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Abstract. In this paper we address two optimization problems arising
in the design of genomic assays based on universal tag arrays. First, we
address the universal array tag set design problem. For this problem, we
extend previous formulations to incorporate antitag-to-antitag hybridiza-
tion constraints in addition to constraints on antitag-to-tag hybridization
specificity, establish a constructive upper bound on the maximum num-
ber of tags satisfying the extended constraints, and propose a simple
greedy tag selection algorithm. Second, we give methods for improving
the multiplexing rate in large-scale genomic assays by combining primer
selection with tag assignment. Experimental results on simulated data
show that this integrated optimization leads to reductions of up to 50%
in the number of required arrays.

1 Introduction

High throughput genomic technologies have revolutionized biomedical sciences,
and progress in this area continues at an accelerated pace in response to the
increasingly varied needs of biomedical research. Among emerging technologies,
one of the most promising is the use of universal tag arrays [4, 7, 8], which provide
unprecedented assay customization flexibility while maintaining a high degree of
multiplexing and low unit cost.

A universal tag array consists of a set of DNA tags, designed such that each
tag hybridizes strongly to its own antitag (Watson-Crick complement), but to
no other antitag [2]. Genomic assays based on universal arrays involve multiple
hybridization steps. A typical assay [3, 5], used for Single Nucleotide Polymor-
phism (SNP) genotyping, works as follows. (1) A set of reporter oligonucleotide
probes is synthesized by ligating antitags to the 5′ end of primers complement-
ing the genomic sequence immediately preceding the SNP location in 3′-5′ order
on either the forward or reverse strands. (2) Reporter probes are hybridized in
solution with the genomic DNA under study. (3) Hybridization of the primer
part (3′ end) of a reporter probe is detected by a single-base extension reac-
tion using the polymerase enzyme and dideoxynucleotides fluorescently labeled
with 4 different dyes. (4) Reporter probes are separated from the template DNA

⋆ Work supported in part by a “Large Grant” from the University of Connecticut’s
Research Foundation.

http://arxiv.org/abs/cs/0502054v1


and hybridized to the universal array. (5) Finally, fluorescence levels are used
to determine which primers have been extended and learn the identity of the
extending dideoxynucleotides.

In this paper we address two optimization problems arising in the design of
genomic assays based on the universal tag arrays. First, we address the univer-
sal array tag set design problem (Section 2). To enable the economies of scale
afforded by high-volume production of the arrays, tag sets must be designed
to work well for a wide range of assay types and experimental conditions. Ben
Dor et al. [2] have previously formalized the problem by imposing constraints
on antitag-to-tag hybridization specificity under a hybridization model based on
the classical 2-4 rule [9]. We extend the model in [2] to also prevent antitag-to-
antitag hybridization and the formation of antitag secondary structures, which
can significantly interfere with or disrupt correct assay functionality. Our results
on this problem include a constructive upper bound on the maximum number of
tags satisfying the extended constraints, as well as a simple greedy tag selection
algorithm.

Second, we study methods for improving the multiplexing rate (defined as
the average number of reactions assayed per array) in large-scale genomic assays
involving multiple universal arrays. In general, it is not possible to assign all
tags to primers in an array experiment due to, e.g., unwanted primer-to-tag
hybridizations. An assay specific optimization that determines the multiplexing
rate (and hence the number of required arrays for a large assay) is the tag
assignment problem, whereby individual (anti)tags are assigned to each primer.
In Section 3 we observe that significant improvements in multiplexing rate can be
achieved by combining primer selection with tag assignment. For most universal
array applications there are multiple primers with the desired functionality; for
example in the SNP genotyping assay described above one can choose the primer
from either the forward or reverse strands. Since different primers hybridize to
different sets of tags, a higher multiplexing rate is achieved by integrating primer
selection with tag assignment. This integrated optimization is shown in Section
4 to lead to a reduction of up to 50% in the number of required arrays.

2 Universal Array Tag Set Design

The main objective of universal array tag set design is to maximize the number of
tags, which directly determines the number of reactions that can be multiplexed
using a single array. Tags are typically required to have a predetermined length
[1, 7]. Furthermore, for correct assay functionality, tags and their antitags must
satisfy the following hybridization constraints:

(H1) Every antitag hybridizes strongly to its tag;
(H2) No antitag hybridizes to a tag other than its complement; and
(H3) There is no antitag-to-antitag hybridization (including hybridization be-

tween two copies of the same tag and self-hybridization), since the formation
of such duplexes and hair-pin structures prevents corresponding reporter
probes from hybridizing to the template DNA and/or leads to undesired
primer mis-extensions.



Hybridization affinity between two oligonucleotides is commonly character-
ized using the melting temperature, defined as the temperature at which 50% of
the duplexes are in hybridized state. As in previous works [2, 3], we adopt a sim-
ple hybridization model to formalize constraints (H1)-(H3). This model is based
on the observation that stable hybridization requires the formation of an initial
nucleation complex between two perfectly complementary substrings of the two
oligonucleotides. For such complexes, hybridization affinity is well approximated
using the classical 2-4 rule [9], which estimates the melting temperature of the
duplex formed by an oligonucleotide with its complement as the sum between
twice the number of A+T bases and four times the number of G+C bases.

The complement of a string x = a1a2 . . . ak over the DNA alphabet {A, C, T, G}
is x̄ = b1b2 . . . bk, where bi is the Watson-Crick complement of ak−i+1. The

weight w(x) of x is defined as w(x) =
∑k

i=1 w(ai), where w(A) = w(T) = 1 and
w(C) = w(G) = 2.

Definition 1. For given constants l, h, and c with l ≤ h ≤ 2l, a set of tags
T ⊆ {A, C, T, G}l is called feasible if the following conditions are satisfied:

– (C1) Every tag in T has weight h or more.
– (C2) Every DNA string of weight c or more appears as substring at most

once in the tags of T .
– (C3) If a DNA string x of weight c or more appears as a substring of a tag,

then x̄ does not appear as a substring of a tag unless x = x̄.

The constants l, h, and c depend on factors such as array manufacturing
technology and intended hybridization conditions. Property (H1) is implied by
(C1) when h is large enough. Similarly, properties (H2) and (H3) are implied by
(C1) and (C2) when c is small enough: constraint (C2) ensures that nucleation
complexes do not form between antitags and non-complementary tags, while
constraint (C3) ensures that nucleation complexes do not form between pairs of
antitags.

Universal Array Tag Set Design Problem: Given constants l, h, and c with
l ≤ h ≤ 2l, find a feasible tag set of maximum cardinality.

Ben-Dor et al. [2] have recently studied a simpler formulation of the problem
in which tags of unequal length are allowed and only constraints (C1) and (C2)
are enforced. For this simpler formulation, Ben-Dor et al. established a construc-
tive upperbound on the optimal number of tags, and gave a nearly optimal tag
selection algorithm based on De Bruijn sequences. Here, we refine the techniques
in [2] to establish a constructive upperbound on the number of tags of a feasible
set for the extended problem formulation, and propose a simple greedy algorithm
for constructing feasible tag sets.

The constructive upperbound is based on counting the minimal strings, called
c-tokens, that can occur as substrings only once in the tags and antitags of a
feasible set. Formally, a DNA string x is called c-token if the weight of x is c or
more, and every proper suffix of x has weight strictly less than c. The tail weight
of a c-token is defined as the weight of its last letter. Note that the weight of a
c-token can be either c or c+1, the latter case being possible only if the c-token
starts with a G or a C. As in [2], we use Gn to denote the number of DNA strings



of weight n. It is easy to see that G1 = 2, G2 = 6, and Gn = 2Gn−1 + 2Gn−2;
for convenience, we also define G0 = 1. In Appendix A we prove the following:

Lemma 1. Let c ≥ 4. Then the total number of c-tokens that appear as sub-
strings in a feasible tag set is at most 3Gc−2 + 6Gc−3 + G c−3

2

if c is odd,

and at most 3Gc−2 + 6Gc−3 + 1
2G c

2
if c is even. Furthermore, the total tail

weight of c-tokens that appear as substrings in a feasible tag set is at most
2Gc−1+4Gc−3+2G c−3

2

if c is odd, and at most 2Gc−1+4Gc−3+G c−2

2

+2G c−4

2

if c is even.

Theorem 1. For every l, h, c with l ≤ h ≤ 2l and c ≥ 4, the number of tags in
a feasible tag set is at most

min

{

3Gc−2 + 6Gc−3 +G c−3

2

l − c+ 1
,
2Gc−1 + 4Gc−3 + 2G c−3

2

h− c+ 1

}

for c odd, and at most

min

{

3Gc−2 + 6Gc−3 +
1
2G c

2

l − c+ 1
,
2Gc−1 + 4Gc−3 +G c−2

2

+ 2G c−4

2

h− c+ 1

}

for c even.

Proof. The proof follows from Lemma 1 by observing that every tag contains at
least l − c+ 1 c-tokens, with a total tail weight of at least h− c+ 1. ⊓⊔

We employ a simple greedy algorithm to generate feasible sets of tags; a simi-
lar algorithm is suggested in [7] for finding sets of tags that satisfy an unweighted
version of constraint (C2). We start with an empty set of tags and an empty tag
prefix. In every step we try to extend the current tag prefix t by an additional
A. If the added letter completes a c-token or a complement of a c-token that has
been used in already selected tags or in t itself, we try the next letter in the
DNA alphabet, or backtrack to a previous position in the prefix when no more
letter choices are left. Whenever we succeed generating a complete tag, we save
it and backtrack to the last letter of its first c-token.

3 Improved Multiplexing by Integrated Primer Selection
and Tag Assignment

Although constraints (H2)-(H3) in Section 2 prevent unintended antitag-to-tag
and antitag-to-antitag hybridizations, the formation of nucleation complexes in-
volving (portions of) the primers may still lead to undesired hybridization be-
tween reporter probes and tags on the array (Figure 1(a)), or between two re-
porter probes (Figure 1(b)-(d)). The formation of these duplexes must be avoided
as it leads to extension misreporting, false primer extensions, and/or reduced ef-
fective reporter probe concentration available for hybridization to the template
DNA or to the tags on the array [3]. This can be done by leaving some of the tags
unassigned. As in [3], we focus on preventing primer-to-tag hybridizations (Fig-
ure 1(a)). Our algorithms can be easily extended to prevent primer-to-antitag
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Fig. 1. Four types of undesired hybridizations, caused by the formation of nucleation
complexes between (a) a primer and a tag other than the complement of the ligated
antitag, (b) a primer and an antitag, (c) two primers, and (d) two reporter probe
substrings, at least one of which straddles a ligation point.

hybridizations (Figure 1(b)); a simple practical solution for preventing the other
(less-frequent) unwanted hybridizations is to re-assign offending primers in a
post-processing step.

Following [3], a set P of primers is called assignable to a set T of tags if there
is a one-to-one mapping a : P → T such that, for every tag t hybridizing to a
primer p ∈ P , either t 6∈ a(P) or t = a(p).

Universal Array Multiplexing Problem: Given primers P = {p1, . . . , pm}
and tag set T = {t1, . . . , tn}, find a partition of P into the minimum number of
assignable sets.

For most universal array applications there are multiple primers with the
desired functionality, e.g., for the SNP genotyping assay described in Section 1,
one can choose the primer from either the forward or reverse strands. Since dif-
ferent primers have different hybridization patterns, a higher multiplexing rate
can in general be achieved by integrating primer selection with tag assignment.
A similar integration has been recently proposed in [6] between probe selection
and physical DNA array design, with the objective of minimizing unintended
illumination in photo-lithographic manufacturing of DNA arrays. The idea in
[6] is to modify probe selection tools to return pools containing all feasible can-
didates, and let subsequent optimization steps select the candidate to be used
from each pool. In this paper we use a similar approach. We say that a set of
primer pools is assignable if we can select a primer from each pool to form an
assignable set of primers.

Pooled Universal Array Multiplexing Problem: Given primer pools P =
{P1, . . . , Pm} and tag set T = {t1, . . . , tn}, find a partition of P into the mini-
mum number of assignable sets.

Let P be a set of primer pools and T a tag set. For a primer p (tag t), T (p)
(resp. P(t)) denotes the set of tags (resp. primers of

⋃

P∈P P ) hybridizing with
p (resp. t). Let X(P) = {P ∈ P : ∃p ∈ P, t ∈ T s.t. t ∈ T (p) and P(t) ⊆ P}
and Y (P) = {t ∈ T : P(t) = ∅}. Clearly, in every pool of X(P) we can find a
primer p that hybridizes to a tag t which is not cross-hybridizing to primers in
other pools, and therefore assigning t to p will not violate (A1). Furthermore, any
primer can be assigned to a tag in Y (P) without violating (A1). Thus, a set P
with |X(P)|+ |Y (P)| ≥ |P| is always assignable. The converse is not necessarily
true: Figure 2 shows two pools that are assignable although |X(P)|+|Y (P)| = 0.
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Fig. 2. Two assignable pools for which |X(P)|+ |Y (P)| = 0.

Input: Primer pools P = {P1, . . . , Pm} and tag set T
Output: Triples (pi, ti, ki), 1 ≤ i ≤ m, where pi ∈ Pi is the selected primer for pool i,
ti is the tag assigned to pi, and ki is the index of the array on which pi is assayed

k ← 0
While P 6= ∅ do

k ← k + 1; P ′ ← P
While |X(P ′)|+ |Y (P ′)| < |P ′| do

Remove the primer p of maximum potential from the pools in P ′

If p’s pool becomes empty then remove it from P ′

End While

Assign pools in P ′ to tags on array k
P ← P \ P ′

End While

Fig. 3. The iterative primer deletion algorithm.

Our primer pool assignment algorithm (see Figure 3) is a generalization to
primer pools of Algorithm B in [3]. In each iteration, the algorithm checks
whether |X(P ′)| + |Y (P ′)| ≥ |P ′| for the remaining set of pools P ′. If not, a
primer of maximum potential is deleted from the pools. As in [3], the potential

of a tag t with respect to P ′ is 2−|P ′

(t)|, and the potential of a primer p is the
sum of potentials for the tags in T (p). If the algorithm deletes the last primer
in a pool P , then P is itself deleted from P ′; deleted pools are subsequently
assigned to new arrays using the same algorithm.

4 Experimental Results

Tag Set Selection. The greedy tag set design algorithm described in Section
2 can be used to fully or selectively enforce the constraints in Definition 1. In
order to assess the effect of various hybridization constraints on tag set size,
we ran the algorithm both with constraints (C1)+(C2) and with constraints
(C1)+(C2)+(C3). For each set of constraints, we ran the algorithm with c be-
tween 8 and 10 for typical practical requirements [1, 7] that all tags have length
20 and weight between 28 and 32 (corresponding to a GC-content between 40-
60%). We also ran the algorithm with the tag length and weight requirements
enforced individually.



Table 1. Tag Sets Selected by the Greedy Algorithm.

l hmin/ c (C1)+(C2) (C1)+(C2)+(C3)
hmax tags Bound c-tokens Bound tags Bound c-tokens Bound

8 213 275 2976 3584 107 132 1480 1726
20 –/– 9 600 816 7931 9792 300 389 3939 4672

10 1667 2432 20771 26752 844 1161 10411 12780

8 175 224 2918 3584 90 109 1489 1726
– 28/32 9 531 644 8431 9792 263 312 4158 4672

10 1428 1854 21707 26752 714 896 10837 12780

8 108 224 1548 3584 51 109 703 1726
20 28/32 9 333 644 4566 9792 164 312 2185 4672

10 851 1854 11141 26752 447 896 5698 12780

Table 1 gives the size of the tag set found by the greedy algorithm, as well
as the number of c-tokens appearing in selected tags. We also include the theo-
retical upper-bounds on these two quantities; the upper-bounds for (C1)+(C2)
follow from results of [2], while the upper-bounds for (C1)+(C2)+(C3) follow
from Lemma 1 and Theorem 1. The results show that, for any combination of
length and weight requirements, imposing the antitag-to-antitag hybridization
constraints (C3) roughly halves the number of tags selected by the greedy al-
gorithm – as well as the theoretical upperbound – compared to only imposing
antitag-to-tag hybridization constraints (C1)+(C2). For a fixed set of hybridiza-
tion constraints, the largest tag sets are found by the greedy algorithm when only
the length requirement is imposed. The tag weight requirement, which guaran-
tees similar melting temperatures for the tags, results in a 10-20% reduction
in the number of tags. However, requiring that the tags have both equal length
and similar weight results in close to halving the number of tags. This strongly
suggests reassessing the need for the strict simultaneous enforcement of the two
constraints in current industry designs [1]; our results indicate that allowing
small variations in tag length and/or weight results in significant increases in
the number of tags.

Integrated Primer Selection and Tag Assignment. We have implemented
the iterative primer deletion algorithm in Figure 3 (Primer-Del), a variant of it
in which primers in pools of size 1 are omitted – unless all pools have size 1 –
when selecting the primer with maximum potential for deletion (Primer-Del+),
and two simple heuristics that first select from each pool the primer of minimum
potential (Min-Pot), respectively minimum degree (Min-Deg), and then run the
iterative primer deletion algorithm on the resulting pools of size 1. We ran all
algorithms on data sets with between 1000 to 5000 pools of up to 5 randomly
generated primers. As in [3], we varied the number of tags between 500 and 2000.

For instance size, we report the number of arrays and the average tag utiliza-
tion (computed over all arrays except the last) obtained by (a) algorithm B in [3]
run using a single primer per pool, (b) the four pool-aware assignment algorithms
run with 1 additional candidate in each pool, and (c) the four pool-aware as-
signment algorithms run with 4 additional candidates in each pool. Scenario (b)



models SNP genotyping applications in which the primer can be selected from
both strands of the template DNA, while scenario (c) models applications such
as gene transcription monitoring, where significantly more than 2 gene specific
primers are typically available.

In a first set of experiments we extracted tag sequences from the tag set of
the commercially available GenFlex Tag Arrays. All GenFlex tags have length
20; primers used in our experiments are 20 bases long as well. Primer-to-tag
hybridizations were assumed to occur between primers and tags containing com-
plementary c-tokens with c = 7 (Table 2), respectively c = 8 (Table 3). The
results show that significant improvements in multiplexing rate – and a corre-
sponding reduction in the number of arrays – are achieved by the pool-aware
algorithms over the algorithm in [3]. For example, assaying 5000 reactions on a
2000-tag array requires 18 arrays using the method in [3] for c = 7, compared
to only 13 (respectively 9) if 2 (respectively 5) primers per pool are available.
In these experiments, the Primer-Del+ algorithm dominates in solution quality
the Primer-Del, while Min-Deg dominates Min-Pot. Neither Primer-Del+ nor
Min-Deg consistently outperforms the other over the whole range of parameters,
which suggests that a good practical meta-heuristic is to run both of them and
pick the best solution obtained.

In a second set of experiments we compared two sets of 213 tags of length 20,
one constructed by running the greedy algorithm in Section 2 with c = 8 and
constraints (C1)+(C2), and the other extracted from the GenFlex Tag Array.
The results in Table 4 show that the tags selected by the greedy algorithm
participate in fewer primer-to-tag hybridizations, which leads to an improved
multiplexing rate.
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Table 2. Multiplexing results for c = 7 (averages over 10 test cases).

# Pool Algorithm 500 tags 1000 tags 2000 tags
pools size #arrays % Util. #arrays % Util. #arrays % Util.

1 [3] 7.5 30.1 6.0 19.3 5.0 12.1
2 Primer-Del 6.0 38.7 5.0 24.3 4.1 15.5
2 Primer-Del+ 6.0 39.6 4.5 27.3 4.0 16.5
2 Min-Pot 6.0 38.4 5.0 24.2 4.0 15.9

1000 2 Min-Deg 5.8 40.9 4.6 27.0 4.0 16.4
5 Primer-Del 5.0 49.6 4.0 32.5 3.3 21.0
5 Primer-Del+ 4.0 60.4 3.0 43.6 3.0 24.7
5 Min-Pot 4.9 50.6 4.0 33.0 3.0 23.5
5 Min-Deg 4.0 62.0 3.0 44.9 2.7 28.1

1 [3] 13.4 31.8 11.0 19.9 8.7 12.9
2 Primer-Del 10.7 41.0 8.5 26.4 7.0 16.6
2 Primer-Del+ 10.0 43.3 8.0 28.1 6.0 19.1
2 Min-Pot 11.0 39.4 9.0 24.8 7.0 16.3

2000 2 Min-Deg 10.0 43.5 8.0 28.2 6.0 19.2
5 Primer-Del 8.0 56.8 6.1 38.4 5.0 24.5
5 Primer-Del+ 7.1 62.4 6.0 39.7 4.0 30.1
5 Min-Pot 9.2 47.5 7.0 32.9 5.0 24.0
5 Min-Deg 7.0 63.1 5.3 44.2 4.0 30.7

1 [3] 29.5 35.0 23.0 22.6 18.0 14.6
2 Primer-Del 22.2 47.0 17.1 30.9 13.7 19.6
2 Primer-Del+ 22.2 46.8 17.0 30.9 13.1 20.4
2 Min-Pot 25.0 41.5 19.2 27.3 15.0 17.7

5000 2 Min-Deg 22.0 47.3 17.0 31.0 13.0 20.6
5 Primer-Del 16.6 63.8 12.3 43.9 10.0 27.8
5 Primer-Del+ 16.0 65.6 12.0 44.9 9.0 30.6
5 Min-Pot 29.5 35.0 23.0 22.6 18.0 14.6
5 Min-Deg 16.0 65.8 12.0 45.2 9.0 30.8



Table 3. Multiplexing results for c = 8 (averages over 10 test cases).

# Pool Algorithm 500 tags 1000 tags 2000 tags
pools size #arrays % Util. #arrays % Util. #arrays % Util.

1 [3] 3.0 86.0 2.0 77.1 2.0 46.3
2 Primer-Del 3.0 90.1 2.0 81.6 2.0 47.8
2 Primer-Del+ 3.0 94.5 2.0 88.5 1.0 50.0
2 Min-Pot 3.0 94.4 2.0 87.9 1.0 50.0

1000 2 Min-Deg 3.0 92.6 2.0 88.8 1.0 50.0
5 Primer-Del 3.0 98.0 2.0 92.6 2.0 49.2
5 Primer-Del+ 3.0 99.5 2.0 97.4 1.0 50.0
5 Min-Pot 3.0 99.4 2.0 97.1 1.0 50.0
5 Min-Deg 3.0 93.4 2.0 93.4 1.0 50.0

1 [3] 6.0 78.2 4.0 64.4 3.0 48.3
2 Primer-Del 5.0 92.3 4.0 66.6 3.0 49.8
2 Primer-Del+ 5.0 93.5 3.0 87.9 2.0 78.7
2 Min-Pot 5.0 93.6 3.0 87.7 2.0 78.1

2000 2 Min-Deg 5.0 90.8 3.0 87.5 2.0 79.6
5 Primer-Del 5.0 98.4 3.0 94.1 2.0 84.8
5 Primer-Del+ 5.0 99.5 3.0 97.1 2.0 91.2
5 Min-Pot 5.0 99.5 3.0 97.0 2.0 90.8
5 Min-Deg 5.0 91.8 3.0 90.6 2.0 91.7

1 [3] 13.0 81.3 8.6 64.7 6.0 49.3
2 Primer-Del 12.0 90.5 7.0 81.1 5.0 61.7
2 Primer-Del+ 11.2 93.8 7.0 81.9 4.0 73.8
2 Min-Pot 12.0 90.4 7.0 81.2 5.0 62.2

5000 2 Min-Deg 12.0 90.1 7.0 81.5 4.0 73.9
5 Primer-Del 11.0 98.9 6.0 96.1 4.0 81.7
5 Primer-Del+ 11.0 99.4 6.0 96.8 3.0 97.1
5 Min-Pot 11.0 99.4 6.0 96.9 4.0 83.1
5 Min-Deg 11.0 94.6 6.0 91.0 3.4 88.0



Table 4. Multiplexing results (averages over 10 test cases) for two sets of 213 tags of
length 20, one constructed by running the greedy algorithm in Section 2 with c = 8
and constraints (C1)+(C2), and the other extracted from the GenFlex Tag Array.

# Pool Algorithm GenFlex tags Greedy tags
pools size #arrays % Util. #arrays % Util.

1 [3] 6.0 90.0 5.0 100.0
2 Primer-Del+ 5.0 100.0 5.0 100.0

1000 2 Min-Deg 5.9 94.0 5.0 100.0
5 Primer-Del+ 5.0 100.0 5.0 100.0
5 Min-Deg 5.2 97.3 5.0 100.0
1 [3] 11.0 90.6 10.0 99.2
2 Primer-Del+ 10.0 98.7 10.0 100.0

2000 2 Min-Deg 10.8 94.2 10.0 99.3
5 Primer-Del+ 10.0 100.0 10.0 100.0
5 Min-Deg 10.1 96.0 10.0 99.3
1 [3] 26.5 91.3 24.0 99.2
2 Primer-Del+ 25.0 97.6 24.0 100.0

5000 2 Min-Deg 25.0 96.3 24.0 99.3
5 Primer-Del+ 24.0 100.0 24.0 100.0
5 Min-Deg 25.0 96.6 24.0 99.3



A Proof of Lemma 1

We first establish two lemmas on self-complementary DNA strings, i.e., strings
x ∈ {A, C, T, G}+ with x = x.

Lemma 2. If x is self-complementary then |x| and w(x) are both even.

Proof. Let x = x1x2 . . . xp be a self-complementary DNA string. If p = 2q + 1,
by the definition of the complement we should have xq+1 = xq+1, which is
impossible. Thus, p = 2q. Since x1 = x2q,x2 = x2q−1,. . ., xq = xq+1, and the
weight of complementary bases is the same, it follows that w(x) = 2

∑q
i=1 w(xi).

⊓⊔

Lemma 3. Let Hn be the number of self-complementary DNA strings of weight
n. Hn = 0 if n is odd, and Hn = Gn/2 if n is even.

Proof. By Lemma 2, self-complementary strings must have even length and
weight. For even n, the mapping x1 . . . xqxq+1 . . . x2q 7→ x1 . . . xq gives a one-to-
one correspondence between self-complementary strings of weight n and strings
of weight n/2. ⊓⊔

Proof of Lemma 1. Let W and S denote weak and strong DNA bases (A or T,
respectively G or C), and let <w> denote the set of DNA strings with weight w.
The c-tokens can be partitioned into the seven classes given in Table 5, depending
on total token weight (c or c + 1) and the type of starting and ending bases.
This partitioning is defined so that, for every c-token x, the class of the unique
c-token suffix of x can be determined from the class of x. Note that x̄ is itself a
c-token, except when x ∈ S<c− 3>WW ∪ S<c− 4>SW.
Let Ncls denote the number of c-tokens of class cls occurring in a feasible tag
set.

c odd

Since W<c− 3>S ∪ S<c− 3>W can be partitioned into 4Gc−3 pairs {x, x̄} of
complementary c-tokens, and at most one token from each pair can appear in a
feasible tag set,

NW<c − 3>S +NS<c − 3>W ≤ 4Gc−3 (1)

Table 5. Classes of c-tokens.

Class of x c-token suffix of x
W<c− 3>S S<c− 3>W

S<c− 4>S S<c− 4>S

S<c− 3>S S<c− 3>S

W<c− 2>W W<c− 2>W

S<c− 3>W W<c− 3>S

S<c− 3>WW W<c− 3>S

S<c− 4>SW S<c− 4>S



Similarly, class W<c− 2>W can be partitioned into 2Gc−2 pairs {x, x̄} of com-
plementary c-tokens, W<c− 3>S ∪ S<c− 3>WW can be partitioned into 4Gc−3

triples {x, x̄A, x̄T } with x ∈ W<c− 3>S, S<c− 3>W ∪ S<c− 3>WW can be parti-
tioned into 4Gc−3 triples {x, xA, xT } with x ∈ S<c− 3>W, and S<c− 4>S ∪ S<c− 4>SW

can be partitioned into 2Gc−4 6-tuples {x, x̄, xA, xT, x̄A, x̄T }with x ∈ S<c− 4>S.
Since at most one c-token can appear in a feasible tag set from each such pair,
triple, respectively 6-tuple,

NW<c− 2>W ≤ 2Gc−2 (2)

NW<c − 3>S +NS<c− 3>WW ≤ 4Gc−3 (3)

NS<c − 3>W +NS<c− 3>WW ≤ 4Gc−3 (4)

NS<c − 4>S +NS<c− 4>SW ≤ 2Gc−4 (5)

Using Lemma 3, it follows that S<c− 3>S contains 2G c−3

2

self-complementary

c-tokens. Since the remaining 4Gc−3 − 2G c−3

2

c-tokens can be partitioned into

complementary pairs each contributing at most one c-token to a feasible tag set,

NS<c − 3>S ≤
1

2

(

4Gc−3 − 2G c−3

2

)

+ 2G c−3

2

= 2Gc−3 +G c−3

2

(6)

Adding inequalities (1), (3), and (4) multiplied by 1/2 with (2), (5), and (6)
implies that the total number of c-tokens in a feasible tag set is at most

2Gc−2 + 8Gc−3 + 2Gc−4 +G c−3

2

= 3Gc−2 + 6Gc−3 +G c−3

2

Furthermore, adding (1), (2), and (3) with inequalities (5) and (6) multiplied by
2 implies that the total tail weight of the c-tokens in a feasible tag set is at most

2Gc−2 + 12Gc−3 + 4Gc−4 + 2G c−3

2

= 2Gc−1 + 4Gc−3 + 2G c−3

2

c even

Inequalities (1), (3), and (4) continue to hold for even values of c. Since c− 3 is
odd, S<c− 3>S contains no self-complementary tokens and can be partitioned
into 2Gc−3 pairs {x, x̄},

NS<c− 3>S ≤ 2Gc−3 (7)

By Lemma 3, there are 2G c−4

2

self-complementary tokens in S<c− 4>S. There-

fore S<c− 4>S ∪ S<c− 4>SW can be partitioned into 2G c−4

2

triples {x, xA, xT }

with x ∈ S<c− 4>S, x = x̄ and 2Gc−4 − G c−4

2

6-tuples {x, x̄, xA, xT, x̄A, x̄T }

with x ∈ S<c− 4>S, x 6= x̄. Since a feasible tag set can use at most one c-token
from each triple and 6-tuple,

NS<c − 4>S +NS<c − 4>SW ≤ 2Gc−4 +G c−4

2

(8)

Using again Lemma 3, we get

NW<c − 2>W ≤ 2Gc−2 +G c−2

2

(9)



Adding inequalities (1), (3), and (4) multiplied by 1/2 with (7), (8), and (9)
implies that the total number of c-tokens in a feasible tag set is at most

2Gc−2 + 8Gc−3 + 2Gc−4 +G c−2

2

+G c−4

2

= 3Gc−2 + 6Gc−3 +
1

2
G c

2

Finally, adding (1), (3), and (9) with inequalities (7) and (8) multiplied by 2
implies that the total tail weight of the c-tokens in a feasible tag set is at most

2Gc−2 + 12Gc−3 + 4Gc−4 +G c−2

2

+ 2G c−4

2

= 2Gc−1 + 4Gc−3 +G c−2

2

+ 2G c−4

2

⊓⊔


