
Towards the Systematic Generation of
Channelling Constraints

Student: Bernadette Mart́ınez-Hernández
Supervisor: Alan M. Frisch

Artificial Intelligence Group, Dept. of Computer Science, Univ. of York, York, UK

Abstract. The automatic modelling tool Conjure generates CSP mod-
els from problem specifications. The generated models may contain mul-
tiple alternative (redundant) representations of the same variable. How-
ever, the combined models generated by Conjure do not include the
channelling constraints needed to maintain the consistency between the
alternative representations. In this paper we show that by using only the
tools already provided by the Conjure system we can generate correct
channelling constraints.

1 Introduction

In this paper we introduce a method to systematically generate channelling con-
straints for the automatic modelling tool Conjure. The basic concepts related
to modelling and channelling are presented below.

Solving a problem using CSP technology requires mapping its informal de-
scription (often in natural language) into a formal description in a particular
formal system adequate for constraint solving. This process is called modelling.
In many cases the conceptual gap between the informal problem description and
the constraint program is still large.

Modelling is a hard task. We may find that a problem is easily modelled with
a variable whose domain is unsupported by current solvers, for example the Sonet
problem [1] that requires assigning nodes to a group of rings. This problem is
easily modelled with a variable whose domain is integrated by multisets of sets
of an integer range. Modellers must use variables with supported domains to
represent and implement variables with unsupported domains. Following the
example, we can use a two-dimensional matrix of integer variables to represent
the multiset of Sonet. To ensure the soundness of this transformation we have
to add a collection of alldifferent constraints, one for each represented set
of nodes. The addition of constraints is a common procedure in this kind of
transformation.

In an attempt to reduce the burden of hand-crafted modelling, several sys-
tems have been created to automate some of the modelling decisions. One of
these systems is Conjure [2], a system that automatically refines problem spec-
ifications into CSP models. Variables in the specifications may have domains
currently unsupported by solvers. Also, the elements of the domains may be ar-
bitrarily compound, for example, sets of sets, sets of sets of sets. Conjure uses



a set of refinement rules to compositionally transform the variables (and con-
straints) into their representations that can be implemented in current solvers.
We briefly describe Conjure in Section 2.

Modellers often come up with several alternative (redundant) representations
of the same variable. In Section 3 we discuss the definition of representation and
give some examples of alternative representations of the same variable. Good
modellers know that combining alternative representations in the same model
can improve propagation, among other benefits. To maintain the consistency
between these simultaneous alternatives we need to add channelling constraints
[3] to the model. Section 4 discuses channelling constraints (also called channels)
between alternative representations.

Conjure produces several different alternative representations of the same
variable. It can also produce these alternatives simultaneously in the same model.
Currently, Conjure does not automatically produce the channelling constraints
to maintain the consistency between the alternative representations. We show in
Section 5 that we can generate those channels systematically. More importantly
we can use Conjure for the generation, providing that Conjure ensures the
input of a refinement rule is correctly represented by the output.

2 Refinement and CONJURE

Specifications for Conjure are given in Essence version one (EV1), a specifica-
tion language that allows variables to have an associated domain whose elements
are either integers, Booleans, sets, multisets, functions, relations, partitions or
tuples (among others). Unlike other languages like F [4], Essence allows do-
mains to be nested to arbitrary depth, for example sets of integers, sets of sets of
integers, and so forth. The current implemented version of Conjure refines only
variables whose domains are (arbitrarily nested) sets or multisets. It is planed
to extend this implementation to support all the range of domains of Essence.
A full description of the Essence language and the performance of Conjure is
given in http://www.cs.york.ac.uk/aig/constraints/AutoModel/

There are often several refinement rules that can be applied to an expression.
Hence, if a variable appears more than once in the constraints of an Essence
specification, Conjure may generate models including several simultaneous al-
ternative constructions related to this variable. In this cases Conjure annotates
the model specifying the relation between the specification variable and its var-
ious related variables in the generated model.

3 Representations

The refinement rules of Conjure return correct representations of their given
inputs. Before giving a definition of correct representation we must first introduce
the CSP instances. A CSP instance is a concept similar to the the model used
in the model algebra by Law et al [5].



Definition 1 R=(V, C) is a CSP instance where V is a pair consisting of a
set of the variables and their domains (viewpoint) and C is a (possibly empty)
set of the constraints in P. For each constraint in C, its variables (and their
domains) must be included in V.

Example of CSP instance: The CSP instance S1 (set) consists of a single
variable S whose domain consists of all sets of size n whose elements are drawn
from the range a..b; where a, b and n are integer numbers such that a ≤ b and
n > 0. The set of constraints in S1 is empty. This definition of S1 and S is used
throughout this document.

The following definition of representation is similar to the variable represen-
tation discussed by Jefferson and Frisch [6], and it is strongly related to the
preservation of solutions.

Definition 2 The tuple 〈R, R′, ψ〉 is a representation of R under R′ and ψ
(R′ represents R via ψ) if R′ = (V ′, C ′) and R = (V, C) are CSP instances
and ψ is a partial function from the total assignments of the variables in V ′ into
the total assignments of the variables in V such that:

– For each total assignment x′ of the variables in V ′, x′ satisfies the constraints
in C ′ if and only if ψ(x′) is defined and satisfies the constraints in C,

– For each assignment x of the variables in V satisfying the constraints in C,
exists an assignment x′ of the variables in V ′ such that ψ(x′) = x.

Example of representation: The CSP instance E1 (explicit set) is formed
by an array of one dimension of integer variables V aE1S indexed by 1..n. Each
element of the array has an integer domain a..b. The CSP instance includes con-
straints that ensure all the elements of the array V aE1S are different (allDiffer-
ent). Let ψE be a function from the assignments of V aE1S into the assignments
of S. The application of ψE is defined only for arrays whose values are all dif-
ferent. The function ψE returns a set containing the values present in the array.
Notice that ψE fulfills all the requisites of Definition 2, hence 〈S1, E1, ψE〉 is a
representation of S1 under E1 and ψE .

Definition 3 R′ is equivalent to R via ψ if and only if R′ represents R via
ψ and R represents R via ψ−1.

Examples of equivalent representation: Any CSP instance R is equiva-
lent to itself via the identity function. An example more related to sets is the
CSP instance O1 (occurrence set) that contains an array of one dimension of
Boolean variables V aO1S indexed by the integer range a..b. The constraint
sum(V aO1S) = n is the only element of the set of constraints. The function
ψO from the assignments of V aO1S to the assignments of S is defined only for
the assignments satisfying sum(V aO1S) = n. ψO returns a set with the indexes
of V aO1S where the Boolean value True is assigned. It is not difficult to con-
clude that O1 represents S1 via ψO and S1 represents O1 via ψ−1

O . Hence O1
is equivalent to S1 via ψO.



To comply with an strategy that is representation (and CSP instance) based
we say that a specification variable forms the CSP instance consisting only of
the variable and the empty set of constraints.

4 Alternative Representations and Channels

The channelling annotations are information tags used by Conjure to indicate
the relation between the variables of a generated CSP instance and the vari-
ables of an input CSP instance. Following the examples of the previous section,
when Conjure generates the representation E1 of S1 it uses the channelling
annotation represent S by expset(VaE1S ) to indicate that E1 is the explicit
representation of S1. If Conjure generates O1 as a representation of S1 it
attaches the channelling annotation represent S by occset(VaO1S ) to indicate
O1 is the explicit representation of O1.

Alternative representations of the same variable remain independent until
we add channelling constraints to maintain the consistency between them. We
present here a definition of channelling constraint similar to the one used by
Jefferson [6].

Definition 4 Let S1 = 〈R, R1, ψ1〉 and S2 = 〈R, R2, ψ2〉 be CSP instance
representations of R. Let vars(R1) and vars(R2) be disjoint sets of variables. A
set of constraints Ch are channelling constraints between S1 and S2 if:

– For each total assignment x1 (of the variables in R1) satisfying the con-
straints in R1 there is at least one total assignments x2 (of the variables in
R2) where the composed assignment x1 ∪ x2 satisfies the constraints in Ch.
Similarly for each satisfying x2 there must be an assignment x1 such that
the composed assignment x1 ∪ x2 satisfies the constraints in Ch.

– For all total assignments x1 and x2 where the composed assignment x1 ∪ x2

satisfies the constraints in Ch, ψ1(x1) and ψ2(x2) are either both undefined
or take the same value.

Let us show the channels between the previous CSP instances. The CSP
instances S1 and E1 are representations of S1. Notice that S1 is a representation
of S1 via the identity function, named here ψid. The following constraint is a
channelling constraint between S1 and E1.

[CHS1E1] ∀j∈a..b. (j ∈ S ⇔ ∃i∈1..n. V aE1S[i] = j)

It is clear that for every assignment of S there is at least one assignment of
V aE1S such that S ∪ V aE1S satisfies CHS1E1 and V aE1S satisfies the con-
straints of E1. This is also satisfied the other way around. Furthermore, the
definition of ψid and ψE ensure that ψ(S) and ψE(V aE1S) are either equal or
both undefined when S ∪ V aE1S satisfies CHS1E1.



Similarly, the following constraint is a channelling constraint between S1 and
O1.

[CHS1O1] ∀j∈a..b. (j ∈ S ⇔ V aO1S[j])

Suppose that Conjure produces a model with both E1 and O1 as represen-
tations of S1. It is not very difficult to see the following channelling constraint
to connect the alternative representations E1 and O1 is correct according to
Definition 4.

[CHE1O1] ∀j∈a..b. (V aO1S[j] ⇔ ∃i∈1..n. V aE1S[i] = j)

We show below that a CSP instance formed by two alternative representations of
an initial CSP instance and their channelling constraints is also a representation
the initial CSP instance.

Theorem 1 Let 〈R, R1, ψ1〉 and 〈R, R2, ψ2〉 be variable disjoint representations
of R and Ch a channelling constraint between R1 and R2. We can compose a
function ψ from ψ1 or ψ2 such that 〈R, R1 ∪R2 ∪Ch, ψ〉 is a representation of
R.

Proof. Let ψ be the extended version of either ψ1 or ψ2 such that it can be
applied to any total assignment x that instantiate the variables of R1 ∪R2. Let
ψ return exactly the same values only when given an assignment that satisfies
the constraints in Ch and be undefined in any other case. Therefore R1∪R2∪Ch

represents R via ψ. ¤

Notice that 〈S1, E1 ∪ O1 ∪ CHE1O1, ψ′O〉1 is a representation of S1.

5 Systematic Generation of Channelling Constraints

The examples of the previous section show examples of channelling constraints
generated with the information provided in the annotations. The generation of
channelling constraints based on the annotations becomes challenging for human
modellers when the input variable(s) have a deeply nested domain.

Let P be a specification refined by Conjure into P ′ where the variable
X in P has two representations X1 and X2 in P ′. Suppose we can use the
annotations to force Conjure to produce only certain representations (with
the same variable names and domain) for certain variables. Let Y be a new
variable with exactly the same domain of X. The constraint X = Y is obviously
a channelling constraint between X and Y . We can then re-refine X = Y forcing
the X to refine into X1 and the Y to refine into X2. Such refinement produces
a representation of the channelling constraints between X1 and X2. Hence, we
can compose a representation of X, 〈X, X1 ∪X2 ∪ρX1,X2(X = X), ψX1〉, where

1 ψ′O is the extended version of ψO.



ρX1,X2(X = X) is the conditioned refinement of X = Y . We call this algorithm
of generation the post-processing algorithm.

The following theorem states the correctness of the algorithm. The proof is
left out for reasons of space.

Theorem 2 If the rules of Conjure produce representations of their inputs
then the post-processing algorithms generates correct models.

6 Conclusion and Future Work

Based on generalisations over CSP instances we reduce the problem of the auto-
matic generation of channelling constraints to the problem of proving that the
refinement rules of Conjure generate only representations of its inputs.

It is important to notice that the post processing algorithm can be gener-
alised to produce the channels between three or more representations of the
same specification variable. We may even modify the strategy of generation and
produce only some channelling constraints instead of all the multiple channels
between these representations.

The work is far from being complete. The conditions and performance of
the generation of channels for non-redundant (partial) representations are not
included yet. Also, correct channels may need postprocessing for a better reading
of the user and/or to generate efficient code for a CSP solver. What is more, due
to the nature of the refinement process we may generate several valid alternative
channelling constraints for the same kind of variables. This alternative generation
increases the complexity of the model selection task.

References

1. A.M. Frisch, B. Hnich, I.M.B.M.S.T.W.: Transforming and refining abstract con-
straint specifications. In: CSCLP04: Joint Annual Workshop of ERCIM/Colognet
on Constraint Solving and Constraint Logic Programming. (2004)

2. Frisch, A.M., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.: The rules of con-
straint modelling. In: Nineteenth Int. Joint Conf. on Artificial Intelligence. (2005)

3. Cheng, B.M.W., Choi, K.M.F., Lee, J.H.M., Wu, J.C.K.: Increasing constraint
propagation by redundant modeling: An experience report. Constraints 4 (1999)
167–192

4. Hnich, B.: Function Variables for Constraint Programming. PhD thesis, Computer
Science Division, Department of Information Science, Uppsala University (2003)

5. Law, Y.C., Lee, J.H.M.: Algebraic properties of CSP model operators. In: Pro-
ceedings of the International Workshop on Reformulating Constraint Satisfaction
Problems: Towards Systematisation and Automation (Held in Conjunction with
CP-2002). (2002) 57–71 Shorter paper in CP-2002.

6. Jefferson, C., Frisch, A.M. Available from http://www.cs.york.ac.uk/aig/

constraints/AutoModel/ (2005)


