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Abstract—Most variational active contour models are designed to find local minima of data-dependent energy functionals with the hope

that reasonable initial placement of the active contour will drive it toward a “desirable” local minimum as opposed to an undesirable

configuration due to noise or complex image structure. As such, there has been much research into the design of complex region-based

energy functionals that are less likely to yield undesirable local minima when compared to simpler edge-based energy functionals whose

sensitivity to noise and texture is significantly worse. Unfortunately, most of these more “robust” region-based energy functionals are

applicable to a much narrower class of imagery compared to typical edge-based energies due to stronger global assumptions about the

underlying image data. Devising new implementation algorithms for active contours that attempt to capture more global minimizers of

already proposed image-based energies would allow us to choose an energy that makes sense for a particular class of energy without

concern over its sensitivity to local minima. Such implementations have been proposed for capturing global minima. However, sometimes

the completely-global minimum is just as undesirable as a minimum that is too local. In this paper, we propose a novel, fast, and flexible

dual front implementation of active contours, motivated by minimal path techniques and utilizing fast sweeping algorithms, which is easily

manipulated to yield minima with variable “degrees” of localness and globalness. By simply adjusting the size of active regions, the ability

to gracefully move from capturing minima that are more local (according to the initial placement of the active contour/surface) to minima

that are more global allows this model to more easily obtain “desirable” minimizers (which often are neither the most local nor the most

global). Experiments on various 2D and 3D images and comparisons with some active contour models and region-growing methods are

also given to illustrate the properties of this model and its performance in a variety of segmentation applications.

Index Terms—Active contours, curve evolution, dual front evolution, morphological dilation, local minima, global minima, minimal path

technique, level set methods, fast sweeping methods, image segmentation.

Ç

1 INTRODUCTION

IMAGE segmentation is one of the first and most important
tasks in image analysis and computer vision. In the

computer vision literature, various methods dealing with
object segmentation and feature extraction are discussed [1].
However, due to the variety and complexity of images, the
design of robust and efficient segmentation algorithms is
still a very challenging research topic.

Since the introduction of snakes [2], active contours have
been applied to various problems in image processing and
computer vision such as segmentation and feature extrac-
tion, image registration, shape analysis and modeling, and
visual tracking. The original snake model was formulated to
minimize the energy functional

EðCÞ ¼ �
Z 1

0

jC0ðsÞj2ds

þ �
Z 1

0

jC00ðsÞj2dsþ �
Z 1

0

P ðCðsÞÞds;
ð1Þ

where �, �, and � are real positive weighting constants, C :
½0; 1� ! IR2 is a parameterized curve, and P ðCÞ is a potential
which depends upon some desirable image feature. In (1), the
first two terms are internal forces, which control the

regularity on curve C while the potential P attracts the
curve C toward the desired boundary. Normally, the
potential P depends on the gradient of the processed image.

As is well-known, the original snake models were
dependent upon an arbitrary parameterization of the curve
and had difficulty dealing with topology changes. A geo-
metric active contour models, such as [3], [4], where
introduced shortly afterward based on curve evolution
theory, yielding a parameterization independent model
which could also handle topology changes very naturally
when implemented using level set methods proposed by
Osher and Sethian [5].

The geometric active contour model most closely related
to the original snake model is probably the geodesic active
contour model [6], [7] which has the form

@Cðs; tÞ
@t

¼ P ðCÞðwþ kÞ~N � ðrP � ~NÞ~N; ð2Þ

where k is the curvature, ~N is the inward unit normal to the
curve, and w is an optional constant inflationary force [8]
(which parallels the balloon force introduced by [9] in the
context of the original snake formulation).

Both the original snakes as well as geodesic active
contours, however, are prone to getting “trapped” by
extraneous edges due to image noise or texture, yielding
many undesirable local minima of their corresponding
energy functionals. As a result, initializations must be
chosen carefully. This is a common trait of variational active
contour models which typically designed to find local
minima of data-dependent energy functionals with the
hope that reasonable initial placement of the active contour
will drive it toward a “desirable” local minimum rather
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than an undesirable configuration due to the noise or
complex image structure. Devising new implementation
algorithms for active contours that attempt to capture more
global minimizers of already proposed image-based en-
ergies would allow us to choose an energy that makes sense
for a particular image feature without concern over its
sensitivity to local minima.

The minimal path technique proposed by Cohen et al. [10],
[11], [12] is one such implementation which captures the
global minimum of a contour energy between two fixed user-
defined end points. In their technique, an image is defined as
an oriented graph characterized by its cost function (or
potential), thus the boundary segmentation problem be-
comes an optimal path search problem between two user-
defined points in the graph. Their technique leads to a global
minimum of an snake-like energy, thereby avoiding “inter-
vening” local minima. However, this technique requires the
user supplied end-points to be located precisely on the
desired 2D boundary. A topology-based saddle search
routine is needed to extended their technique to closed curve
extraction. The original minimal path technique can be used
for 3D tree-structured object extraction [13], but not for
general 3D surface extraction. Ardon and Cohen [14]
proposed a more general scheme for 3D surface extraction
between user supplied end-curves, but this scheme also
requires the user supplied curves to be located precisely on
the desired 3D boundary (making it impractical for segment-
ing complex 3D structures without simple end-curves, such
as the cortex in MRI brain imagery).

Other implementations have also been proposed for
capturing more global minimizers by restricting the search
space. One method with restricted search space was proposed
by Gunn and Nixon via dual snakes [15], [16]. In their method,
one snake is set inside the desired object and expands,
whereas the other one is set outside the desired object and
contracts. The two snakes are interlinked by arc-length and
reach the inner and outer boundaries of the desired object,
respectively. Similar methods were also proposed by Giraldi
et al. [17] and Georgoulas et al. [18]. Aboutanos et al. [19] and
Erdem et al. [20] restrict their search spaces by considering
normals’ lengths to an initial contour. Dawood [21], instead,
proposed a dual-band with predefined width chosen by the
Euclidean distance transform of the initial contour as a means
to restrict the search space. While these methods may find
more desirable minima for some images, they have several
disadvantages. One is about the choice of search space, i.e., the
desired boundary should be included in the search space.
Second, these methods are restricted to detection of objects
with simple topologies. Finally, not all of these methods are
easy to extend to three dimensions.

In [22], Xu et al. combined active contours with the
optimization tool of graph-cuts. They used morphological
dilation to restrict the search space for graph-cuts segmenta-
tion. Their method may provide more global results and lead
to smooth contours. However, some drawbacks exist. First,
the computational cost is higher because a graph with
appropriate pixel connectivity and edge weights needs to be
prebuilt. Second, if an initial boundary is far from the actual
object boundary, it may not find the actual boundary. This is
similar to the local minimum problem of classical snakes and
geodesic active contours. Finally, their method cannot be used
for segmentation of multiple objects simultaneously.

