Applying Decomposition Methods to Crossword
Puzzle Problems

Yaling Zheng

Constraint Systems Laboratory
Department of Computer Science and Engineering
University of Nebraska-Lincoln
Email: yzheng@cse.unl.edu

Abstract. In this paper, we investigate the performance of several ex-
isting structural decomposition methods on fully interlocked Crossword
Puzzle Problems (CPPs) and draw directions for future research.

1 Introduction

A Constraint Satisfaction Problem (CSP) is a problem consisting a finite set of
variables, each of which is associated with a finite domain, and a set of constraints
over a subset of constraints. Each constraint specifies allowable tuples for a subset
of all the variables. The task is to find an assignment for every variable so that all
constraints are simultaneously satisfied. Although CSPs are in general in NP-
complete, it is possible and desirable to identify special properties of a problem
class that can be efficiently solved.

Structural decomposition methods have been proposed for identifying tractable
Constraint Satisfaction Problems (CSPs) [1-5]. The basic principle is to de-
compose a CSP into sub-problems that are organized in a tree structure. The
subproblems are then solved independently, then the original CSP is solved in
a backtrack-free manner after the tree structure is made arc-consistent, as de-
scribed by Dechter and Pearl [1]. The size of the biggest sub-problem is called
the width of the decomposition, and is the criterion for judging the tractability
of the problem.

To the best of our knowledge, no work in the literature evaluates the per-
formance of structural decomposition techniques on real-world problems, only
Harvey and Ghose [6] and our previous work [5] conduct evaluations on ran-
domly generated CSPs. In this paper, we study the application of structural
decomposition techniques on fully interlocked Crossword Puzzle Problems. Our
goal is two-fold: (1) Evaluate the performance of structural decomposition tech-
niques on a real-world problem, and (2) Initiate the investigation of techniques
for solving CPPs.

CPPs, especially those in newspapers, which are usually fully interlocked,
are interesting and challenging problems for people. They receive daily wide
attention, and many newspapers, such as U.S.A. Today and the New York Times,

regularly publish CPPs. Some people make CPPs for newspapers, while some
readers solve those CPPs.

We state the definitions as proposed by [7]. A crossword puzzle is defined
upon an m X n grid where most, if not all, of the cells are to be filled in with
characters which comprises words along horizontal and vertical axes. An open cell
is a blank box destined to contain a character in the final solution of the entire
puzzle. A closed cell appears as a solid box, does not contain any character and
is not actually part of the puzzle but indicates an internal border. Contiguous
open cells read from left to right or from top to bottom constitute words, and
these contiguous cells are referred to as word slots. The degree of interlocking in
a puzzle is the percentage of shared cells. A shared cell is an open cell belonging
to both a vertical and a horizontal word slot. The cell in which two word slots
intersect is called an orthogonal intercept. If all open cells in a puzzle are shared,
the puzzle is completely interlocked. Given a word list and a grid configuration
on a crossword compiler, man or machine, should find one or more solutions. A
solution in this context is a filling of the grid with words all belonging to the
specified word list.

A newspaper CPP is usually a fully interlocked CPP. In [8], Meehan and Gary
compared two approaches modeling CPPs as CSPs: letter-by-letter and word-
by-word. Also, they discussed the application of arc-consistency to the resulting
problem as a pre-processing step before search. In [7], CambonJensen showed
several grid-walk heuristics for finding a solution for the CPPs. However, the
identification of tractable fully interlocked CPPs has not yet been studied. We
are motivated to investigate whether decomposition methods is useful for solving
CPPs.

In [5], we introduced four new structural decomposition methods: HINGE™,
CUT, TRAVERSE, and CaT. The relationships between the decomposition
methods are shown in Figure 1. The solid directed-edge from a decomposition
D1 to another one Dy indicates that Dy strongly generalizes Di. The dotted
directed edge from D; to D5 indicates Dy generalizes D;. Note that the pic-
ture is incomplete in the sense that not all relationships are shown. We tested

HYPERTREE
[Gottlob i‘ al., 2002] D,—=D, indicates that

>
e i D, is strongly more general than D |

TRAVERSE| | CaT HINGE*
HINGE
[Gyssens et al., 1994]

Fig. 1. Illustrating the relationships between the various studied techniques.

D, - - - > D, indicates that

D, is more general than D |

these methods on randomly generated CSPs. CaT, which is a hybrid of CUT
and TRAVERSE, showed the best trade-off between the width of the computed
constraint tree and the time for computing the decomposition In this paper, we
apply these decomposition methods to fully interlocked CPPs. The experiment
is done on 51 fully interlocked CPPs instances obtained from the Crossword
Puzzle Grid Library [9].

This paper is organized as follows. Section 2 shows the decomposition result
of CPPs. Section 3 discusses directions for future research.

2 Applying structural decomposition methods to CPPs

We apply the following decomposition methods: HINGE [3], HINGE*, CUT,
TRAVERSE, and CaT [5] to the associated constraint hypergraphs of 51 in-
stances of fully interlocked CPPs obtained from Crossword Puzzle Grid Library
[9]. A cut k in a decomposition technique is the number of hyperedges of the
constraint graph of a connected CSP that, when removed, separate the graph
into two or more components. The techniques HINGE", CUT, and CaT take k
as a input parameter, usually starting with k=1, and increasing its value until
the CSP can be decomposed. TRAVERSE operates by sweeping through the
constraint graph, and it output depends on the starting hyperedge. Tables 1
and 2 show the CPU time for computing the decompositions and the width of
those decomposition methods on the 51 instances. The x axis in these figures
represents the identifier of an instance. H + 1 denotes HINGE™ with k=1, H +2
denotes HINGEY with k=2, CUT1 denotes CUT with k=1, CUT2 denotes CUT
with k=2, CaT1 denotes CaT with k=1, and CaT2 denotes CaT with k=2. We
start TRAVERSE on each hyperedge in the problem and display the minimum
value of the width as TMIN, its maximum value as TMAX, and its average value
as TAVER.

Let D-width be the width of the join tree computed by decomposition method
D. Note that HINGET-width is always smaller than HINGE-width because
HINGE*-width first finds cuts with size 1, then find cuts with size 2, through
cuts with size k.

From Table 2, we notice that only for 1 out of 51 instances, the CaT-width is
larger than its HINGE-width. This is instance #27 (a 17 x 17 fully interlocked
CPP instance ranked as difficult), as shown in Figure 2. For instance #27, the
decomposition with HINGE results into 5 large nodes shown in Figure 3. The
largest node connects with the other 4 nodes via 4 different cuts in a star-shape
fashion. The value of width HINGE-width for this instance is 24. Figure 4 shows
the join tree computed by CaT for instance #27 is 27, which is larger than the
one computed by HINGE. This situation arose in relatively rare cases in our
experiments on random CSP and crossword puzzle problems.

Moreover, we notice that the width of the join tree computed by TRAVERSE
(TMIN) is smaller than the one computed by CaT with £ = 2 in 35 out of 51
cases. This results is different from the one on randomly generated CSPs, where
CaT gives the best tradeoff between the width of the computed join tree and
the computation cost.

3 Future work

For newspaper CPPs, the decomposition result seems not particularly promis-
ing: if the candidate words for every word slot is about 1000 (when the purpose

Table 1. CPU time of the decompositions of 51 newspaper CPPs by HINGE, HINGE™,
CUT, TRAVERSE, and CaT.

Instance ID #E[HINGE HINGET cuT TRAVERSE CaT
k=1 k=2[k=1| k= 2[min|max| aver|k =1 k =2
1 c13-b1l| 68 90 680 1370 540 3500 0| 10| 3.09 510 3560
2 13-ml | 66 160 270| 12760 270(12520 0 of 3.03 280(12620
3 cl3-m2| 70 130 910 2940 690| 12520 0 of 3.29 680| 12210
4 c13-d1| 60 130 510 2810 520 2780| 10| 10| 3.33 530 2800
5 c13-d2| 60 130 520 2800 490 2780 0 0f 3.33 520 2800
6 c15-b1| 90 290| 1730 8960| 1350| 31850| 10| 10| 5.44(1360| 32030
7 c15-b2| 90 270 950 1140 910 1540(20 0f 5.33 930 1540
8 c15-b3| 90 240 970 1060 920 1550 0 of 5.22 930 1550
9 cl5-m1| 82 220| 1570 4280| 1230 9730 0| 10| 5.12| 1220 9760
10 cl5-m2| 82 290| 1010| 20200 1020(20110| 10 0f 5.49(1020| 20250
11 cl5-m3| 80 340 550| 44620 550(44810 0 0f 5.38 530| 45000
12 cl5-m4| 80 300| 1310| 10840 1300(10870| 10| 10| 5.38| 1320| 10920
13 cl15-d1| 78 320 540| 46440 530(39490| 10 0f 5.26 540(39630
14 cl15-d2| 76 280 510| 42490 520(42340 0| 10| 5.53 530(42700
15 c15-d3| 76 290 520| 20110 540(20100 0| 10| 5.79 550 20250
16 cl5-d4| 74 290 500| 34500 500(34440| 10| 10| 5.40 510(34890
17 cl17-b1 120 530| 3370| 15120 2700(26160 10 0f 8.67(2720| 26210
18 cl17-b2|110 690| 2950| 49630 2920(47990| 10| 10| 7.91| 2930 48490
19 c17-b3 108 590| 2250| 31440| 2220(17600| 10| 10| 8.43| 2200| 17690
20 ¢c17-m1|100 680 980| 95140 970| 94740 0| 10| 8.10 990| 95180
21 cl7-m2|102 740| 1000| 63310 990| 63250 10 0 7.8 1000(63140
22 ¢17-m3[100 710| 1030|102820| 1010(102890| 10| 10| 8.20| 1030[103540
23 cl17-m4|106 740| 2720| 62710 2690(32410| 10| 10| 8.21| 2690 32250
24 c17-d1 100 720| 1040| 63800 1050 64010| 10| 10| 8.80| 1060| 64000
25 cl7-d2| 96 630| 1000| 54520 1000(54340| 10| 10| 8.65| 1000| 54550
26 c17-d3| 90 540| 1020| 67920 1020 68380| 10| 10| 9.22| 1020| 67720
27 cl7-d4| 76 230| 1610 1980| 1450 6570| 10| 10| 7.90| 1460 6550

28 c19-b1 |136 1590 2090|355080| 2050|279960| 10| 10(12.43| 2070280180
29 c19-b2 134 1110 7450(147520| 5070|228990| 10| 20(12.84(5140|228370
30 c19-m1|128 1420(2070|346770| 2030|270600| 10| 10(12.97| 2060|270530
31 c19-m2|118 1140(1890(215510| 1880(|216590| 20| 20(13.64| 1880216150
32 c19-d1 |122 1310(1990|119000| 1970|119050| 10| 20(13.52| 1970119620
33 c19-d2|116 1250 1760|255840| 1720|256480| 10| 10(13.19| 1760|256120
34 c19-d3 (114 1070(1830|103330| 1830|103260| 10| 10(13.60(1850103130
35 c19-d4 |117 1240(1900|243980| 1910|243260| 10| 20(14.10(1930242800
36 c21-b1 |140 2090| 3280|227780| 3280(228440| 20| 20|19.64| 3310(227650
37 c21-b2|138 2180| 3280(223530| 3260(222890| 20| 20|19.78| 3270223480
38 c21-m1|148 2470| 3250370160 3270(354340| 20| 20|19.12| 3280(354840
39 c21-m2|140 2180| 3020259190 3040(259090| 20| 20|18.14| 3040(259130
40 c21-d1 |140 2090| 3290(229310| 3290(228350| 20| 20|19.50| 3290228250
41 c21-d2|138 2160| 3250(223780| 3290(224020| 20| 20|19.93| 3280(223970
42 €21-d3|136 2020| 3150448190 3230(447650| 20| 20|19.63| 3260447390
43 c21-d4 |126 1910 2760|173280| 2780|173030| 20| 20(20.16| 2770172710
44 ¢23-b1|186 1850 2220(596300| 2210|454790| 10| 10(10.11| 2220455000
45 c23-b2 (194 1900 6470|541550| 6420|165070| 10| 10(11.70| 6430165270
46 c23-m1|202 1450(5330(131090| 5330| 61870| 10 10(11.98(5340| 61780
47 c23-m2|180 1760 2310|674830| 2310|498670| 10(10(11.11| 2310499020
48 c23-d1 |162 1430(2280|183060| 2280|183110| 10| 10(13.21| 2290183430
49 c23-d2|184 1940 2580(408940| 2590|408600| 10| 10(12.72| 2590408830
50 €23-d3|162 1440(2240|180880| 2240|181120| 10| 20(13.15| 2260181230
51 c23-d4 |160 1460| 2070[334010| 2060|334050| 10| 10[11.63[2070|334420

is to make a crossword or we have no clues about the word), in a decomposi-
tion of width 8, the biggest sub-problem has a size of 10?. Thus, the required
space is huge. However, since a sub-problem of fully interlocked may be highly-
connected, there may actually be few solutions to the subproblem, and it may
be the realistic to find them using backtrack search with a full look-ahead tech-
nique. Therefore, for a fully interlocked CPP, if we are able to use a structural
decomposition technique to identify subproblems, then find all the solutions of
these subproblems, and store them without significant overhead because there
number is not large, then this processing may allow us to greatly reduce the cost
of solving the CPP. This would make decomposition methods practically useful.

On the other hand, we propose to investigate the use of local search for solving
fully interlocked CPPs given a dictionary and a grid. Local search starts from an
initial assignment, which is randomly generated, continuously improving until it

Table 2. Width of the decompositions of 51 newspaper CPPs by HINGE, HINGE™,
CUT, TRAVERSE, and CaT.

Instance ID #E|HINGE HINGET cuT TRAVERSE CaT
k =1|k = 2|k = 1[k = 2|min|max| aver|k = 1[k = 2
1 cl3-bl| 68 36 36 19 52 27| 16| 19[17.53 13 8
2 ¢13-m1| 66 66 66 22 66 36| 21| 28(22.12 21 16
3 c13-m2| 70 46 46 18 58 56| 12| 23|16.46 21 22
4 cl3-d1| 60 44 44 23 44 23| 15| 27|18.70 15 9
5 cl3-d2| 60 44 44 23 44 23| 15| 27|18.70 15 9
6 cl5-bl | 90 58 58 26 T4 72| 12| 30|18.53 19 20
7 cl5-b2 [90 20 20 10 32 14(14| 28(15.87 10 10
8 cl5-b3 | 90 20 20 10 32 14| 14| 28(16.56 10 10
9 c15-m1| 82 50 50 50 66 66| 19| 36(24.98 26 26
10 c15-m2| 82 75 75 31 75 31| 17| 35|25.52 28 18
11 c15-m3| 80 80 80 66 80 66| 17| 32(23.15 29 24
12 c15-m4| 80 66 66 66 66 66| 22| 45|28.83 21 21
13 cl5-d1| 78 78 78 50 78 62| 18| 36(22.97 23 19
14 cl5-d2| 76 76 76 64 76 64| 19| 52(29.05 19 19
15 cl5-d3 | 76 76 76 76 76 76| 21| 46|26.36 22 22
16 cl5-d4 | 74 74 74 58 T4 58| 15| 50(25.81 18 15
17 cl7-bl (120 64 64 34 90 90| 22| 42|27.35 26 26
18 cl7-b2 (110 98 100 32 100 51| 18| 32|23.24 23 13
19 cl7-b3 (108 78 78 60 78 78| 17| 40|23.00 19 19
20 ¢17-m1|100 100 100 80 100 80| 17| 37|26.54 17 25
21 ¢17-m2|102 102 102 38 102 38| 14| 44]23.27 14 14
22 ¢17-m3|100 100 100 82 100 82| 17| 40|24.06 17 21
23 ¢17-m4|106 90 90 T2 90 90| 16| 60(25.15 20 20
24 cl7-d1 (100 100 100 47 100 47| 17| 43|26.08 17 17
25 cl7-d2 | 96 96 96 49 96 49| 19| 44(30.71 23 18
26 cl7-d3 | 90 90 90 55 90 55| 23| 40[29.68 31 25
27 cl7-d4 | 76 24 24 24 50 50| 31| 52|41.26 27 27
28 c19-b1 136 136 136 98 136 110 19| 37(25.41 22 24
29 cl9-b2 (134 104 104 78 118 116 20| 38(26.25 26 27
30 c19-m1|128 128 128 94 128 106(18| 52(28.25 26 21
31 c19-m2|118 118 118 94 118 94| 26| 50(33.15 26 40
32 c19-d1 (122 122 122 122 122 122 20| 54(33.80 24 24
33 cl9-d2 (116 116 116 108 116 108(18| 54(30.69 20 24
34 cl19-d3 (114 114 114 114 114 114 22| 42(29.60 34 34
35 cl9-d4 (117 117 117 101 117 101 21| 55(32.79 32 37
36 c21-bl (140 140 140 140 140 140(21| 66(39.34 44 44
37 c21-b2 (138 138 138 138 138 138 27| 61(39.72 32 32
38 c21-m1|148 148 148 56 148 84| 19| 33|28.04 31 31
39 c21-m2|140 140 140 65 140 65| 25| 54| 34.3 25 22
40 c21-d1 (140 140 140 140 140 140(21| 66(39.34 44 44
41 c21-d2 (138 138 138 138 138 138 27| 61(39.72 32 32
42 c21-d3 (136 136 136 110 136 110 33| 63]|42.62 34 34
43 c21-d4 (126 126 126 126 126 126 24| 50(32.87 26 26
44 c23-bl (186 186 186 140 186 160 21| 44|27.35 21 25
45 c23-b2 (194 176 176 144 176 176 20| 42]26.92 23 23
46 €23-m1|202 136 136 116 136 136 23| 46(31.93 23 23
47 €23-m2|180 180 180 144 180 162 27| 62(36.87 31 41
48 c23-d1 (162 162 162 162 162 162 33| 78(47.93 53 53
49 c23-d2 (184 184 184 128 184 128 25| 68(39.18 30 33
50 c23-d3 (162 162 162 162 162 162 29| 78|44.35 48 48
51 c23-d4 [160 160 160 128 160 128 28| 82(43.78 28 29

finds a legal assignment. The problem lies in finding a good heuristic suitable
for improving the assignment from one step to the next. This method, as far
as we know, has not yet been studied to applying for fully interlocked CPPs.
Therefore, our future work includes:

1. Identifying more structural configurations of constraint graphs where some
decomposition techniques yield better results than others although in gen-
eral the opposite holds, and building hybrid decompositions techniques that
exploit this information;

2. Tailoring existing decomposition methods for fully interlocked CPPs, so that
every sub-problem, after backtrack search, has few solutions; and

3. Finding a good heuristic to applying local search for fully interlocked CPPs.

137|138(139| 140(141 142{ 143| 144 145| 146| 147| 148| 149|150 151(152

154| 155(156|157 158/ 159| 160| 161

=

184185

222)

197|198 199| 200| 201|202| 203 —
214|215| 216|217 218|219 220|
231232| 233/ 234| 235| 236/ 237|

239|240| 241|242| 243| 244 245| 246 [248| 249| 250| 251| 252 253(254

256/ 257| 258| 259| 260| 261| 262| 263 [l 265| 266 267 | 268| 269| 270| 271

273|274|275|276| 27| 278 279| 280 [l 282 283| 284| 285/ 286 267| 288

[EIEIEEE]

Fig.2. Instance number Fig.3. Applying HINGE to Fig. 4. App]ying CaT to
#27. cl7-d4. cl7-d4.

Acknowledgments: This work is supported by CAREER Award #0133568 from
the National Science Foundation. The experiments were conducted utilizing the
Research Computing Facility of the University of Nebraska-Lincoln.

References

1. Dechter, R., Pearl, J.: Tree Clustering for Constraint Networks. Artificial Intelli-
gence 38 (1989) 353-366

2. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing Constraint Satisfaction
Problems Using Database Techniques. Artificial Intelligence 66 (1994) 57-89

3. Jeavons, P.G., Cohen, D.A., Gyssens, M.: A Structural Decomposition for Hyper-
graphs. Contemporary Mathematics 178 (1994) 161-177

4. Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP Decompo-
sition Methods. Artificial Intelligence 124 (2000) 243-282

5. Zheng, Y., Choueiry, B.Y.: New Structural Decomposition Techniques for Con-
straint Satisfaction Problems. In et al., B.F., ed.: Recent Advances in Constraints.
Volume 3419 of Lecture Notes in Artificial Intelligence. Springer (2005) 113-127

6. Harvey, P., Ghose, A.: Reducing Redundancy in the Hypertree Decomposition
Scheme. In: The 15" IEEE International Conference on Tools with Artificial Intel-
ligence (ICTAI 03). (2003) 474-481

7. CambonlJensen, S.: Design and Implementation of Crossword Compilation Using Se-
quential Approaches Programs. Master’s thesis, IMADA Odense University (1997)

8. Meehan, G., Gary, P.: Constructing Crossword Grids: Use of Heuristics vs Con-
straints. In: Proceedings of Expert Systems 97: Research and Development in Expert
Systems XIV, SGES Publications. (1997) 159-174

9. CPPLibrary: Crossword Puzzle Grid Library. (http://puzzles.about.com/library)

