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Abstract. A method for the non-rigid, multi-modal, registration of vol-
umetric scans of human hands is presented. PET and MR scans are
aligned by optimising the configuration of a tube based model using a
set of Bayesian networks. Efficient optimisation is performed by posing
the problem as a multi-scale, local, discrete (quantised) search, and us-
ing dynamic programming. The method is to be used within a project to
study the use of high-resolution HIDAC PET imagery in investigating
bone growth and erosion in arthritis.

1 Introduction

In this paper we present a novel method for the non-rigid registration of high-
resolution HIDAC Positron Emission Tomography (PET) and Magnetic Reso-
nance3 (MR) scan volumes of human hands. To our knowledge we are the first
to tackle this particular multi-modal registration problem. This work is part of a
wider project to investigate the use of high-resolution list-mode QuadHIDACTM

PET imagery (∼ 0.5mm3 voxel size, Fluorine-18 tracer) for the study of the loca-
tion of bone growth and erosion in the hands of patients suffering from arthritis.
Our method involves fitting a pair of models, based on a set of cylindrical tubes,
to the two data sets to be registered and calculating a rigid and a non-rigid
(piecewise rigid) transform. The models are fitted by the optimisation of a set
of Bayesian networks with respect to annotated volumes. The method is made
computationally tractable by posing it as a multi-scale local search problem.
Quantisation of the search spaces allows the efficient use of dynamic program-
ming to obtain a globally optimal solution in these spaces.

Lower resolution PET imaging (∼ 5mm3 voxel size) is widely used in brain
imaging to extract functional information. However, PET imaging provides little
anatomical information. Therefore, it is routinely used in conjunction with MR
imaging, which can provide this anatomical information. As PET and MR scans
are rarely co-located, data sets must be registered. To quote Myers [1]; “[this
has] become a matter of routine in the analysis of brain PET studies”. The
most popular and successful methods of non-fiducial (physical marker) based
registration are based around the maximisation of mutual information, or voxel
similarity, over a rigid transform (e.g. [2–4], see [5] for an overview and evaluation
of a number of such techniques). Clearly such rigid transforms are unsuitable in
our application domain (figure 5). PET has also been applied to cardiac imaging.

3 T2-weighted, fat suppressed, spin-echo coronal images (voxel size ∼ 0.5×0.5×2mm).



Here PET provides metabolism information, which must again be augmented
with anatomical information from MR imaging. Akin to our work, Makela et

al. [6] use a model based technique to perform multi-modal registration. This is
based on the fact that the thorax and lung surfaces are clearly visible in both
imaging modalities. A deformable template model is fitted to each data set, and
the results used to calculate a rigid transformation. Farahani et al. [7] describe
a prototype system for the spatio-temporally co-located acquisition of PET and
MR for brain imaging. There remain some technical hurdles to be overcome
with this approach. If this were widely used (unlikely any time soon due to cost
and technical constraints) this will eliminate the need for volume registration.
However, multi-modal volume registration is likely to be required for some time
to come, especially for high-resolution PET scans (where few uni-modal scanners
exist, let alone multi-modal scanners). In our application PET imaging provides
information about bone growth and/or erosion. As with previous applications of
PET, MR imaging is required to provide anatomical information such as blood
vessel and tendon location.

Our approach to the registration problem is partly inspired by the 3D ge-
ometric models used in visual tracking. Perhaps the first example of such a
model is the WALKER model of Hogg [8] where the body and limbs of a hu-
man are modelled as a collection of cylinders. This model is fitted to 2D visual
data using edge information. Rehg and Kanade [9] use a similar approach to
track the human hand. A simplified 28 D.O.F. cylinder based model is fitted to
stereo data using a local optimisation method (Levenburg-Marquart). Stenger
et. al [10] use a similar model based on a number of 3D quadratics, rather than
cylinders, for added realism. Visual tracking has the advantage over medical
image analysis applications of having state estimate(s) from previous timesteps
to work from. As such, local optimisation over such a large configuration space
is possible (although a good initialisation method is required). Felzenswalb and
Huttenlocher [11] describe how the effective dimensionality of such optimisation
problems may be reduced for certain classes of model using quantisation and
dynamic programming. This work is our starting point, and it is described more
fully in the following section.

2 Model Fitting as Bayesian Network Optimisation using
Dynamic Programming

Felzenswalb and Huttenlocher [11] pose the problem of fitting a model to sensor
data (in the visual tracking domain) as the optimisation of the parameters of a
directed graph structured network (a type of Bayesian network). Probabilistic
dependencies exist between the data and individual model graph nodes, and be-
tween parent and child nodes joined by the directed vertices. In general, finding
a globally optimal solution over such a network is an N-P complete problem (and
in practice costly approximate methods are often used). However, if the model
graph is tree-structured (i.e. there are no loops), and the space of solutions is
quantised, a globally optimal solution may be obtained in linear time (w.r.t. the
number of nodes in the graph) using dynamic programming (see [11] for full
details). The solution in fact has complexity O(q2n) (where n is the number of
nodes, and q is the number of quantisations of each node parameterisation). Fur-
thermore, the method is made up of two parts; individual node evaluation (com-
plexity O(qn)), and belief propagation over the network (complexity O(q2n)). If



the the majority of the complexity of the network dependencies is in the former,
the solution is approximately linear in both the number of nodes, and the num-
ber of quantisations of the individual node parameterisations. The phalanges
(rigid finger sections) of a human hand in our PET/MR registration problem
may be modelled as tree-structured networks, as illustrated in figure 1.

Influence from
Associated Data

Influence from
“other” Data Set

Phalange
Configuration

Root node

Fig. 1. Hand (four fingers) PET/MR Bayesian Networks Formulation

In our scenario there are two models to be fitted to two data sets (PET and
MR). The data sets are linked in that they relate to the same individual. As such,
phalange lengths should be similar. The phalanges are parameterised as a tube
with 7 parameters (3D start/end and radius). We choose not to constrain the
motion of the fingers to a plane (as in [9]), as this is not a useful approximation
for our data. However, even with a small number of quantisations per dimension
this produces an excessively large number of configurations of each phalange
(individual node evaluation has complexity O(qd

nd), where qd is the number
of quantisations in each dimension, and nd is the number of dimensions). The
following sections describe an approach that uses two networks per data set, and
local quantisation to overcome this computational hurdle.

3 Efficient Model Networks and their Optimisation

The raw data used in this paper is volumetric and comes from PET and MR
scans. Typically volume dimensions are 256 × 256 × 16 for the MR data and
256 × 256 × 440 for the PET data. With this volume of data it is desirable to
pre-process the data before evaluating possible model configurations for compu-
tational reasons. Another reason for data pre-processing is to identify volumetric
areas relating to physical features to assist the model matching/registration pro-
cess. As there is essentially no common information in the PET and MR scans,
other than that an area is within the hand (or not), this is what is used. One
common method of identifying regions is volume segmentation. In this process
each voxel is labelled as belonging (or not belonging) to a physical structure.
For our data this is problematic, as there is much uncertainty over many voxels
(especially in the PET data). This task is therefore hard for a skilled human
expert, let alone an automated system. This approach also performs little data
reduction. We propose a simpler alternative approach to segmentation; point an-
notation. The principle behind this is that a relatively sparse set of points that



are definitely “hand” or “not hand” are identified. This is currently performed in
2D by hand (taking <15 minutes per data set), and is illustrated in figure 2. We

a) b)

c)

PET Data

MRI Data

Fig. 2. Examples of Hand Annotation of Data in 2D: a) MR ‘hand’, b) PET ‘not hand’,
3D Visualisation of ‘hand’ PET & MR point clouds

believe annotation to be a much simpler process to automate (using region based
classifiers) than segmentation for this data, as uncertain points may simply be
excluded from the labelling process. It is also a much faster process to carry out
by hand. Automation of this process is planned for the near future. The 2D point
annotation of multiple volumetric slices is used to form 3D “point clouds” using
the slice number to form the third dimension. This is illustrated in figure 2.c.
These point clouds allow the definition of probabilistic metrics over the model
configuration parameters (see later), and allow quite effective visualisation of
the quality of final model configurations.

3.1 Model Initialisation and Local Search

Our approach to reducing the computational complexity of the Bayesian network
optimisation is to pose the optimisation as a local search problem. Initial model
configurations are specified by hand, and the set of possible configurations in-
vestigated are local offsets from this configuration. This allows a rather smaller
number of quantisations of each dimension than quantising the complete 7D
space of solutions for each phalange. Hand specification of the initial configura-
tion is done by clicking on the approximate start/end points of each phalange in
a 2D slice view (as in the annotation in the previous section). The end of a parent



phalange and the start a connected child phalange are deemed to be coincident,
thus only 16 clicks are required for four fingers (the thumb is ignored only as it
is absent in the majority of the data sets used). The radius of each phalange is
estimated as K× phalange length (where K is typically 0.25, which is usually a
slight underestimate). Figures 3.a and 3.d show examples of the variable quality
of this initial configuration. In particular, the length (and thus radius) of the
finger tip phalanges in the MR data is incorrect as they lie partially outside the
scan volume. The location of PET data phalanges, especially at the base of the
fingers, is up to 10mm from the correct location. Estimated radii in all cases are
very approximate, even when the length is near correct.

a) b) c)

d) e) f)

Fig. 3. Example of model Initialisation (MR Data): a) Initial guess, b) Corrected Tube
lengths, c) Output of ‘Greedy’ algorithm, (PET Data): a) Initial guess, b) Corrected
Tube lengths, c) Output of ‘Greedy’ algorithm

Two methods are applied to the initial configurations before Bayesian Net-
work optimisation is performed. Firstly a check is made on whether the ends of
a phalange lie very close to the edge of the scan volume (i.e. within 5% of the
complete range of any dimension from the edge). We term this “phalange valid-
ity”. If it is the case that one phalange is valid and the other is not the length
of the invalid phalange is set to be equal to the valid one. This is done using the
valid end of the invalid phalange and its direction vector, as in equation 1.

Endnew = Startorig + Dirorig × Lenother (1)

The results of this process are illustrated in figures 3.b and 3.e (which are
data sets imaged from the same individual, and only the MR data has invalid
phalanges). Once the lengths are corrected, a “greedy” algorithm is used to
obtain a better initial estimate of the radius. This works by assigning annotated
hand points to phalanges that contain them4. The radii of each tube is increased
by increasing factors (typically 1:1.5 in 0.01 steps). The minimum radii that
contains a larger number of unassigned annotated hand points than the initial
estimate, without containing points assigned to another phalange, is selected. If
increasing the radius by one step increases the number of “not hand” annotated
points contained within the phalange tube, without increasing the number of
“hand” annotated points, expansion of that phalange is halted. This process is
repeated until convergence. The results of this process are illustrated in figures
3.c and 3.f.
4 If a point is inside two tubes it is assigned to the tube it is furthest inside.



3.2 Model Fitting using Multi-scale Optimisation of Two Networks

If each dimension of the 7D configuration space of each phalange tube is divided
into 9 evenly spaced quantisations5 (centred around the initial configuration)
the total number of quantisations (q) of each tube is 97 = 4, 782, 969. As the
complexity of the belief propagation is O(q2n) evaluation of such a network takes
of the order of an hour or more on current standard hardware (PIV 3GHz).
As we wish to perform this optimisation at multiple scales this would make
the registration process rather time consuming. As a computationally efficient
alternative, we divide the model into two networks; one relating to the start/end
point configuration of the phalange tubes (6D) and one relating to the Radius
(1D). Optimisation of a pair of the former is performed in around 30 seconds,
and the later is optimised in interactive time. Tables 1-4 describe the various
probabilistic factors that are used to form the model networks. These fall into two
categories; i) Simple probabilities, calculated as a data proportion (or similar),
and ii) Normalised Gaussian probabilities, calculated from some distance d, as in
equation 2. Normalised Gaussians are used as P = 1 for d = 0 (i.e. no influence
is had).

