Skip to main content

Molecular and Functional Diversity of Visual Pigments: Clues from the Photosensitive Opsin–Like Proteins of the Animal Model Hydra

  • Conference paper
Book cover Brain, Vision, and Artificial Intelligence (BVAI 2005)

Abstract

The primary event of vision is the absorption of photons by photosensitive pigments, which triggers the transduction process producing the visual excitation. Although animal eyes and eyeless photoreceptive systems developed along several levels of molecular, morphological and functional complexity, image–forming rhodopsin family appears ubiquous along visual systems. Moreover, all Metazoa have supplementary extraocular photoreceptors that regulate their temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. To study molecular and functional differences between these pigment families, we propose the cnidarian Hydra, the first metazoan owning a nervous system, as a powerful tool of investigation. Hydra shows only an extraocular photoreception lacking classic visual structures. Our findings provide the first evidence in a phylogenetically old species of both image– and non–image–forming opsins, giving new insights on the molecular biology of Hydra photoreception and on comparative physiology of visual pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chalupa, L.M., Werner, L.S.: The Visual Neurosciences. MIT Press, Cambridge (2003)

    Google Scholar 

  2. Fernald, R.D.: Evolving eyes. Int. J. Dev. Biol. 48, 701–705 (2004)

    Article  Google Scholar 

  3. Arshavsky, V., Lamb, T., Pugh, E.: G proteins and phototransduction. Annu. Rev. Physiol. 64, 153–187 (2002)

    Article  Google Scholar 

  4. Shichida, Y., Imai, H.: Visual pigment: G–protein–coupled receptor for light signals. Cell. Mol. Life Sci. 54, 1299–1315 (1998)

    Article  Google Scholar 

  5. Nasi, E., Gomez, M., Payne, R.: Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates. In: Hoff, A.J., Stavenga, D., et al. (eds.) Molecular Mechanisms in Visual Transduction, pp. 389–448. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  6. Koutalos, Y., Nakatani, K., Xiong, W.-H., Yau, K.-W.: Phototransduction in retinal rods and cones. In: Musio, C. (ed.) Vision: The Approach of Biophysics and Neurosciences, pp. 172–183. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  7. Gotow, T., Nishi, T.: Light–dependent K +  channels in the mollusc Onchidium simple photoreceptors are opened by cGMP. J. Gen. Physiol. 120, 581–597 (2002)

    Article  Google Scholar 

  8. Musio, C.: Extraocular photosensitivity in invertebrates. In: Taddei–Ferretti, C. (ed.) Biophysics of Photoreception, pp. 245–262. World Scientific, Singapore (1997)

    Google Scholar 

  9. Foster, R.G., Grace, M., Provencio, I., et al.: Identification of vertebrate deep encephalic photoreceptors. Neurosci. Biobehav. Rev. 18, 541–546 (1994)

    Article  Google Scholar 

  10. Foster, R.G., Hankins, M.W.: Non–rod, non–cone photoreception in the vertebrates. Prog. Ret. Eye Res. (PRER) 21, 507–527 (2002)

    Article  Google Scholar 

  11. Taddei–Ferretti, C., Musio, C.: Photobehaviour of Hydra and correlated mechanisms: a case of extraocular photosensitivity. J. Photochem. Photobiol. B 55, 88–101 (2000)

    Article  Google Scholar 

  12. Taddei–Ferretti, C., Musio, C., Santillo, S., Cotugno, A.: The photobiology of Hydra’s periodic activity. Hydrobiologia 530/531, 129–134 (2004)

    Article  Google Scholar 

  13. Gualtieri, P.: Rhodopsin–like proteins: the universal and probably unique proteins for vision. See Ref. [6], 23–30

    Google Scholar 

  14. Filipek, S., Stenkamp, R., et al.: GPCR rhodopsin: a prospectus. Annu. Rev. Physiol. 65, 851–879 (2003)

    Article  Google Scholar 

  15. Gärtner, W.: Invertebrate visual pigments. See Ref. [5] 297–388

    Google Scholar 

  16. Palczewski, K., Kumasaka, T., Hori, T., et al.: Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000)

    Article  Google Scholar 

  17. Yokoyama, S.: Molecular evolution of vertebrate visual pigments. PRER 19, 385–419 (2000)

    Google Scholar 

  18. Hardie, R.C.: Phototransduction in Drosophila. J. Exp. Biol. 204, 3403–3409 (2001)

    Google Scholar 

  19. Foster, R.G., Helfrich–Förster, C.: The regulation of circadian clocks by light in fruitflies and mice. Phil. Trans. R. Soc. Lond. B 356, 1779–1789 (2001)

    Article  Google Scholar 

  20. Emery, P., Stanewsky, R., Helfrich–Förster, C., et al.: Drosophila CRY is a deep brain circadian photoreceptor. Neuron. 26, 493–504 (2000)

    Article  Google Scholar 

  21. Sun, H., Gilbert, D., Copeland, N., et al.: Peropsin, a novel visual pigment–like protein located in the apical microvilli of the RPE. PNAS 94, 9893–9898 (1997)

    Article  Google Scholar 

  22. Terakita, A.: The opsins. Genome Biol. 6, 213 (2005) (Epub at GenomeBiology.com)

    Article  Google Scholar 

  23. Berson, D.M., Dunn, F., Takao, M.: Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002)

    Article  Google Scholar 

  24. Foster, R.G.: Bright blue times. Nature 433, 698–699 (2005)

    Article  Google Scholar 

  25. Dacey, D., Liao, H.W., et al.: Melanopsin–expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754 (2005)

    Article  Google Scholar 

  26. Musio, C., Santillo, S., Taddei–Ferretti, C., Robles, L.J., et al.: First identification and localization of a visual pigment in Hydra. J. Comp. Physiol. 187A, 79–81 (2001)

    Article  Google Scholar 

  27. Bailey, M., Cassone, V.: Opsin photoisomerases in the chick retina and pineal gland: characterization, localization, and circadian regulation. IOVS 45, 769–775 (2004)

    Google Scholar 

  28. Florenzano, F., Guglielmotti, V.: Selective NADPH–diaphorase histochemical labeling of Müller radial processes and photoreceptors in the earliest stages of retinal development in the tadpole. Neurosci. Lett. 292, 187–190 (2000)

    Article  Google Scholar 

  29. Isoldi, M.C., Rollag, M.D., et al.: Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. PNAS 102, 1217–1221 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santillo, S., Orlando, P., De Petrocellis, L., Cristino, L., Guglielmotti, V., Musio, C. (2005). Molecular and Functional Diversity of Visual Pigments: Clues from the Photosensitive Opsin–Like Proteins of the Animal Model Hydra . In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_23

Download citation

  • DOI: https://doi.org/10.1007/11565123_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29282-1

  • Online ISBN: 978-3-540-32029-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics