
HAL Id: lirmm-00106045
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106045

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acquiring Parameters of Implied Global Constraints
Christian Bessiere, Remi Coletta, Thomas Petit

To cite this version:
Christian Bessiere, Remi Coletta, Thomas Petit. Acquiring Parameters of Implied Global Con-
straints. CP: Principles and Practice of Constraint Programming, Oct 2005, Sitges, Spain. pp.747-751,
�10.1007/11564751_57�. �lirmm-00106045�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106045
https://hal.archives-ouvertes.fr

Acquiring Parameters of Implied Global Constraints

Christian Bessiere1, Rémi Coletta1, and Thierry Petit2

1 LIRMM (CNRS/University of Montpellier), 161 Rue Ada, 34392 Montpellier, France.
{bessiere,coletta}@lirmm.fr

2 LINA (FRE CNRS 2729), École des Mines de Nantes, 4, Rue Alfred Kastler,
FR-44307 Nantes Cedex 3, France.
thierry.petit@emn.fr

Abstract. This paper presents a technique for learning parameterized implied
constraints. They can be added to a model to improve the solving process. Exper-
iments on implied Gcc constraints show the interest of our approach.

1 Introduction

Automatic model reformulation is a key issue for researchers [5, 4, 3]. The objective is
to decrease the expertise required to use constraint programming. One way to improve
a model consists of adding implied constraints. An implied constraint is not mandatory
to express the problem but it helps to solve it [7]. In this paper, we assume that we
have a model which expresses the problem, but the solving time is not satisfactory. We
wish to improve it by automatically adding new implied constraints. Our idea is to use
a learning algorithm that deduces new parameterized constraints from assignments of
values to sets of variables. The set of tuples allowed by a parameterized constraint not
only depends on its variables and their domains, but also on some extra information
provided by parameters, which are not necessarily part of the problem variables. For
instance, the NValue(p, [X1, . . . , Xn]) constraint holds iff p is equal to the number
of different values taken by X1, . . . , Xn. p can be a CSP variable (in its more general
definition) or a parameter which leads to different sets of allowed tuples on the Xi’s,
depending of the values it can take. In our context, a learning algorithm would try,
for example, to learn the smallest range of possible values for p s.t. no solution exists
outside this range. If the algorithm returns a lower bound min(p) > 0, or an upper
bound max(p) < n, then the learned constraint can be of interest. 1

2 Learning Parameterized Constraints

The set of tuples allowed by a classical constraint is known once the variables it involves
and their domains are set. A parameterized constraint may allow different sets of tuples
depending on the possible values for its parameters. Let us first define parameterized
constraints in the most general way to let our work be as general as possible.

1 A lot of existing constraints [1] may be used as implied parameterized constraints: AtLeast,
AtMost, Change, Common, Count, Gcc, Max, Min, NValue, etc.

Definition 1. Given a set of parameters ∆ = {p1, ..., p|∆|} taking their values in the set
of integers

�
, a parameterized constraint C is a constraint which expresses a property

on the variables it involves (denoted by var(C)) depending on the possible values for
its set of parameters ∆. Given s ∈

� |∆|, an assignment of values to the parameters,
C(s) refers to the set of allowed tuples of the constraint C when each pi in ∆ takes the
ith value in s, noted s[pi]. Given S ⊆

� |∆|, C(S) =
∨

s∈S
C(s).

Definition 2. Given a constraint C with parameters ∆ and a tuple e on var(C) (or a
superset of var(C)), Se contains the combinations s in

� |∆| s.t. C(s) accepts e.

Our goal is to learn implied constraints on any type of constraint problem: we focus
on those parameterized constraints where for any tuple e on var(C), Se 6= ∅. The basic
idea is to learn the parameters of an implied constraint C by exploiting information pro-
vided by solutions and non-solutions of a subproblem (stem from the initial problem by
removing variables and constraints). Indeed, if the current model is not good, obviously
it should not easily provide instances2 for the whole problem. By definition, if a learned
constraint is valid in a subproblem then it is still valid in the main problem. Variables
of the subproblem are then the decision variables involved in the learned implied con-
straint. W.r.t. optimization problems, in the context of a Branch and Bound algorithm,
a way to proceed is to learn new implied constraints at each step of the optimization.3

We assume now that the subproblem and the constraint C to learn have been chosen.

Notation 1 P = (X ,D, C) is the problem used to learn an implied constraint.

Definition 3. An implied constraint C for P is a constraint s.t. var(C) ⊆ X and the
set Sol(P) of solutions of P is equal to Sol((X ,D, C∪{C})); Namely, for any instance
e ∈ Sol(P), e[var(C)] is allowed by C.

We consider only constraints for which C(
� |∆|) is the universal constraint (i.e., for

any tuple e, Se 6= ∅). Thus, following Definition 3, C(
� |∆|) is an implied constraint

for the problem P . The objective of a learning algorithm will be to learn a ’target’ set
T ⊆

� |∆|, as small as possible, s.t. C(T) is still an implied constraint. Any s ∈
� |∆|

which is not necessary to accept some solutions of P can be removed from T .

Notation 2 Given a problem P = (X ,D, C) and a parameterized constraint C, we
denote by required(T) the set of elements r of

� |∆| such that r ∈ required(T) iff
C(

� |∆| \ {r}) is not an implied constraint, namely r is compulsory in T if we want
C(T) to be an implied constraint in P . poss(T) denotes those r in

� |∆| for which we
do not know if they must belong to required(T).

In other words, required(T) represents those combinations of values for the pa-
rameters that are necessary to preserve the set of solutions of P , and poss(T) those for
which we have not proved yet that we would not lose solutions without them. The fact
that an implied constraint should not remove solutions when we add it to the problem
leads to the following property w.r.t. positive instances.

2 Given a problem P = (X ,D, C), an instance e is an assignment of values to variables in X .
It is positive if e belongs to Sol(P), otherwise it is negative.

3 We may observe a nice cooperation between the learning and the solving phases: new learned
constraints help at each step to solve the problem, and thus to learn the next ones.

Property 1. Let e+ be a positive instance and T ⊆
� |∆|. If C(T) is an implied con-

straint for P then T ∩ Se+ 6= ∅.

Proof. e+ is a solution of P . At least one s ∈ T should accept that instance to preserve the set
of solutions of P . So, s ∈ Se+ by Definition 2. ut

Corollary 1. Let e+ be a positive instance of P and C a parameterized constraint. If
there is a unique s ∈

� |∆| such that e+[var(C)] ∈ C(s) then s ∈ required(T).

Negative instances will help to remove from poss(T) the combinations of parame-
ters that can be removed without losing solutions. When receiving a negative instance
e−, we want to know if it is possible to reduce the target set T in order to reject e−

while preserving Sol(P).

Property 2. Let P be a problem, C a parameterized constraint, and S ⊂
� |∆|. If P

augmented with the constraint C(S) has no solution then C(
� |∆| \ S) is an implied

constraint for P .

Proof. By previous assumption, we know that C(� |∆|) is an implied constraint for P . Since
P∪{C(S)} is inconsistent, we know that ∀e ∈ Sol(P), Se∩S = ∅. Thus Sol(P+C(� |∆|)) =
Sol(P + C(� |∆| \ S)). ut

Corollary 2. Let P be a problem, C a parameterized constraint, S ⊆
� |∆|, and

poss(T) a set s.t. C(poss(T)) is implied on P . If P augmented with the constraint
C(S) has no solution then C(poss(T) \ S) is an implied constraint for P .

Algorithm 1: Learning Algorithm for Parameterized Constraints.

Input: C, ∆, E = {e1, . . . , ek} a set of instances for P .
Output: poss(T), s.t. C(poss(T)) is an implied constraint for P .
required(T)← ∅; poss(T)← � |∆|;
while (E 6= ∅) and (required(T) 6= poss(T)) do

Pick e ∈ E;
if e is positive then

if |Se| = 1 then required(T)← required(T) ∪ Se; /* Corol. 1*/1

else
for some S ⊆ (poss(T) \ required(T)) do

if Sol(X ,D, C ∪ C(S)) = ∅ then poss(T)← poss(T) \ S; /* Corol. 2*/2

else put an element of Sol(X ,D, C ∪ C(S)) as positive instance in E

Checking if P augmented with the constraint C(S) is inconsistent (line 2) is obviously
NP-hard. Even if P in this learning phase is not supposed to be the whole problem we
want to reformulate, it is necessary to follow some heuristics to avoid huge numbers
of NP-hard calls to a solver. For a parameterized constraint C, different representations
of parameters may exist. The more general case studied until now (Algorithm 1) con-
sists of considering that allowed tuples of parameters for C are given in extension as a
set T . Corollary 1 may then seem weak. However, in practice, most of parameterized

constraints are s.t. any two different combinations of parameters in
� |∆| correspond

to disjoint sets of allowed tuples on var(C). We call them parameter-partitioned con-
straints. For instance, NValue(p, [X1, . . . , Xn]) is parameter-partitioned since a single
value of p corresponds to an assignment of the Xi.

Corollary 3. Let e+ be a positive instance. If C is a parameter-partitioned constraint,
se+ ∈ required(T), where se+ is the only element in Se+ .

This corollary allows a faster construction of required(T) compared with Algo-
rithm 1. Moreover, existing parameterized constraints are usually defined by sets of
possible values for their parameters taken separately, which is less expressive than con-
sidering directly any subset of

� |∆|. It is possible to exploit this fact. We will note
T [pi] for the values of a parameter we wish to learn. Then, required(T [pi]) = {ki ∈

�
s.t. ∃s ∈ required(T), s[pi] = ki}, namely the set of values for pi that are re-

quired in T [pi]. Similarly, poss(T [pi]) = {ki ∈
�

s.t. ∃s ∈ poss(T), s[pi] = ki}.
If the possible values for a parameter pi are a set of integers, the learning algorithm
uses sets of integers to represent required(T [pi]) and poss(T [pi]). The parameter-
ized constraint will be called with poss(T [p1]) × . . . × poss(T [p|∆|]). If the possible
values for pi are a range of integers, the learning algorithm uses ranges of the form
[min(poss(T [pi]))..max(poss(T [pi]))] to represent poss(T [pi]) (resp. required(T [pi])).
Properties 1 and 2 can be rewritten to fit these two cases.

Property 3. Let e+ be a positive instance of P and C a parameterized constraint s.t.
parameters are sets of integers. If there is a unique s ∈

� |∆| such that e+[var(C)] ∈
C(s) then for any pi ∈ ∆, s[pi] ∈ required(T [pi]).

Property 4. Let P be a problem, C a parameterized constraint where parameters are a
set of integers, and poss(T) a set s.t. C(poss(T)) is implied on P . Let p be a parameter
of C, v a value in poss(T [p]), and S = {s ∈ poss(T) s.t. s[p] = v}. If P augmented
with C(S) has no solution then v can be removed from poss(T [p]).

Note that for each negative instance e−, if the constraint is parameter-partitioned, a
heuristic can be used to apply property 4 with v = se− [p].

Property 5. Let e+ be a positive instance of P and C a parameterized constraint s.t.
parameters are ranges. If there is a unique s ∈

� |∆| such that e+[var(C)] ∈ C(s) then
for any pi ∈ ∆, min(required(T [pi])) ≤ s[pi] ≤ max(required(T [pi])).

Property 6. Let P be a problem, C a parameterized constraint where parameters are
ranges, and poss(T) a set s.t. C(poss(T)) is implied on P . Let p be a parameter of
C, v a value in poss(T [p]), and S = {s ∈ poss(T) s.t. s[p] ≤ v} (respectively:
S = {s ∈ poss(T) s.t. s[p] ≥ v}). If P augmented with C(S) has no solution then
min(poss(T [p])) > v (respectively: max(poss(T [pi])) < v).

3 Experiments

We implemented with Choco [2] a learning algorithm for implied Gcc (global cardinal-
ity constraints [6]) where parameters are ranges. On the two intentionally naive models

we implemented to evaluate the interest of our algorithm, tables compare the solving
time of an initial model with the same model augmented with a learned Gcc.4

m1/m2 maxi #nodes time (sec.)
4/0 4 — > 60
4/0 3 42,129 7.4
4/0 2 85 0.12
3/1 4 45 0.030
3/1 3 33 0.041
3/1 2 7 (no sol) 0.030

(a) Initial model.

m1/m2 maxi #nodes time (sec.)
4/0 4 47 0.297 + 0.026
4/0 3 47 0.279 + 0.018
4/0 2 23 0.265 + 0.015
3/1 4 43 0.312 + 0.031
3/1 3 30 0.286 + 0.019
3/1 2 3 (no sol) 0.279 + 0.013

(b) Augm. Model.

Table 1. Scheduling satisfaction problem with a fixed makespan, precedence constraints, and
m = m1+m2 tasks (requiring one or two resources). maxi is the maximum allowed resource. 15
assignments where used to learn an implied Gcc on a problem relaxed from resource constraints.

n #nodes time (sec.)
10 110 0.2
15 2,648 7.6
20 137,982 183.2

(a) Initial Model.

n |E| #nodes time (sec.)
10 10 12 0.2 + 0.0
15 10 57 2.6 + 1.1
15 20 50 3.8 + 1.1
15 40 50 5.9 + 0.9
20 10 4,801 5.7 + 14.9
20 20 2,800 6.8 + 13.0
20 40 1,998 9.1 + 8.4

(b) Augm. Model.

Table 2. Optimization problem (allocation). n is the problem size (number of variables), |E| is
the number of assignments used to learn implied Gcc’s.

References

1. N. Beldiceanu. Global constraints as graph properties on a structured network of elementary
constraints of the same type. Proceedings CP, pages 52–66, 2000.

2. Choco. A Java library for constraint satisfaction problems, constraint programming and
explanation-based constraint solving. URL: http://sourceforge.net/projects/choco, 2005.

3. S. Colton and I. Miguel. Constraint generation via automated theory formation. Proceedings
CP, pages 575–579, 2001.

4. A. M. Frisch, C. Jefferson, B. Martinez Hernandez, and Ian Miguel. The rules of constraint
modelling. Proceedings IJCAI, to appear, 2005.

5. J.F. Puget. Constraint programming next challenge: Simplicity of use. In Proceedings CP,
pages 5–8, Toronto, Canada, 2004.

6. J-C. Régin. Generalized arc consistency for global cardinality constraint. Proceedings AAAI,
pages 209–215, 1996.

7. B. Smith, K. Stergiou, and T. Walsh. Modelling the golomb ruler problem. In J.C. Régin and
W. Nuijten, editors, Proceedings IJCAI’99 workshop on non-binary constraints, Stockholm,
Sweden, 1999.

4 In the tables located at the left the last column indicates the solving time, whereas in the tables
located at the right the last column indicates the sum of the learning time and the solving time.

View publication statsView publication stats

https://www.researchgate.net/publication/220270920

