Skip to main content

Inverse First Passage Time Method in the Analysis of Neuronal Interspike Intervals of Neurons Characterized by Time Varying Dynamics

  • Conference paper
Brain, Vision, and Artificial Intelligence (BVAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3704))

Included in the following conference series:

Abstract

We propose a new method to analyze time series recorded by single neuronal units in order to identify possible differences in the time evolution of the considered neuron. The effect of different dynamics is artificially concentrated in the boundary shape by means of the inverse first passage time method applied to the stochastic leaky integrate and fire model. In particular, the evolution in the dynamics is recognized by means of a suitable time window fragmentation on the observed data and the repeated use of the inverse first passage time algorithm. The comparison of the boundary shapes in the different time windows detects this evolution. A simulation example of the method and its biological implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capocelli, R.M., Ricciardi, L.M.: Diffusion approximation and first passage time problem for a model neuron. Kybernetik 8(6), 214–223 (1971)

    Article  MathSciNet  Google Scholar 

  2. Devroye, L.: A course in density estimation. Birkhäuser, Boston (1987)

    MATH  Google Scholar 

  3. Cohen, L.: Time-frequency analysis. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  4. Feng, J.F., Brown, D.: Integrate-and-fire models with nonlinear leakage. Bull. Math. Biol. 62(3), 467–481 (2000)

    Article  MathSciNet  Google Scholar 

  5. Giraudo, M.T., Sacerdote, L.: An improved technique for the simulation of first passage times for diffusion processes. Commun. Statist. Simul. 28(4), 1135–1163 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Giraudo, M.T., Sacerdote, L., Zucca, C.: A Monte Carlo method for the simulation of first passage times diffusion processes. Methodol. Comput. Appl. Probab. 3(2), 215–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lansky, P., Sacerdote, L.: The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Phys. Lett. A 285(3-4), 132–140 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lansky, P., Sacerdote, L., Tomassetti, F.: On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity. Biol. Cybern. 73(5), 457–465 (1995)

    Article  MATH  Google Scholar 

  9. Pakdaman, K.: Periodically forced leaky integrate-and-fire model. Phys. Rev. E 63(4) (2001), Art. No. 041907 Part 1

    Google Scholar 

  10. Priestley, M.B.: Spectral analysis and time series. Academic Press, London (1987)

    Google Scholar 

  11. Ricciardi, L.M.: Diffusion Processes and related topics in biology. Lectures Notes in Biomathematics. Springer, Heidelberg (1977)

    MATH  Google Scholar 

  12. Ricciardi, L.M., Di Crescenzo, A., Giorno, V., Nobile, A.G.: An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math. Japon. 50(2), 247–322 (1999)

    MATH  MathSciNet  Google Scholar 

  13. Sacerdote, L., Villa, A.E.P., Zucca, C.: On the classification of experimental data modeled via a stochastic leaky integrate and fire model through boundary values. Preprint (2005)

    Google Scholar 

  14. Sacerdote, L., Zucca, C.: Threshold shape corresponding to a Gamma firing distribution in an Ornstein-Uhlenbeck neuronal model. Sci. Math. Jpn. 58(2), 295–305 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Sacerdote, L., Zucca, C.: On the relationship between interspikes interval distribution and boundary shape in the Ornstein-Uhlenbeck neuronal model. In: Capasso, V. (ed.) Mathematical modelling & computing in biology and medicine, pp. 161–168. Esculapio, Bologna (2003)

    Google Scholar 

  16. Shimokawa, T., Pakdaman, K., Takahata, T., Sato, S.: A first-passage-time analysis of the periodically forced noisy leaky integrate-and-fire model. Biol. Cybern. 83, 327–340 (2000)

    Article  MATH  Google Scholar 

  17. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York (1986)

    MATH  Google Scholar 

  18. Tuckwell, H.C.: Introduction to Theoretical Neurobiology: I. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  19. Tuckwell, H.C., Wan, F.Y.M., Rospars, J.P.: A spatial stochastic neuronal model with Ornstein-Uhlenbeck input current. Biol. Cybern. 86(2), 137–145 (2002)

    Article  MATH  Google Scholar 

  20. Zucca, C., Sacerdote, L., Peskir, G.: On the Inverse First-Passage Problem for a Wiener Process. Quaderno del Dipartimento di Matematica-Università di Torino n.2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sacerdote, L., Zucca, C. (2005). Inverse First Passage Time Method in the Analysis of Neuronal Interspike Intervals of Neurons Characterized by Time Varying Dynamics. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_7

Download citation

  • DOI: https://doi.org/10.1007/11565123_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29282-1

  • Online ISBN: 978-3-540-32029-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics