video 
for expression S  is 6

,, RI ijs ∈ , },...,1{ Kj = . By K-means clustering technique, 

all points are grouped into clusters rnc n ,...,1, = . We compute a cluster frequency 
measure 
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The prior )|( Scp is assigned according to the expression intensity of the cluster 
center, varying from 0 to 1. By Bayes’ rule,  

∑
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For time series ,...1,0=t , the transition between different expressions can be 
computed as the transition between the clusters: 
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Due to the small variation within a cluster, 1−tS  and tS  are conditionally 
independent given 1−tc . 

5.2. Expression Recognition 

Given a probe video, the facial deformation is first transferred to the standard model, 
and the deformation vector is embedded as ,...1,0, =tI t . The expression recognition 
can be represented as the evolution of the posterior probability )|( :0:0 tt ISp .  

We assume statistical independence between prior knowledge on the distributions 
)|( 00 Icp  and )|( 00 ISp . Using the overall state vector ),( ttt cSx = , the transition 

probability can be computed as: 
)|()|()|( 111 −−− = tttttt ccpSSpxxp                                           (5) 

We define the likelihood computation as follows 
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where cu  is the center of cluster c , cσ  is the variation of cluster c . 
Given this model, our goal is to compute the posterior )|( :0 tt ISp . It is in fact a 

probability mass function (PMF) since tS  only takes values from 1 to 6. The 
marginal probability )|,( :0 ttt IcSp  is also a PMF for the same reason. 

Using Eq. (5), the Markov property, statistical independence, and time recursion in 
the model, we can derive: 
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By marginalizing over tc :0 and 1:0 −tS , we obtain Equation (6): 

001
1

1
1:0

11

0000:0

...
)|(

)|()|(),|(

*)|()|(...)|(
0 0 1 1

dcdSdcdSdc
IIp

ccpSSpcSIp

ISpIcpISp

t

t

i
tt

ii

iiiiiii

c S c S ctt
t t t

−
=

−
−

−−∏

∫ ∫ ∫ ∫ ∫
− −

=
                            (6) 

which can be computed by the priors and the likelihood ticSIp iii ,...,1),,|( = . This 
provides us the probability distribution of the expression categories, given the 
sequence of embedded deformation vectors of the standard model. 



5.3. Expression Editing  

The user can define the any expression editing function F as needed. F: 66 RR → . 
],...,,[))6(),...,1(( 621 qqqSpSpF ===  

where ∑
=

=
6

1

1
i

iq , q is the new likelihood of one kind of facial expression. For 

example, if we want to edit all sadness (S=1) videos to anger (S=2), the mapping 
function can be defined as 

                  F (p (S=1), p (S=2), …, p (S=6))= 
   [p (S=2), p (S=1), …, p (S=6)], when p (S=1)>γ .                            (7) 

This function will increase the likelihood of anger when the sadness is detected, that 
is, its likelihood is above a threshold γ . 

The system automatically searches for the embedded vector with likelihood that is 
closest to the “range” expression. It first looks for the cluster whose center has the 
closest likelihood. In that cluster, the point closest to the embedded vector of the 
input frame is selected. We transfer the corresponding deformation vector back to the 
model in the new video. The deformation vector is blended with the deformation at 
the previous frame to ensure smooth editing. The synthesized 2D image uses the head 
pose in the real input frame and the texture information of the dense model.    

6. Experimental Results 

We collected 3D training videos from 6 subjects (3 males, 3 females). Every subject 
performed six kinds of basic expressions. The total number of frames in the training 
videos is 2581. We use Magic Morph morphing software to estimate the average of 
the training faces, and we use that average as the standard model. The standard model 
only contains geometrical data, no texture data. It will approach the “average” shape 
of human faces when the number of training subjects increases.  

Fig. 7 includes some examples of the mesh fitting results. We change the 
viewpoints of 3D data to show that the fitting is very robust. A supplementary video 
is available at http://ilab.cs.ucsb.edu/demos/AMFG05.mpg. This video gave a 
snapshot of our database by displaying the texture sequences and 3D view of the 
range data with the fitted mesh at the same time. 

Fig. 8 shows examples of deformation transfer. The motions of the training videos 
are well retargeted on the standard model.   

Fig. 9 is an example of expression editing. The system recognized the sadness 
correctly and synthesized new faces with anger expression correspondingly. 

  



 
Fig. 7. Mesh fitting for training videos. Images in each row are from the same subject. The first 
column is the neutral expression. The second and third columns represent large deformation 
during the apex of expressions. 

 

   
Fig. 8. Two different styles of the anger in training videos transferred to the standard mesh 
model. The first row and second row is images of anger and the corresponding deformed 
standard mesh model. The first to the third column is one style of anger at frame 1, 6, and 29. 
The fourth to sixth column is another style of anger at frames 1, 20, and 48. 

 



 
Fig. 9. Expression editing examples. First row is from the input video of sadness. We define 
the expression mapping function as Eq. 7. The second row is the deformed dense mesh by our 
algorithm. The third row is the output: the first image is unchanged, the following images are 
synthesized anger faces by the expression mapping function. 

7   Conclusion 

We introduced a novel framework for automatic facial expression analysis in 3D 
videos. A generalized manifold of facial expression is learned through a 3D 
expression database. This database provides a potential to learn the complete 
deformation space of human faces when more and more subjects are added in. 
Expression recognition and editing is accomplished automatically by using the 
probabilistic model on the generalized expression manifold of the standard model. 

The current input is 3D videos. We plan to take 2D video input by using a system 
like [13]. The output video is a synthesized face with a new expression. How to 
separate and keep the deformation due to speech and merge the synthesized face 
smoothly with the background in videos [26] are important topics for the future 
research. 
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