Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3752))

Abstract

The need to regularize tensor fields arise recently in various applications. We treat in this paper tensors that belong to matrix Lie groups. We formulate the problem of these SO(N) flows in terms of the principal chiral model (PCM) action. This action is defined over a Lie group manifold. By minimizing the PCM action with respect to the group element, we obtain the equations of motion for the group element (or the corresponding connection). Then, by writing the gradient descent equations we obtain the PDE for the Lie group flows. We use these flows to regularize in particular the group of N-dimensional orthogonal matrices with determinant one i.e. SO(N). This type of regularization preserves their properties (i.e., the orthogonality and the determinant). A special numerical scheme that preserves the Lie group structure is used. However, these flows regularize the tensor field isotropically and therefore discontinuities are not preserved. We modify the functional and thereby the gradient descent PDEs in order to obtain an anisotropic tensor field regularization. We demonstrate our formalism with various examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, New-York (2002)

    MATH  Google Scholar 

  2. Blomgren, P., Chan, T.F.: Color TV: Total Variation Methods for Restoration of Vector Valued Images. IEEE Trans. on Image processing 7, 304–309 (1998)

    Article  Google Scholar 

  3. Chan, T., Shen, J.: Variational Restoration of nonflat Image Features: Models and Algorithms. SIAMJ Appl. Math. 61, 1338–1361 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Chen, Y., Guo, W., Zeng, Q., Yan, X., Huang, F., Zhang, H., He, G., Vemuri, B.C., Liu, Y.: Estimation, Smoothing, and Characterization of Apparent Diffusion Coefficient Profiles from High Angular Resolution DWI. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), vol. 1, pp. 588–593 (2004)

    Google Scholar 

  5. Chefd’hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Regularizing Flows for Constrained Matrix-Valued Images. Journal of Mathematical Imaging and Vision 20, 147–162 (2004)

    Article  MathSciNet  Google Scholar 

  6. Gallier, J., Xu, D.: Computing Exponentials of Skew Symmetric Matrices and Logarithms of Orthogonal Matrices. Internation Journal of Robotics and Automation 18, 10–20 (2003)

    Google Scholar 

  7. Gürses, M., Karasu, A.: Integrable Sigma Model. International Journal of Modern Physics A 6, 487–500 (1990)

    Article  Google Scholar 

  8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  9. Hlavatý, L., Šnobl, L.: Principal Chiral Models on non-Semisimple Group. J. Phys. A 34, 7795–7809 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-Group Methods. Acta Numerica 9, 215–365 (2000)

    Article  Google Scholar 

  11. Kimmel, R.: Numerical Geometry of Images: Theory, Algorithms, and Applications. Springer, New York (2004)

    MATH  Google Scholar 

  12. Kimmel, R., Sochen, N.: Orientation Diffusion or How to Comb a Porcupine. Journal of Visual Communication and Image Representation 13, 238–248 (2001)

    Article  Google Scholar 

  13. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on Multivariate Normal Distributions: A Geometric Approach and its Application to Diffusion Tensor MRI. Technical Report 5242, INRIA (June 2004)

    Google Scholar 

  14. Memoli, F., Sapiro, G., Osher, S.: Solving Variational Problems and Partial Differential Equations Mapping into General Target Manifolds. J. Comput. Phys. 195, 263–292 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mumford, D., Shah, J.: Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Communications on Pure and Applied Mathematics 42, 577–684 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Osher, S., Rudin, L.I.: Feature-Oriented Image Enhancement using Shock Filters. SIAM Journal of Numerical Analysis 27, 919–940 (1990)

    Article  MATH  Google Scholar 

  17. Pennec, X., Fillard, P., Ayache, N.: A Riemmannian Framework for Tensor Computing. International Journal of Computer Vision (2005) (to appear)

    Google Scholar 

  18. Pennec, X.: Probabilities and Statistics on Riemannian Manifolds: A Geometric approach. Research Report 5093, INRIA (January 2004)

    Google Scholar 

  19. Perona, P., Malik, J.: Scale-Space and Edge Detection using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  20. Perona, P.: Orientation Diffusion. IEEE Trunsactions on Image Processing 7, 457–467 (1998)

    Article  Google Scholar 

  21. Rudin, L., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  22. Sochen, N., Kimmel, R., Malladi, R.: From High Energy Physics to Low Level Vision. Scale-Space Theories in Computer Vision, 236–247 (1997)

    Google Scholar 

  23. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  24. Sapiro, G., Ringach, D.: Anisotropic Diffusion of Multivalued Images with Application to Color Filtering. IEEE Trans. On Image Processing 5, 1582–1586 (1996)

    Article  Google Scholar 

  25. Shafrir, D., Sochen, N., Deriche, R.: Regularization of Mappings between Implicit Manifolds of Arbitrary Dimension and Codimension. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 344–355. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Sochen, N.: Integrable Generalized Principal Chiral Models. Phys. Lett. B 391, 374–380 (1997)

    Article  MathSciNet  Google Scholar 

  27. Sochen, N., Deriche, R., Lopez-Perez, L.: The Beltrami Flow over Implicit Manifolds. In: ICCV 2003: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 832–839 (2003)

    Google Scholar 

  28. Tang, B., Sapiro, G., Caselles, V.: Direction Diffusion. In: International Conference on Computer Vision (1999)

    Google Scholar 

  29. Tschumperlé, D.: PhD thesis: PDE’s Based Regularization of Multivalued Images and Applications. Universite de Nice-Sophia, Antipolis (2002)

    Google Scholar 

  30. Tschumperlé, D., Deriche, R.: Orthonormal Vector Sets Regularization with PDE’s and Application. International Journal of Computer Vision 50, 237–252 (2002)

    Article  MATH  Google Scholar 

  31. Weickert, J.: Anisotropic Diffusion in Image Processing, Teubner-Verlag, Stuttgart (1998)

    Google Scholar 

  32. Weickert, j., Feddern, C., Welk, M., Burgeth, B., Brox, T.: PDEs for Tensor Image Processing. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields. Springer, Berlin (2005) (to appear)

    Google Scholar 

  33. Wiegmann, P.B.: On the Theory of nonabelian Goldstone Bosons in Two Dimesnions: Exact Solution of the SU(N) ⊗ SU(N) nonlinear σ Model”. Physics Letters B 141, 217–222 (1984)

    Article  MathSciNet  Google Scholar 

  34. Wiegmann, P.B.: Exact Factorized S-Matrix of the Chiral Field in Two Dimension. Physics Letters B 142, 173–176 (1984)

    Article  Google Scholar 

  35. Whitaker, R., Gerig, G.: Vector-Valued Diffusion. In: ter Haar Romeny, B.M. (ed.) Geometry Driven Diffusion in Computer Vision, pp. 93–134. Kluwer Academic Publishers, The Netherlands (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gur, Y., Sochen, N. (2005). Denoising Tensors via Lie Group Flows. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_2

Download citation

  • DOI: https://doi.org/10.1007/11567646_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics