Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3752))

Abstract

We introduce a novel type of region based active contour using image inpainting. Usual region based active contours assume that the image is divided into several semantically meaningful regions and attempt to differentiate them through recovering dynamically statistical optimal parameters for each region. In case when perceptually distinct regions have similar intensity distributions, the methods mentioned above fail. In this work, we formulate the problem as optimizing a ”background disocclusion” criterion, a disocclusion that can be performed by inpainting. We look especially at a family of inpainting formulations that includes the Chan and Shen Total Variation Inpainting (more precisely a regularization of it). In this case, the optimization leads formally to a coupled contour evolution equation, an inpainting equation, as well as a linear PDE depending on the inpainting. The contour evolution is implemented in the framework of level sets. Finally, the proposed method is validated on various examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE Computer Society Press, Boston (June 1995)

    Google Scholar 

  2. Aubert, G., Barlaud, M., Jehan-Besson, S., Faugeras, O.: Image segmentation using active contours: Calculus of variations or shape gradients? SIAM Journal of Applied Mathematics 63(6), 2128–2154 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Transactions on Image Processing 10(8), 1200–1211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Akeley, K. (ed.) Proceedings of the SIGGRAPH, pp. 417–424. ACM Press, ACM SIGGRAPH, Addison Wesley Longman (2000)

    Google Scholar 

  5. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational Optical Flow Computation in Real Time. IEEE Transactions on Image Processing 14(5), 608–615 (2005)

    Article  MathSciNet  Google Scholar 

  6. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numerische Mathematik 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of the 5th International Conference on Computer Vision [1], pp. 694–699

    Google Scholar 

  8. Chan, T., Shen, J.: Mathematical models for local nontexture inpainting. SIAM journal of appl. Math 62(3), 1019–1043 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Laurent, D.: Cohen and Isaac Cohen. Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1131–1147 (1993)

    Article  Google Scholar 

  11. Cremers, D., Schnoerr, C., Weickert, J.: Diffusion-snakes: Combining statistical shape knowledge and image information in a variational framework. In: 1st IEEE Workshop on Variational and Level Set Methods in Computer Vision (2001)

    Google Scholar 

  12. Cremers, D., Kohlberger, T., Schnorr, C.: Nonlinear Shape Statistics in Mumford Shah Based Segmentation. In: European Conference on Computer Vision, pp. 93–108 (2002)

    Google Scholar 

  13. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics. In: Proceedings of the American Mathematical Society. , vol. 19 (1998)

    Google Scholar 

  14. Karlsson, A., Overgaard, N.: Theory for Variational Area-Based Segmentation Using Non-Quadratic Penalty Functions. In: International Conference on Computer Vision and Pattern Recognition. IEEE Comput. Soc, Los Alamitos (2005) (to appear)

    Google Scholar 

  15. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: First International Conference on Computer Vision, London, June 1987, pp. 259–268 (1987)

    Google Scholar 

  16. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proceedings of the 5th International Conference on Computer Vision [1], pp. 810–815

    Google Scholar 

  17. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: International Conference on Image Processing, vol. III, pp. 259–263 (1998)

    Google Scholar 

  18. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–684 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  20. Paragios, N., Deriche, R.: Geodesic active regions: a new paradigm to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation, Special Issue on Partial Differential Equations in Image Processing, Computer Vision and Computer Graphics 13(1/2), 249–268 (2002)

    Google Scholar 

  21. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based space. In: International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, June 2003, vol. 2, pp. 699–704 (2003)

    Google Scholar 

  22. Rousson, M., Paragios, N.: Shape priors for level set representations. In: European Conference on Computer Vision, May 2002, vol. 2, pp. 78–92 (2002)

    Google Scholar 

  23. Rybak, I.V.: Monotone and Conservative Difference Schemes for Elliptic Equations with Mixed Derivatives. Mathematical Modelling and Analysis 9(2), 169–178 (2004)

    MATH  MathSciNet  Google Scholar 

  24. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sciences. In: Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  25. Xu, C., Prince, J.L.: Gradient Vector Flow: A New External Force for Snakes. In: International Conference on Computer Vision and Pattern Recognition, p. 66 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lauze, F., Nielsen, M. (2005). From Inpainting to Active Contours. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_9

Download citation

  • DOI: https://doi.org/10.1007/11567646_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics