
Multi-Point Constructive Search?

J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto
jcb@mie.utoronto.ca

Abstract. Multi-Point Constructive Search maintains a small set of “elite solu-
tions” that are used to heuristically guide constructive search through periodically
restarting search from an elite solution. Empirical results indicate that for job
shop scheduling optimization problems and quasi-group completion problems,
multi-point constructive search performs significantly better than chronological
backtracking and bounded backtracking with random restart.

1 Introduction

Metaheuristics such as path relinking [5] maintain a small number (e.g., five to ten)
of “elite solutions,” that are used to guide search into areas that appear promising. This
paper introduces the maintenance of multiple solutions to guide constructive tree search.
Given a set of elite solutions, we probabilistically choose to start constructive search
either from a random elite solution or from an empty solution. If a good solution is
found within some bound of the search effort, it is inserted into the elite set, replacing
one of the existing solutions.

2 Multi-Point Constructive Search

Pseudocode for the basic Multi-Point Constructive Search (MPCS) algorithm is shown
in Algorithm 1. The algorithm initializes a set, e, of elite solutions and then enters
a while-loop. In each iteration, with probability, p, search is started from an empty
solution (line 6) or from a randomly selected elite solution (line 12). The best solution
found, s, is inserted into the elite set, in the former case, if it is better than the worst elite
solution and, in the latter case, if it is better than the starting elite solution. Each search is
limited by a fail-bound and the algorithm has some overall bound on the computational
resources. The best elite solution is returned.

Searching from an Elite Solution Let a reference solution, r, be a set of variable as-
signments, {〈V1 = x1〉, . . . , 〈Vm = xm〉}, m ≤ n, where n is the number of vari-
ables. At a node in the search, any variable ordering heuristic can be used to choose
a variable, Vi, to be assigned. If x ∈ dom(Vi), where 〈Vi = x〉 ∈ r, a choice point,
〈Vi = x〉 ∨ 〈Vi 6= x〉, is made. Otherwise, if x /∈ dom(Vi), any value ordering heuristic
is used to choose z ∈ dom(Vi) and a choice point is asserted using value z. An upper

? This work has received support from ILOG, SA.

Algorithm 1: MPCS: Multi-Point Constructive Search
MPCS():

1 initialize elite solution set e

2 while termination criteria unmet do
3 if rand[0, 1) < p then
4 set upper bound on cost function
5 set fail bound, b

6 s := search(∅, b)
7 if s 6= NIL and s is better than worst(e) then
8 replace worst(e) with s

else
9 r := randomly chosen element of e

10 set upper bound on cost function
11 set fail bound, b

12 s := search(r, b)
13 if s 6= NIL s is better than r then
14 replace r with s

15 return best(e)

bound is placed on the cost function (line 10), and therefore a value assigned in the ref-
erence solution is not necessarily consistent with the current partial assignment. Note
that our criterion for assigning a value from a reference solution covers the case where
no value is assigned (i.e., when r is a partial solution and m < n).

Bounding the Cost Function Before each search (lines 6 and 11), we place an upper
bound on the cost function. We experiment with three approaches. Global bound: Al-
ways set the upper bound on the search cost to the best cost found so far. Local bound:
When starting from an empty solution, set the upper bound to be equal the cost of the
worst elite solution. When starting from an elite solution, set the upper bound to be the
cost of the reference solution. Adaptive: Use the global bound policy for |e| searches
whenever a new global best solution is found then revert to the local bound policy.

Elite Solution Initialization The elite solutions can be initialized by any search tech-
nique. In this paper, we use independent runs of standard chronological backtracking
with a randomized heuristic and do not constrain the cost function. The search effort is
limited by a maximum number of fails for each run.

Finding a Solution From Scratch A solution is found from scratch (line 6) using any
standard constructive search with a randomized heuristic and a bound on the number of
fails. It is possible that no solution is found within the fail bound.

Bounding the Search The effort spent on each individual search is bounded by a fail
bound (lines 5 and 11). We associate a fail bound, initialized to 32, with each elite
solution. Whenever search from an elite solution does not find a better solution, the
corresponding fail bound is doubled. When an elite solution is replaced, the bound for
the new elite solution is set to 32. When searching from an empty solution, we use the

mean fail bound of the elite solutions and do not increase any fail bounds if a better
solution is not found.
Adaptations for Constraint Satisfaction To adapt the approach to a satisfaction context,
we rate partial solutions by the number of unassigned variables. When a dead-end is
encountered, the number of variables that have not been assigned are counted. Partial
solutions with fewer unassigned variables are assumed to be better. We make no effort
to search after a dead-end is encountered to try to determine if any of the currently
unassigned variables could be assigned without creating further constraint violations.

3 Empirical Studies

Three variations of MPCS are used, corresponding to the different ways to set the cost
bound: multi-point with global bound, mpgb; multi-point with local bound, mplb; and
multi-point with adaptive bound, mp-adapt. We set p = 0.5 and |e| = 8. The effort
to initialize the elite solutions is included in the results. For comparison, we use stan-
dard chronological backtracking (chron) and bounded backtracking with restart (bbt)
following the same fail-bound sequence used for the multi-point techniques. The bbt
algorithm is Algorithm 1 with line 12 is replaced by a copy of line 6. The only dif-
ferences between bbt and the MPCS variations is the maintenance and use of the elite
solutions. In particular, the same heuristics, propagation, and fail-bound sequence are
used across these algorithms. All algorithms are run ten times with aggregate results
presented as described below. A time limit of 600 CPU seconds is given for each run:
algorithms report whenever they have found a new best solution allowing the creation
of normalized run-time graphs. All algorithms are implemented in ILOG Scheduler 6.0
and run on a 2.8GHz Pentium 4 with 512Mb RAM running Fedora Core 2.
The Job Shop Scheduling Problem An n × m job shop scheduling problem (JSP) con-
tains n jobs each composed of m completely ordered activities. Each activity, has a
pre-defined duration and a resource that it must have unique use of during its duration.
There are m resources and each activity in a job requires a different resource. A solu-
tion to the JSP is a sequence of activities on each resource such that the makespan, the
time between the maximum end time of all activities and the minimum start time of
all activities, is minimized. We are interested in the optimization version of the prob-
lem: given a limited CPU time, return the solution with the smallest makespan found.
Ten 20 × 20 JSPs were generated with randomly selected job routings and the activity
durations independently and randomly drawn from [1, 99] [8].

Randomized texture-based heuristics [3] and the standard constraint propagation
techniques for scheduling [2] are used. To initialize the elite solutions, |e| independent
runs of a randomized algorithm that produces semi-active schedules is used. Each run
is limited to 1000 fails. We compare algorithms based on mean relative error (MRE) as
shown in Equation (1) where K is a set of problem instances, R is a set of independent
runs, c(a, k, r) is the lowest cost found by algorithm a on instance k in run r, and c∗(k)
is the lowest cost known for k.

MRE(a, K, R) =
1

|R||K|

∑

r∈R

∑

k∈K

c(a, k, r) − c∗(k)

c∗(k)
(1)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500 600

M
ea

n
R

el
at

iv
e

E
rr

or

Time (secs)

chron
bbt

mplb
mpgb

mp-adapt

Fig. 1. Mean relative error to the best known solutions for each algorithm over ten independent
runs of ten problem instances.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 310 320 330 340 350 360

M
ea

n
N

um
be

r o
f F

ai
ls

Number of Holes

chron
bbt

mpgb
mplb

mp-adapt

 0

 100

 200

 300

 400

 500

 600

 700

 310 320 330 340 350 360

M
ea

n
R

un
-ti

m
e

(s
ec

s)

Number of Holes

chron
bbt

mpgb
mplb

mp-adapt

Fig. 2. Mean number of fails (left) and mean run-time (right) for the order-30 problems in each
subset. Each point on the graph is the mean of ten independent runs on ten problem instances.

Figure 1 demonstrates that multi-point search is a significant improvement over both
chron and bbt. Statistical analysis1 is performed for time points t ∈ {100, 200, . . . , 600}.
The difference between bbt and mpgb and between bbt and mp-adapt is statistically sig-
nificant at all time points. The bbt algorithm performs significantly better than mplb at
t = 100 but significantly worse for t ≥ 300. Turning to the MPCS variations, mplb
is significantly worse than mp-adapt for t ≤ 400 and significantly worse than mpgb at
t ≤ 300. The mp-adapt algorithm is significantly better than mpgb at all t ≥ 300.

The Quasigroup-with-Holes Completion Problem An n×n quasigroup-with-holes (QWH)
is a partially completed matrix where each row and column is required to be a per-
mutation of the first n integers. A solution requires that all the empty cells (“holes”)
are consistently filled. The problem is NP-complete and bounded backtracking with
randomized restart has been shown to be a strong performer [6]. We generated 100
balanced, order-30 QWH problems (i.e,. n = 30) using a generator that guarantees sat-
isfiability [1]. Ten sets with problem instances each are generated with the number of

1 A randomized paired-t test [4] and a significance level of p ≤ 0.005 were used.

holes, m = {315, 320, . . . , 360}. These values were chosen to span the difficulty peak
identified in the literature. Each algorithm was run ten times on each problem instance
with a limit on each run of 2,000,000 fails.

The same search framework as above was used, implemented in ILOG Solver 6.0
on the same machine. The fail-limit to initialize each elite solution was set to 100 fails.
The variable ordering heuristic randomly chooses a variable with minimum domain size
while the value ordering is random. All-different constraints with extended propagation
[7] are placed on each row and column.

Figure 2 presents the mean number of fails and mean run-time for each subset and
algorithm. The MPCS variants mplb and mp-adapt perform significantly better than all
other techniques for m ≥ 325 for both the mean number of fails and the mean run-time.

4 Conclusion and Future Work

This paper introduces multi-point constructive search. The search technique maintains a
small set of elite solutions that are used to conduct a series of resource-limited construc-
tive searches. Depending on the outcome, new solutions are inserted into the elite set,
replacing existing solutions. Two sets of experiments are conducted and significant per-
formance gains relative to chronological backtracking and bounded backtracking with
random restart are observed both on constraint models of optimization problems and
satisfaction problems. Experiments are underway to systematically evaluate different
parameter settings.

References

1. D. Achlioptas, C.P. Gomes, H.A. Kautz, and B. Selman. Generating satisfiable problem in-
stances. In Proceedings of the Seventeenth National Conference on Artificial Intelligence,
pages 256–261, 2000.

2. P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based Scheduling. Kluwer Academic
Publishers, 2001.

3. T. Carchrae and J.C. Beck. Low knowledge algorithm control. In Proceedings of the Nine-
teenth National Conference on Artificial Intelligence (AAAI04), pages 49–54, 2004.

4. P. R. Cohen. Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge, Mass.,
1995.

5. F. Glover, M. Laguna, and R. Marti. Scatter search and path relinking: advances and applica-
tions. In G.C. Onwubolu and B.V. Babu, editors, New Optimization Techniques in Engineer-
ing. Springer, 2004.

6. C.P. Gomes and D. Shmoys. Completing quasigroups or latin squares: A structured graph
coloring problem. In In Proceedings of the Computational Symposium on Graph Coloring
and Generalizations, 2002.

7. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), volume 1, pages 362–367,
1994.

8. J.-P. Watson, L. Barbulescu, L.D. Whitley, and A.E. Howe. Contrasting structured and ran-
dom permutation flow-shop scheduling problems: search-space topology and algorithm per-
formance. INFORMS Journal on Computing, 14(2):98–123, 2002.