All of the methods discussed so far have come to be known
collectively as “edge-based” models. In many important
applications, however, strong edge information is not always

present along the entire boundary of the objects to be
segmented. Therefore, the performance of purely edge-based
models is often inadequate. As such, there has been much
research into the design of complex region-based energy
functionals that are less likely to yield undesirable local
minima when compared to simpler edge-based energy
functionals. In general, region-based models [23], [24], [25],
[26], [27], [28], [29], [30] utilize image information not only
near the evolving contour, but image statistics inside and
outside the contour as well in order to yield more robust
performance. Many of these methods were inspired by
the “Region Competition” algorithm presented by Zhu and
Yuille [31]. Unfortunately, most of these more “robust”
region-based energy functionals assume highly constrained
models for pixel intensities within each region and require
a priori knowledge of the number of region types. These
functionals are applicable to a much narrower class of
imagery compared to typical edge-based energies due to
stronger global assumptions about the underlying image
data.

Whether by design of more robust energy functionals or
by strategic implementation techniques, there has clearly
been much research in efforts to yield active contour models
which capture more global minimizers. It should be pointed
out, however, that sometimes a minimum that is too global
may be just as undesirable as a minimum that is too local.
One example is illustrated in Fig. 6.

Finally, there is the issue of computational cost. Geometric
active contour models implemented via level set methods [5]
incur a heavy computational cost, even when using narrow
band techniques [32]. Fast marching methods were proposed
for monotonically evolving fronts [33], [34], [35], which are
much faster. However, since the front can only move
monotonically, it is prone to passing over the true boundary.
These methods are also unable to incorporate curvature-
based terms to control the smoothness of the evolving front,
and it is difficult to design automated stopping criteria to end
the front evolutions. Research on novel evolution schemes
which combine the advantages of level set methods and fast
marching methods is an very interesting topic. How to
initialize freely, formulate potentials, and determine stop-
ping criteria are also very important for the design of fast, yet
powerful, curve evolution methods [36].

In this paper, we propose a novel, fast and flexible dual
front implementation of active contours, motivated by
minimal path techniques [10] and utilizing fast sweeping
algorithms [37], [38]. This model is easily manipulated to
yield minima with variable “degrees” of localness and
globalness. The degree of global or local minima can be
controlled in a graceful manner by adjusting the width of
the active regions used to propagate the contour. This
ability to gracefully move from capturing minima that are
more local (according to the initial placement of the active
contour/surface) to minima that are more global makes it
much easier to obtain “desirable” minimizers (which often
are neither the most local nor the most global).

This model is an iterative process of alternating dual front
evolution and active region relocation which is robust to noise
and poor initialization. Initializations can be chosen freely,
therebyrequiringlimitedornouser interaction.Thedualfront
evolution forms anewglobal minimal partition curve within a
narrow active region, which also guarantees the smoothness
of evolving curves with the capability to handle topology
changes. The whole iterative process convergences to the
desired object automatically. The algorithm implementation
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combines advantages of level-set methods and fast marching
methods, while avoiding some of their disadvantages. The
computational complexity, which is reduced significantly, is
OðNÞ, where N is the number of grid points involved in
evolutions. Multiple objects can be segmented simulta-
neously just by one initial curve, and the model is easily
extended to 3D and higher dimensions.

2 DUAL-FRONT ACTIVE CONTOURS

2.1 Background—Minimal Path Technique

In this section, we briefly review the minimal path
technique proposed by Cohen et al. [10], [11], [12]. Their
technique is a boundary extraction approach which detects
the global minimum of a contour energy between two user-
supplied points located on the desired boundary, thereby
avoiding local minima arising from the sensitivity to
initializations in snakes or geodesic active contours. Con-
trary to the energy functional (1) for traditional snakes [2],
they proposed a simplified energy minimization model,

EðCÞ ¼
Z

�

fwþ P ðCðsÞÞgds ¼
Z

�

eP ðCÞds; ð3Þ

without the second derivative term, where s represents the
arc-length parameter on a defined domain � ¼ ½0; 1�, CðsÞ 2
IRn represents a curve, kC0ðSÞk ¼ 1, EðCÞ represents the
energy along curve C, P is the potential associated to image
features, w is a real positive constant, and eP ¼ P þ w. In this
model, energy EðCÞ includes the internal regularization
energy (smoothing terms) in potential P , and controls the
smoothness of curve C using P and w > 0.

Given a potential P > 0 that takes lower values near the
desired boundary, the objective of the minimal path
technique is to look for a path (connecting two user-
supplied end points) along which the integral of eP ¼ P þ w
is minimal. A minimal action map Up0

ðpÞ is defined as the
minimal energy integrated along a path between a starting
point p0 and any point p,

Up0
ðpÞ ¼ inf

Ap0 ;p

Z
�

eP ðCðsÞÞdsg ¼ inf
Ap0 ;p

fEðCÞ
� �

; ð4Þ

whereAp0;p is defined as the set of all paths between p0 and p.
The value of each point p in the minimal action map Up0

ðpÞ
corresponds to the minimal energy integrated along a path
starting from pointp0 to point p. So, the minimal path between
point p0 and point p can be easily deduced by calculating the
action map Up0

ðP Þ and then sliding back from point p to
point p0 on this action map Up0

according to the gradient
descent.

They also proposed that, if given a minimal action map
Up0

to point p0 and a minimal action map Up1
to point p1, the

minimal path between points p0 and p1 is exactly the set of
points pg which satisfy

Up0
ðpgÞ þ Up1

ðpgÞ ¼ inf
p
fUp0
ðpÞ þ Up1

ðpÞg: ð5Þ

They defined a saddle point p0 as the first point that Up0
and

Up1
meet each other, which means that p0 satisfies Up0

ðpÞ ¼
Up1
ðpÞ and (5) simultaneously. The minimal path between

points p0 and p1 may also be determined by calculating Up0

and Up1
and then, respectively, sliding back from the saddle

point p0 on Up0
to point p0 and from the saddle point p0 on

Up1
to point p1 according to the gradient descent. This idea

was used in [12] for finding closed contours. In order to
compute Up0

ðpÞ, they formulated a PDE equation,

@Lðv; tÞ
@t

¼ 1eP ~nðv; tÞ; ð6Þ

to describe the set of contours L in “time” t, where t
represent heights of the level sets of Up0

and values of
energy EðCÞ, v 2 SS1 is an arbitrary parameter, and ~nðv; tÞ is
the normal to the closed curve Lðv; tÞ. These curves Lðv; tÞ
correspond to the set of points p and the values of Up0

ðpÞ on
these points are equal to t. Equation (6) represents that a
front starting from an infinitesimal circle around p0, evolves
with velocity 1= eP until each point inside the image domain
is assigned a value for Up0

. In fact, the minimal action map is
also the potential weighted distance map. Because the
action map Up0

has only one minimum value at the starting
point p0 and increases from p0 outward, it can be easily
determined by solving the Eikonal equation

jjrUp0
jj ¼ eP with Up0

ðp0Þ ¼ 0: ð7Þ

They described three algorithms in [10], [11] to compute
this map Up0

, which are all consistent with the continuous
propagation rule while implemented on a rectangular grid.
These three algorithms utilize level set methods [5], [32],
shape from shading methods [39], [40], and fast marching
methods [35]. They favored fast marching methods to
calculate Up0

because of their lower complexity compared to
the other two algorithms.

2.2 Principle of Dual-Front Active Contours

In this section, we propose the dual-front active contour
model. Without loss of generality, we assume that an original
image I has two regionsR0 andR1, andB is the boundary of
R0 andR1. We choose one point p0 fromR0 and another point
p1 from R1. Then, we define a velocity 1= eP taking lower
values near the boundary B and define two minimal action
maps Up0

ðpÞ and Up1
ðpÞ according to (4). Contrary to just

considering the saddle point p0 which satisfies Up0
ðp0Þ ¼

Up1
ðp0Þ and (5) simultaneously, we consider the set of pointspe

which satisfy Up0
ðpeÞ ¼ Up1

ðpeÞ. At these points pe, the level
sets of Up0

meet the level sets of Up1
. These points pe form a

partition curve B0 which divides I into two regions. This
partition is also a velocity (or potential) weighted Voronoi
diagram. The region containing p0 will be referred to as R00,
while the other region containing p1 will be referred to asR01.
All points inR00 are closer to p0 than to p1 and all points inR01
are closer to p1 than to p0 in terms of Up0

and Up1
. Because the

action maps are potential weighted distance maps,B0 is called
the potential weighted global minimal partition curve.

The level sets of Up0
and Up1

represent the evolving
fronts, and the front evolving velocity 1= eP takes lower
values near B. When an evolving front arrives at the actual
boundary B, it evolves very slowly and, therefore, takes a
long time to across B. By choosing appropriate potentials
when defining Up0

and Up1
, we may cause the partition

curve B0 (the potential weighted global minimal partition
curve) formed by the meeting points of the level sets of Up0

and Up1
to correspond with the desired boundary B.

Now, let us consider minimal action maps having a set of
starting points. Similar to the definitions in [12], we let X be
a set of points in image I (for example, X is a 2D curve or a
3D surface), and define a minimal action map UXðpÞ as the
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minimal energy integrated along a path between a starting
point p0 2 X and any point p 62 X,

UXðpÞ ¼ min
p02X

inf
Ap0 ;p

Z
�

eP ðCðsÞÞds� �� �
: ð8Þ

We choose a set of pointsXi fromR0 and another set of points
Xj from R1 and define two minimal action maps UXi

ðpÞ and
UXj
ðpÞ according to (8). All points satisfying UXi

ðpÞ ¼ UXj
ðpÞ,

form a partition boundary B00 and divide I into two regions.
One region contains Xi and the other region contains Xj.
BecauseUXi

ðpÞandUXj
ðpÞare the potential weighted distance

maps,B00 is a potential weighted minimal partition of I. With
appropriate potentials, it is also possible thatB00 is exactly the
actual boundary B of R0 and R1.

Therefore, we propose a dual front evolution principle to
find a potential weighted global minimum partition curve
within an active region. This principle is shown in Fig. 1. In
Fig. 1a, an initial contour C separates image I to two regions
Rin and Rout. In Fig. 1b, a narrow active region Rn is formed
by extending the initial curve C. For example, it may be
formed by dilating C with morphological dilation.Rn has an
inner boundaryCin and an outer boundaryCout. As shown in
Fig. 1c, the inner and outer boundaries Cin and Cout ofRn are
set as the initializations of two minimal action maps UCin and
UCout . These minimal action maps UCin and UCout are defined
by different potentials ePin and ePout, respectively, based on
(8). When the level sets of UCin and UCout meet each other, the
meeting points form a potential weighted minimal partition
curve Cnew in active region Rn. The evolution of curves Cin
and Cout and their meeting locations pg can also be obtained
using the “time of arrival” functions which satisfy the
Eikonal equations

jjrUCin jj ¼ ePin with UCinðCinÞ ¼ 0

jjrUCout jj ¼ ePout with UCoutðCoutÞ ¼ 0
UCinðpgÞ ¼ UCoutðpgÞ on Cnew:

8<
: ð9Þ

Since the dual front evolution is to find the global minimal
partition curve only within an active region, not in the
whole image, the degree of this globalness may be changed
flexibly by adjusting the size of active regions.

We now outline the complete dual-front active contour
model. It is an iterative process including the dual front
evolution and the active region relocation. It may be
summarized in following steps:

1. Choose an initial contour and extend a narrow active
region around this contour and extract its inner and
outer boundaries.

2. Identify separated boundaries with different labels
according to certain conditions and define potentials
for the labeled contours.

3. Use the dual front evolution to propagate the labeled
contours. The meeting points of the evolving contours
separate the current active region in what we call the
potential weighted minimal partition curve.

4. Use the new partition curve as an initial contour and
repeat Steps 1 through 3 to find new global minimal
partition curves again until convergence (i.e., when
the new minimal partition curve is almost identical
to the previous curve).

In dual-front active contours, the segmentation objective of
finding a minimum with a certain degree of localness/
globalness in a certain region is translated into finding a
global minimum partition contour within a narrow active
region extended from the initial curve, and then iteratively
changing this active region and reminimizing until conver-
gence. After each iteration (before convergence) the contour
moves dramatically in comparison with standard level set
PDE iterations. The whole evolution process of dual-front
active contours looks like a sequence of big “jumps” in the
curve before it arrives at the final desired boundary.

The iterative process may obviously be terminated
manually, however, some natural automatic methods may
be employed as well. The most natural automatic method,
and the one that we employ in our experiments, is to halt
the iterative procedure as soon as difference between two
consecutive contours is insignificant (or even zero). This is
effective and also quite natural given that large jumps are
expected each iteration as a global minimization occurs
each iteration (within the active region).

Dual-front active contours can handle topology changes
just like standard level set PDE evolutions. There are two
ways to decide the labels of the separated boundaries in
Step 2. First, the labels may be reset in each iteration loop.
The number of labels is decided by the number of separated
boundaries. In this case, the number of labels may be
changed and different with the number of the user-defined
initial curves. So, we can detect several disjoint objects just
by one initial curve. One example is shown in Fig. 10.

Second, the labels may be decided just according to the
number of the user-defined initial curves. In each iteration
loop, the labels of the separated boundaries of the new
active region are decided by the result from the previous
iteration. For example, if one point doesn’t belong to the
current active region, we choose this point’s label in the
previous iteration as this point’s current label. So, the labels’
number remains constant during the whole iterative
process even when the evolving curve’s topology structure
changes. This restriction is suitable for detecting objects
with tiny protuberant parts, such as the surface of gray
matter or white matter of human brains. In this manner,
tiny parts of an object are always connected with other big
parts of the same object by keeping the same label, and the
segmentation result can be more accurate. We use this
restriction in 3D brain cortex segmentation and one
experiment is shown in Fig. 13.

3 PROPERTIES OF DUAL-FRONT ACTIVE

CONTOURS

In this section, we analyze a number of properties of dual-
front active contours. These include flexible local-to-global
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minima, evolution schemes and computational efficiency,
evolution potentials, regularization terms, and evolution
convergence.

3.1 Flexible Local or Global Minima

As discussed in Section 1, problems with overly global
minima and problems with overly local minima problems are
common in minimal path methods and active contour
methods, respectively. But, in dual-front active contours,
the degree of global or local minima can be controlled in a
graceful manner by adjusting the width of the narrow active
region and the weight of region-based and/or edge-based
information combined in potentials for the dual front
evolution. This ability to gracefully move from capturing
minima that are more local (according to the initial placement
of the active contour/surface) to minima that are more global
makes this model much easier to obtain “desirable” mini-
mizers (which often are neither the most local nor the most
global).

The result of the dual front evolution is a potential
weighted global minimum partition curve within an active
region. So, the size and shape of active regions affects final
segmentation results. If the active region’s size is extremely
small, it may lead to local minima problems because of the
effect of noise and local image structure. If the active region’s
size is extremely large, the desired boundary may be missed
as an overly global minimizer may be favored instead. The
active region’s size should be selected based on the shape
and size of detected objects, the image’s noise level, the
structure of the background, etc. In dual-front active
contours, we provide a very flexible way to define active
regions. We may treat an active region as a restricted search
space and many methods can be used to decide active
regions. For example, as introduced in Section 1, active
regions (or restricted search spaces) can be decided by
calculating the Euclidean distance [21] to an initial curve or
the normal’s length [19], [20] of an initial curve, or by using
morphological dilation [22], [41] to form a narrow region
around an initial curve, or even by using simple threshold-
ing operators [42]. In our experiments, we generally use
morphological dilation and erosion to generate an active
region around the current curve. In this way, the size and
shape of the active regions can be controlled easily by
adjusting the associated structuring elements. It is even
useful sometimes (for additional computational speed) to
dynamically change the size of the active region during the
iteration processes. For example, when an initial curve is far
from the desired object, we may first use wider active
regions to extend the searching scale for each iteration, speed
up the computational time and avoid the effect from noise.
After a few iterations, as the curve nears the desired

boundary, we may use narrower active regions to speed
up the remaining iterations.

In Fig. 2, we demonstrate that by choosing different active
regions with different sizes, dual-front active contours may
achieve different degrees’ global minima in the whole image.
The potential of point ðx; yÞ in image I was chosen aseP ðx; yÞ ¼ jIðx; yÞ � �lj þ ð1þ jrIjÞ2=10þ 0:1, where �l is the
mean value of points having the same label l as the point
ðx; yÞ. Fig. 2a shows the original image with the initialization,
Fig. 2b shows the corresponding gradient information,
Figs. 2c, 2d, 2e, and 2f show the different segmentation
results using 5� 5, 7� 7, 11� 11, and 15� 15 pixels circle
structuring elements for morphological dilation after 15 itera-
tions, respectively.

3.2 Numerical Implementation

In this section, we analyze the numerical implementation of
dual-front active contours. As shown in (9), the dual front
evolution detects the meeting points of the level sets of
two minimal action maps UCin and UCout . These two
minimal action maps may be computed by solving Eikonal
equations krUk ¼ eP . In the minimal path technique pro-
posed in [10], they used fast marching methods described in
[35] to solve Eikonal equations. Fast marching methods are
computationally efficient tools to solve Eikonal equations, in
which upwind difference schemes and heap-sort algorithms
are used for guaranteeing the solution is strictly increasing or
decreasing on grid points. The computational complexity of
fast marching methods isOðN logNÞ, whereN is the number
of grid points, and logN comes from the heap-sort algorithm.
Tsitsiklis [34] first used heap-sort structures to solve Eikonal
equations, Sethian [35] and Helmsen et al. [33] also reported
similar approaches lately. Recently, Yatziv et al. [43]
proposed a new implementation of fast marching methods
which reduces the computational cost of fast marching
methods to linear complexity OðNÞ using a data structure
“untidy priority queue” instead of a heap-sort structure.

Another algorithm for solving Eikonal equations is the
fast sweeping method [37], [38] based on iteration strate-
gies. It is suited for computing the solution of Eikonal
equations on a rectangular grid. Its main idea is to combine
nonlinear up-wind differences and Gauss-Seidel iterations
with alternating sweeping orders so that the causality along
characteristics of all directions is followed in an optimal
way. The idea of alternating sweeping order was first
proposed by Danielesson [44] to compute distance map-
ping. But, Danielsson’s algorithm cannot be used for
calculating the distance to a curve or a surface. Another
discrete approach based on the idea of fast sweeping was
also proposed by Tsai [45] to compute distance functions,
but their work does not apply to general Eikonal equations
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either. In fast sweeping methods [37], [38], the character-
istics are divided into a finite number of groups according
to their directions and each sweep of Gauss-Seidel iterations
with a specific order covers a group of characteristics
simultaneously. 2n Gauss-Seidel iterations with alternating
sweeping order are used to compute a first order accurate
numerical solution for the distance function in n dimen-
sions. Fast sweeping methods have an optimal complexity
of OðNÞ for N grid points, are extremely simple to
implement in any dimension, and give similar results as
fast marching methods. The details of fast sweeping
methods may be seen in [38], and their extension to more
general Hamilton-Jacobi equations are discussed [46], [47].

Both fast marching methods and fast sweeping methods
can be used in the dual front evolution for finding the
minimal partition curve in an active region. When using fast
marching methods to implement the dual front evolution,
there is no need to solve Eikonal equations shown in (9) on
the whole active region Rn and then look for the set of pg.
The dual front evolution may be implemented by labeling
initial curves with different labels and evolving the labeled
curves with different potentials simultaneously until each
point inside the active region is assigned a label. The
computational complexity of the dual front evolution is
OðN logNÞ, where N is the number of grid points in Rn.

In this paper, in contrast with more classical minimal path
techniques [10], the dual front evolution scheme utilizes fast
sweeping methods because of their lower complexity OðNÞ,
whereN is the number of grid points inRn. Dual-front active
contours includes the dual front evolution and morphological
dilation. Because the low-computational cost of fast sweeping
methods is maintained and the calculation of all minimal
action maps can be finished simultaneously, the complexity
of the dual front evolution is still OðNÞ. Furthermore, the
complexity of morphological dilation is lower thanOðNÞ, and
the boundary tracking process can be finished in finite
iterations. So, the total complexity of dual-front active
contours is still OðNÞ, where N is the number of grid points
(on average) in an active region.

3.3 Evolution Potentials

Generally, active contour models can be divided into two
categories, edge-based approaches and region-based ap-
proaches. Defining appropriate potentials is an essential
task of dual-front active contours. Here, we consider
potentials combining both region and edge information.

Without loss of generality, we assume an image domain �I

includes an object �O with boundary �O and background �B.
We also choose an initial contour C0. In the tth iteration of
dual-front active contours, a closed curveCðt� 1Þ is dilated/
eroded to form an active region RnðtÞ with two boundaries
CinðtÞ and CoutðtÞ, and �I is divided into five subsets: three
open subsets RinðtÞ, RoutðtÞ, RnðtÞ and their common
boundaries CinðtÞ, CoutðtÞ. This situation just looks like that
shown in Fig. 1b. Similar to the definitions in [30], we also
define two region descriptors kinðtÞ and koutðtÞ, which are
globally attached to their respective regionsRinðtÞ andRoutðtÞ
and, therefore, depend on them. For example, statistical
features of regions like means or variances fall in this class of
region descriptors. We also define boundary descriptors
kbðtÞ, such as edge strength indicators used in many edge-
based active contour models [6], [7] which are typically
functions of the image gradientrI.

For dual-front active contours, therefore, let us consider
energy functionals

EinðCÞ ¼ !rin
R R

Rin
kinðx; y; RinÞdxdy

þ!bin
R

�ðkbðx; yÞ þ !inÞds
EoutðCÞ ¼ !rout

R R
Rout

koutðx; y; RoutÞdxdy
þ!bout

R
�ðkbðx; yÞ þ !outÞds;

8>><
>>: ð10Þ

where !rin, !rout, !
b
in, !bout, !in, and !out are real positive

weighting constants. The integrands contain all of the
information to be extracted from the image. The objective of
dual-front active contours is to make an initial contour Cð0Þ
evolve toward a final minimal partition ð�O;�B;�OÞ of
image �I by minimizing EinðCÞ and EoutðCÞ.

In tth iteration, the minimal partition curve CðtÞ is the
global minimum of the energy

inf
C2RnðtÞ

fEoutðCÞ þ EinðCÞg � EoutðCðtÞÞ þ EinðCðtÞÞ ð11Þ

within the narrow active region RnðtÞ enclosed by CinðtÞ
and CoutðtÞ. According to (4), (7), and (10), we may calculate
(9) according to potentials

ePinðx; yÞ ¼ wrin � f
�
jIðx; yÞ � �inj; �2

in

�
þwbin � gðrIðx; yÞÞ þ winePoutðx; yÞ ¼ wrout � f�jIðx; yÞ � �outj; �2

out

�
þwbout � gðrIðx; yÞÞ þ wout;

8>>>><
>>>>:

ð12Þ

where Iðx; yÞ is the image intensity, gðrIðx; yÞÞ is a function
of the image gradient, �in and �out are mean values of I, and
�2
in and �2

out are variances within the regions Rin and Rout. In
(12), region and edge information is combined in the
potentials for the dual front evolution. In dual-front active
contours, different functions f and g and different weights
for the components of the potentials should be chosen for
different segmentation objectives. For example, if the
desired object has strong and reliable edge information,
we should increase the weight of the edge descriptors.
Otherwise, if the desired objects have weak edges or the
image is very noisy, we should increase the weight on the
region descriptors. As with any segmentation algorithm, the
optimal set of parameters is very application dependent.

3.4 Simple Regularization Terms

In classical active contour models, regularization forces
arise from internal energy terms in the energy that penalize
length or elasticity of the evolving contour. The resulting
forces typically take the form of mean curvature flows (or
derivatives of mean curvature in the case of elasticity).
While curvature-based terms do not explicitly appear in our
schemes, we may still obtain regularity in the design of the
potential functions. We propose three solutions to control
the regularity of the evolving fronts.

The dual-front active contour model is motivated by
the minimal path technique [11], in which they introduced
an upper bound on the curvature along an extracted
contour CðsÞ by controlling potentials P . They proved that
given a potential P > 0 defined on an image domain D,
and eP ¼ !þ P , the curvature magnitude jkj ¼ kCssk along
the geodesic minimizing

R
�ð!þ P ðCðsÞÞÞds is bounded by

jkj � sup
D

jjrP jj
!

: ð13Þ

According to this relationship, we propose two solutions
for ensuring smooth contours in the dual front evolution
algorithm. The first solution is to decrease supD by
increasing the constant ! added to P . Fig. 3a shows an
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original image with an initial contour, Figs. 3b, 3c, 3d, and
3e show the different smoothing effects in dual-front active
contours by changing the coefficient w in the potentialeP ðx; yÞ ¼ ðjIðx; yÞ � �lj þ !Þ from 0.1 to 10, 100, 200, where
�l is the mean value of points having the same label l as the
point ðx; yÞ. This Fig. 3 illustrates that by increasing the
constant w added to the potential P , the smoothness of
contours is increased. In this figure, the structuring element
for the morphological dilation is a 5� 5 circle mask and all
results are obtained after 20 iterations.

The second solution is to decrease supD by smoothing the
potentials (or original images) instead of increasing the
constant !. Gibou and Fedkiw [48] developed a hybrid
numerical technique for image segmentation that draws on
the speed and simplicity of k-means procedures and the
robustness of level set algorithms. They suggested that a
diffusion-like operation can be used to replace mean
curvatures to regularize the level set evolution. Motivated
by their method, we take the isotropic nonlinear diffusion
operator proposed by Perona and Malik [49] for denoising an
image while still keeping the image edges. This nonlinear
equation is

@Ið~x; tÞ
@t

¼ r � ðgðjrIjÞrIÞ; ð14Þ

where I defines the image intensity map at the voxel
location x and fictitious time t, g is an edge-stopping
function, and limjrIj!1gðjrIjÞ ¼ 0 so that diffusion stops at
the location of large gradients. Based on the original
function proposed by Perona and Malik [49], we take

gðsÞ ¼ �=ð1þ jrIj2=K2Þ ð15Þ

to smooth image I, where K is a threshold parameter
tuning the edge-stopping sensitivity on the image gradient
and � is a parameter controlling length scales.

The third solution is to use postprocessing operators to
smooth results. Level set evolutions with curvature terms
are good choices for smoothing curves (or surfaces). In [50],
[51], they combined fast matching evolutions with level set
evolutions to extract desired objects. Level set evolutions

with mean curvature terms start from the segmentation
result achieved by fast marching evolutions. Refined final
results are received after a just a few iterations. In dual-front
active contours, we also can use level set evolutions to
refine the obtained curves or surfaces.

In Fig. 4, we give two examples to illustrate how the last
two solutions control the smoothness of segmentation results.
The potential at a point ðx; yÞ was chosen as eP ðx; yÞ ¼
ðjIðx; yÞ � �lj þ 0:1Þ, where �l is the mean value of points
having the same label l as the point ðx; yÞ. Fig. 4a shows an
original image with initializations. Fig. 4b shows the
smoothed original image using isotropic nonlinear diffusion
operator shown in (15) with K ¼ 20 and � ¼ 1 after
120 iterations. Fig. 4c shows the segmentation result from
dual-front active contours. We also test the smoothness effect
from the third solution by using postprocessing operator.
Fig. 4d shows the smoothed original image using isotropic
nonlinear diffusion operator shown in (15) with K ¼ 20 and
� ¼ 1 after 20 iterations. Fig. 4e shows the segmentation
result using dual-front active contours. Fig. 4f shows the
refined result after using 10 iterations mean curvature flow
evolution proposed in [50] on the result in Fig. 4e.

3.5 Automatic Evolution Convergence

The stopping criterion in active contour models is also an
important issue whetherusing fast marchingmethods or level
set methods. Generally, fast marching methods do not give
explicit stopping criteria. Level set methods reach the desired
boundary and keep an equilibrium at the boundary only with
appropriate energy functionals. Now, we analyze the evolu-
tion convergence properties of dual-front active contours.

First, the dual front evolution provides an automatic
stopping criterion in each iteration. Since all initial contours
are classified into two (or multiple) groups, all contours
evolute simultaneously but based on different potentials.
Whenever two contours from the same group meet, they
merge into a single contour. On the other hand, if two
contours from different groups meet, both contours stop
evolving and a common boundary is formed by the meeting
points automatically. This automatic stopping criterion is
similar to that in region-growing methods in [52] and
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Fig. 3. The smoothness of contours is adjusted by changing the constant w added to the potential P .

Fig. 4. The extracted boundary also can be smoothed using the last two solutions proposed in Section 3.4.



multilabel fast marching methods [36], [51], [53]. The
comparison of those methods with dual-front active
contours is introduced in Section 4.2. The dual front
evolution also guarantees the continuity and smoothness
of curves with the capability to handle topology changes.

Second, the iteration process of dual-front active contours
may be stopped automatically by comparing results from
consecutive iterations. In each iteration, the result of the dual
front evolution is a global minimum partition curve within
the current narrow active region. After a finite number
iterations, by taking significant jumps each time, the evolving
curve reaches the desired boundary. When current global
minimum partition curve is the same as that of last iteration or
the difference between them is less than a predefined
tolerance, the procedure may be stopped. Because in each
iteration, the global minimum partition curve is confined to
the active region, the size of active regions decides the degree
of globalness/localness of the minimizer. The result using a
narrow active region may eventually to the result in a large
active region as long as there are no intervening local
minimizers.

Fig. 5 gives an example to show this property. In this
figure, the segmentation result after 30 iterations is the
same as that after 60 iterations from dual-front active
contours. We set the stopping criterion such that the
algorithm terminates when a curve reoccurs exactly in
consecutive iterations. The potential at a point ðx; yÞ was
chosen as eP ðx; yÞ ¼ ðjIðx; yÞ � �lj þ ð1þ jrIjÞ2=10þ 0:1Þ,
where �l is the mean value of points having the same
label l as the point ðx; yÞ.

4 COMPARISON WITH OTHER BOUNDARY

EXTRACTION METHODS

In this section, we compare and contrast dual-front active
contours with some other active contours for boundary
extraction. Since dual-front active contours combine region
and boundary constraints as well as a number of proper-
ties from both level set methods and minimal path based
fast marching methods, we compare our method to such
edge-based approaches as geodesic active contours [6], [7]
and the minimal path technique [10] as well as to region-
based approaches such as Chan-Vese’s model [24] and the
more general Mumford-Shah model [54]. Finally, because
of their evolution properties, we also compare dual-front
active contours with region-growing methods such as
watershed algorithms [52], and multilabel fast marching
methods [51], [53].

4.1 Comparison with Edge-Based and
Region-Based Approaches

As mentioned in Section 1, geodesic active contours [6], [7]
are based on the planar evolution (2) to capture localized
image features, most notably edges. But, spurious edges
generated by noise may stop the evolution of curves, yield
undesirable local minimizers. Therefore, initializations
must be chosen very carefully. The minimal path technique
proposed by Cohen and Kimmel [10] instead captures
global minimizers of the same energy between two user-
defined points. However, these two initial points must be
located precisely on the desired boundary.

Region-based forces have already been introduced in
many active contour models [23], [24], [29], [31], [54], [55].
Considering a possibly noisy 2D image u0 with image
domain �I and segmenting curve C. Mumford and Shah
[54] proposed to decompose an image into piecewise-
smooth functions by minimizing the following energy:

EMSðu;CÞ ¼ �LðCÞ þ �
Z

�I

ðu0ðx; yÞ � uðx; yÞÞ2dxdy

þ �
Z

�InC
jruðx; yÞj2dxdy;

ð16Þ

where LðCÞ denotes the length of C, �, �, and � are positive
parameters.

Chan and Vese [24] considered the limiting case (as did
Mumford and Shah earlier) of infinite penalty on the final
term, leading to piecewise constant approximations of the
image by minimizing the following energy

Eðc1; c2; CÞ ¼ �LðCÞ þ �1

Z
inðCÞ
ðu0ðx; yÞ � c1Þ2dxdy

þ �2

Z
outðCÞ

ðu0ðx; yÞ � c2Þ2dxdy;
ð17Þ

where c1 and c2 are constants and inðCÞ and outðCÞ denote
the interior and exterior of C, respectively. �, �1, and �2 are
positive parameters.

In Fig. 6, we compare geodesic active contours [6] (shown
in Fig. 6a), the minimal path technique [10] (shown in
Fig. 6b), Chan-Vese’s method [24] (shown in Fig. 6c), and
Mumford-Shah method [54] (shown in Fig. 6d), with dual-
front active contours (shown in Fig. 6e). The test image is one
2D slice of a human brain MRI image, and the objective is to
find the interface of gray matter and white matter. The image
size is 80� 80 pixels. The structuring element for the
morphological dilation step of the dual-front active contour
model was chosen to be a 5� 5 circle mask. The gradient
information used in panel Figs. 6a, 6b, and 6e is shown in
Fig. 2. The top row shows the original image and the
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Fig. 5. The convergence property of dual-front active contours. The structuring element for morphological dilation is a 7� 7 circle mask. (a) The
original image and the initialization. (b), (c), and (d) The segmentation results after 15, 30, and 60 iterations, respectively.



initializations for the curve evolutions. The bottom row
shows corresponding edge segmentation results. As this
figure indicates, the neither completely local nor completely
global minimum found by dual-front active contours yields
much more desirable boundaries compared to the local
minimum of the geodesic active contour and the global
minimum of the minimal path technique.

In Fig. 7, we give two examples which compare Chan and
Vese’s method [24], and the Mumford-Shah method [54] with
dual-front active contours. Figs. 7a and 7e are two 2D medical
images with the initializations, Figs. 7b and 7f are the results
from Chan-Vese’s model after 100 iterations, Figs. 7c and
7g are the results from Mumford-Shah model after 200 itera-
tions, Figs. 7d and 7h are the results using dual-front active
contours with a 7� 7 circular structuring element and after
20 iterations. Because Chan and Vese’s method and Mum-
ford’s method use global terms in the evolution equation,
sometimes these methods cannot find the correct boundaries.
But, for dual-front active contours, the degree of localness/
globalness can be controlled by the size of the active regions,
thereby yielding more flexibility to cope with images with
more complicated structure while still avoiding purely local

minimizers due to noise. The potential at a point ðx; yÞ
for the dual-front active contour model was chosen aseP ðx; yÞ ¼ ðjIðx; yÞ � �lj þ 0:1Þ, where �l is the mean value of
points having the same label l as the point ðx; yÞ. The
parameters in Chan and Vese’s method and in Mumford
and Shah’s method were chosen to be � ¼ �1 ¼ �2 ¼ 1,
�t ¼ 0:5, and � ¼ 0.

4.2 Comparison with Morphological Watershed
Transform and Multilabel Fast Marching Method

The watershed transform proposed by Vincent and Soille
[52] is a well-known segmentation technique, which is
based on immersion simulation, and allows the partitioning
of an image into regions. This technique is based on the
assumption that image contours correspond to the crest
lines of the gradient magnitude which can be detected via
watershed tracing. The strength of watershed segmentation
is that it produces a unique solution for a particular image
and can be easily adapted to any kind of digital grid or
extended to n-dimensional images and graphs. However,
the watershed transform typically leads to an over-
segmentation because the flowing process strongly relies
on the quality of the gradient and the choice of seed points.
Normally, the seed point is chosen according to local
minima and at least one seed must be initialized within
each interesting object. But, very often, local minima are
extremely numerous for noisy images, and it is a hard task
to choose appropriate local minima seeds.

Another interesting region-growing approach is the multi-
label fast marching method presented by Sifakis and Tziritas
[53] for motion analysis in video processing. It is an extension
of fast marching methods. The contour of each region is
propagated according to a motion field which depends on
labels and the absolute interframe difference. The propaga-
tion speeds of labeled contours are based on statistical
descriptions of the propagated classes. Deschamps and
coauthors [51] also proposed a similar multilabel fast
marching method, in which the speed function is derived
from local information (not just gradients) together with each
region’s statistical information.

The evolution process in multilabel fast marching
methods is analogous to the immersion process used in
watershed methods [52]. Both of them need a sufficient
number of appropriate initial seed points for accurate
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Fig. 7. Comparison of Chan-Vese’s methods, Mumford-Shah’s methods,
and dual-front active contours.

Fig. 6. Comparison of different segmentation results of the interface of white matter and gray matter via different active contour models with different

degrees of local or global minima.



segmentation. The number of seed points determines the
number of final segmented regions. These methods are
typically used as initial segmentations which requiring
following refinement.

The difference between dual-front active contours and
the above two methods (the multilabel fast marching
methods and the watershed methods) is that the dual-front
active contour method is an iterative method, which allows
topology changes with simple and free initializations. In
addition, dual front evolutions also allow similar groups of
contours to merge, thereby avoiding oversegmentation
problems common to watershed immersion methods.
Dual-front active contours consider not only image gradi-
ents, but also the important region information, which is not
considered in watershed transform methods.

In Fig. 8, we compare morphological watershed algo-
rithms [52] (shown in Fig. 8b), multilabel fast marching
algorithms [51], [53] (shown in Fig. 8d), and dual-front active
contours (shown in Fig. 8f). Figs. 8a, 8c, and 8e show the
original images with initializations, and Figs. 8b, 8d, and 8f
show the corresponding segmentation results. Dual-front
active contours only need very simple initializations to
segment multiple cell blobs and obtain accurate results. But,
for watershed algorithms and multilabel fast marching
algorithms, each blob and the background should be assigned
a distinctly labeled seed point, and no two regions are
allowed to merge during the region-growing process. The
number and the location of the initial seed points also affect
the final result dramatically. The potential used both for the
multilabel fast marching method and for the dual-front active
contour was chosen as eP ðx; yÞ ¼ ðjIðx; yÞ � �lj þ 0:1Þ, where
�l is the mean value of points having the same label l as the
point ðx; yÞ. The structuring element for the dual-front active
contour was chosen to be a 7� 7 circle mask.

5 EXPERIMENTAL RESULTS

In addition to the experiments shown in Section 4, we give
more experiments on 2D and 3D real images to illustrate the
properties of dual-front active contours in this section.

5.1 Experimental Results on 2D Images

In dual-front active contours, one very attractive feature is
that this model automatically proceeds in the correct
directions without relying upon additional inflationary
terms commonly employed by many active contour models.
To illustrate this property, we compare the segmentation
results with those in [28] using a similar noisy synthetic hand
image in Fig. 9. An initial contour completely contained
within the object flows outward to the boundary (shown in
the first row). An initial contour partially inside and partially

outside the interesting object flows in both directions toward
the boundary (shown in the second row). An initial contour
encircling the interesting object flows inward to the
boundary (shown in the third row). And, an initial contour
located outside the interesting object flows outward and
wraps around the boundary (shown in the last row). The first
column shows the original image and the initializing
contour. The second and the third column show two
intermediate steps of the algorithm. The last column shows
the final segmentation result. The results illustrate that the
shape of the hand can be segmented automatically and
naturally. In this example, the potential at a point ðx; yÞ was
chosen as eP ðx; yÞ ¼ ðjIðx; yÞ � �lj þ 0:1Þ, where �l is the
mean value of points having the same label l as the
point ðx; yÞ. The structuring element for dilation was chosen
as a 7� 7 circle mask.

In their experiment on a similar image in [28], when an
initial contour is outside the object, in addition to the final
curve that outlines the boundary of the hand, there are
extraneous curves around four corners of the image which do
not correspond to the actual image edges due to an undesired
local minimum. However, in our case, there are no extraneous
curves near the corners in Fig. 9. This is because in each
dilation/evolution loop of dual-front active contours, the
detected curve is limited in the current active region and
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Fig. 8. Comparison of watershed algorithms, multilabel fast marching methods, and dual-front active contours.

Fig. 9. The segmentation results on a hand image with different

initializations.



converges to the desired edges. This difference shows that
dual-front active contours can achieve better results.

Moreover, the dual front evolution is much faster than
level set methods used in other active contour algorithms
since fast marching or fast sweeping schemes are used in
the numerical implementation of the dual front evolution
technique. Since dual front evolution can handle topology
changes, we can detect several objects with only one initial
curve. The class of imagery that dual-front active contours
can handle is not restricted to images with only two distinct
means but includes images with multiple nonoverlapping
regions of different means. Additionally, we do not need to
know in advance the number of regions. But, such prior
information is very important for Chan and Vese’s method
[24]. An example is shown in Fig. 10.

In Fig. 10, the segmentation is performed on a noisy
synthetic image with four foreground regions having
different means situated on a spatially varying background
region. In this example, the potential at a point ðx; yÞ waseP ðx; yÞ ¼ ðjIðx; yÞ � �lj þ 0:1Þ, where �l is the mean value of
points having the same label l as the point ðx; yÞ. This
example illustrates automatic topology changes as well as
the ability of dual-front active contours to detect different
objects with different intensities and blurred boundaries.
This is due to the fact that the potentials combine global
dependencies and the evolving curve is automatically
attracted toward the desired objects. The initial curve does
not necessarily surround the objects and we use the first
label assignment solution introduced in Section 2.2.

However, there are two things that need to be men-
tioned. The first is that, if we want to segment multiple
objects in one image using only one initial contour, we must
be careful to place an initial contour to enclose all objects or
none of them. Otherwise, the initial contour will evolve to
extract only some objects, not all objects. This property also
provides a flexible way for segmenting multiple objects
with different objectives. The second is that we cannot
detect the inner and outer boundaries of an object with
holes simultaneously just using one single initial curve. For
example, in order to detect the holes of the object shown in
Fig. 10a, we should set an initial seed inside the hole and
another outside, and then detect the border of the hole only
using the dual front evolution.

In Fig. 11, we give another example to show that dual-front
active contours can be used for extracting objects without
stronggradient information.Fig.11ashowsthe original image
with initialization, Fig. 11b shows the corresponding gradient
information, Fig. 11c shows an intermediate step of the
segmentation process after five iterations, and Fig. 11d shows
the final segmentation after 20 iterations. In this example, the
potential used was eP ðx; yÞ ¼ ðjIðx; yÞ � Imeanj þ 0:1Þ, and the
structuring element was a 5� 5 circle mask. This test shows

that the segmentation of the cyst is refined even with high
noise level.

5.2 Experimental Results on 3D Images

We now demonstrate dual-front active contours on several
3D images to show that this model is easy to extend to the
3D case. In Fig. 12, we present another 3D result of tumor
detection in a real 3D MRI T2-weighted brain image. The
3D image size is 256� 256� 256, the initialization is a sphere
mask centered at (180, 100, 120) with size 30� 30� 30, the
structuring element is a 11� 11� 11 sphere mask, the result
is received after 20 iterations, and the potential was chosen aseP ðx; y; zÞ ¼ ðjIðx; y; zÞ � �lj þ 0:1Þ, where�l is the mean value
of points having the same label l as the point ðx; yÞ.

In recent years, various active contour models have been
proposed for segmenting complex brain cortical surfaces.
These methods either used active contour models as the
final step for cortex segmentation or applied geometric and
anatomical constraints and/or utilized significant prepro-
cessing of original data sets to obtain desirable final
segmentations.

Davatzikos and Bryan [56] used the homogeneity of
intensity levels within the gray matter region to introduce a
force that would drive a deformable surface toward the center
of the gray matter. Teo et al. [57] proposed a four-step
segmentation method which includes WM/CSF segmenta-
tion, desired WM component selection, verification/correc-
tions, and GM representation. MacDonald et al. [58] proposed
an iterative algorithm for simultaneous deformation of
multiple surfaces with intersurface proximity constraints
and self-intersection avoidance. Xu et al. [59] proposed a
method using an external force model, called gradient vector
flow [60], for cortex surface deformation. Zeng et al. [61] used
the fact that the cortical layer has a nearly constant thickness
to design a coupled surface model, in which two embedded
surfaces evolve simultaneously, each driven by its own
image-dependent forces so long as the intersurface distance
remained within a predefined range. Goldenberg et al. [62]
proposed a similar coupled surfaces principle and developed
a model using a variational geometric framework. In their
method, the surface propagation equations are derived from
a minimization problem and the implementation is based on
a fast geodesic active contours approach [63] for surface
evolution that yields a geometrically consistent technique for
improving the computation speed.

We want to clarify that the dual-front active contour model
is totally different with dual snakes [16], [17], [18] or coupled
surfaces [58], [61], [62]. Dual snakes or coupled surfaces were
proposed to evolve coupled curves together to find two
different contours simultaneously and some constraints
between coupled curves (or snakes) are used to guide each
curve’s evolution. But, the dual front evolution is designed to
find a single potential weighted minimal partition curve
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Fig. 10. Detection of multiple objects with different intensities in two noisy
images with a 5� 5 structuring element. (a) and (c) Two original images
with initializations. (b) and (d) The segmentation results after 20 iterations.

Fig. 11. The segmentation result on a 2D cyst image without gradient
information.



within an active region, which is formed by the meeting
points of the dual evolving curves. By iteratively forming a
new narrow active region based on current partition curve
and then using the dual front evolution to find a new global
partition curve within the narrow active region, dual-front
active contours can find the boundary of the single desired
object. Furthermore, the principle of “dual front evolution”
can be easily extended to multiple front evolution. Generally,
any number of independent initial contours may be used to
initialize the same number of action maps, each action map is
defined by potentially different potentials and assigned a
different label. Whenever the level sets of two (or more) active
maps meet each other, both (or more) curve evolutions stop at
the point of contact and determine the new boundary
automatically. The whole process stops when each point in
an active region is assigned a final label.

Finally, to demonstrate the ability of dual-front active
contours to handle complex structures and topology changes,
we test this model on a simulated MRI 3D brain image data set
to extract the complex boundaries between three tissues: GM
(gray matter), WM (white matter), and CSF (cerebral spinal
fluid). After skull stripping and nonbrain tissue removal, we
confine ourselves to the remaining brain region and use a
dual-front active contour to capture the CSF boundary. Then,
we use a second dual-front active contour to capture the WM/
GM boundary. In each stage of this process, we use the second
label assignment method introduced in Section 2.2 for the
dual front evolution.

In this experiment, we use T1-weighted images
because they provide better GM/WM contrast. The
experimental result is obtained by processing the original
3D volume directly. The test image is available from
BrainWeb [64] and was generated from the MS Lesion
brain database using T1 modality, 1mm slice thickness,
3 percent noise level and 20 percent intensity nonunifor-
mity setting. The image size is 181� 217� 217. The
initialization for the hierarchical segmentation is a sphere
mask centered at ð100; 100; 95Þ with size 75� 75� 150.

The potential used was eP ðx; y; zÞ ¼ ðjIðx; y; zÞ � �lj þ 0:1Þ,
where �l is the mean value of points having the same
label l as the point ðx; yÞ. The structuring element was a
5� 5� 5 sphere mask. In Figs. 13a and 13b, we present
the segmented outer (CSF-GM interface) and inner (GM-
WM interface) cortical surfaces in one slice of the
3D simulated brain image and a zoom-in of the extracted
boundaries for this slice. We also compare 3D models of
the outer and inner cortical surfaces from our method on
the same 3D image, and the ground truth data provided
by BrainWeb. Figs. 13c and 13d show 3D models of the
outer and inner cortical surfaces obtained from our
method while Fig. 13e and 13f show 3D models using
the corresponding ground truth data.

The experiments in this section were chosen primarily
for their ability to illustrate a number of properties of the
dual-front active contour model: robustness to both local
and global image artifacts, topology changes, ease of
initialization, ability to capture complex structures, etc. As
is well known, the segmentation of most medical images,
especially the complex 3D brain cortex, remains a challen-
ging problem because of the variety and complexity of
anatomical structures. As such, the best results are typically
obtained on an application dependent basis by using
additional preprocessing, postprocessing, and by applying
sensible constraints (and, in some cases, by using known
shape priors). In most of these applications, active contours
only constitute a part of the entire algorithm. Further, the
parameters used for this particular part of the algorithm
also vary from application to application if one wishes to
obtain the best possible results. In Section 3.1, we gave some
basic principles about how to choose appropriate potentials
and active regions, as it is not advisable to use any single
fixed choice to process all classes of imagery.

One of our ongoing research projects focuses on the
quantitative analysis of 3D brain cortex segmentation using
a more complete, application-specific algorithm based on
dual-front active contours. We hope to report the results of
this work in the near future after extensive quantitative

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 1, JANUARY 2007

Fig. 12. The segmentation result on a 3D MRI T2-weighted brain tumor image. (a), (b), (c), (d), and (e) The segmentation results on five different
slices. (f) The corresponding 3D segmentation result.

Fig. 13. Comparison of 3D models of the outer and inner cortical surfaces from our method, and the ground truth data.



comparison with many other state-of-the-art brain segmen-
tation models.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel dual-front active
contour model for 2D and 3D image segmentation to
iteratively evolve an initial contour toward a desired
boundary via alternating dual front evolution and
morphological dilation. A key attraction of dual-front
active contours is their ability to gracefully move from
capturing minima that are more local to minima that are
more global in nature, making it much easier to obtain
“desirable” minimizers (which often are neither the most
local nor the most global). Furthermore, this model
combines advantages of level-set methods and fast
marching methods, avoids some of their disadvantages,
and has low-computational complexity OðNÞ. It can detect
object contours with or without gradients, and is easy to
extend to 3D case. Comparison with other active contour
models and segmentation results on various 2D and
3D real images illustrate that this novel model is a fast yet
powerful technique for unsupervised image segmentation.

The fact that the dual-front approach may be customed
tailored to capture minimizers that are flexible in their
degrees of localness and globalness allows us to construct
around this basic building block an algorithm that may be
controlled and adapted in ways that other active contour
models cannot. This key point greatly extends the useful-
ness of this model to many important applications in
computer vision, especially medical imaging, where user
control and interaction is highly desirable.

Future research work on dual-front active contours
includes combining this model with other powerful image
smoothing, denoising methods or other image segmentation
methods for more challenging segmentation objectives in
medical imaging, searching for new methods of defining
more appropriate active regions for improving the accuracy
of the segmentation results, and working on quantitative
analysis of 3D medical image segmentation.
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