P = e
−d2

2σ2 (2)

Variable Description Form Notes
Pcgl start, Distance of start/end from ‘curve Norm. Gaussian S.D. = 0.5×length
Pcgl end gradient line’ start/end [1 if ‘invalid’]
Passign Proportion of ‘assigned’ data enclosed Simple prob. If <0.95 set to 0.01
Pn unassign Proportion of nearby (within search Simple prob. Clipped at 0.9

range) ‘unassigned’ data enclosed and scaled [0,1]
Plen p Difference of length from mean Norm. Gaussian S.D. = 0.5×length,

of PET & MR original lengths =PET/MR orig if
of this tube the other ‘invalid’,

1 if both ‘invalid’
Plen sim Difference in length from same Norm. Gaussian S.D. = 0.25×length

tube in other data set (current guess)
N.B. Where length is specified in the notes, this is the initial estimate for that data set

Table 1. Probabilistic influence factors on individual tube configurations (posi-
tion/length)

The Curve gradient line (CGL), used to calculate Pcgl start in table 1), is
calculated for each phalange from the mean of the points initially associated
with that phalange. For each finger (trio of phalanges), a quadratic is fitted to
the points in the 2D plane defined by these points. The gradient (direction) of
this quadratic at each mean point defines the CGL (a straight line which passes
through the mean). The extent (start/end) of these lines are found by projecting
each of the associated points onto the line and calculating the maximum distance
in each direction from the mean point. Validity of these lines is calculated in
exactly the same way as described in section 3.1. Independence of each factor is
assumed, and individual phalange tube configuration influences are combined as
a product (equation 3).

Ptuben
= Pcgl startn

×Pcgl endn
×Passignn

×Pn unassignn
×Plen pn

×Plen simn
(3)

Independence of topological factors is also assumed, and configuration influ-
ences are combined as a product (equation 4).

5 This is approaching the minimum sensible before solutions are lost between steps



Variable Description Form Notes
Pnear Distance between parent end Norm. Gaussian S.D. = 0.025×parent length

and child start
Pstraight Dot product of unit direction Simple prob. Enforces finger straightness

vectors of parent/child
Table 2. Probabilistic influence topological factors between parent/child configura-
tions (position/length)

Ptopoln,m
= Pnearn,m

× Pstraightn,m
(4)

Variable Description Form Notes
Passign Proportion of ‘assigned’ data enclosed Simple prob. If <0.95 set to 0.01
Punassign Proportion of ‘unassigned’ Simple prob. Clipped at 0.9

data enclosed and scaled [0,1]
Pnot 1 - (No. ‘not hand’ points / Simple prob. Lower clip at 0.01

No. ‘associated’ hand points)

Penc other

If no. assigned to another tube en-
closed > no. assigned to this tube ×

0.05, Penc other=0.01, else 1
Simple Prob.

Pradmatch
Difference between radius and initial
other model radius

Norm. Gaussian S.D. = 0.25 ×

tube radius

Table 3. Probabilistic influence factors on individual tube configurations (radius)

Variable Description Form Notes
Pdradius Difference in radius between parent Norm. Gaussian S.D. = 0.25 × parent

and child radius
Table 4. Probabilistic influence topological factors between parent/child configura-
tions (radius)

Radius model network influences are combined as a product in exactly the
same way as the start/end model. Belief propagation through each finger (trio
of phalange tubes) of the network also assumes independence of factors and is
performed separately for each finger (equation 5).

Pfinger = Proot × Ptube1 × Ptopol1,2 × Ptube2 × Ptopol2,3 × Ptube3 (5)

The globally optimal (maximum) value of Pfinger for each finger (within the
quantised space) is found using dynamic programming. Efficiency savings may
be made in this process by bearing in mind all probabilities in equation 5 are
< 1 by design. Thus a partial solution that has lower probability than the best
solution so far need not be evaluated further in the forward part of the algorithm
(in practice saving many evaluations of Ptopoln,m

).
Proot relates to the probabilistic influence from the root node (figure 1). This

is calculated as a normalised Gaussian (equation 2) based on the distance (in
the 2D plane defined by the root node, and tube directions) of the start of the
base phalange from its “root node projection” (σ is 0.5 × the tube radius). The
root node configuration is defined as a straight line in 3D space. This line is
calculated by calculating a least squares rigid registration (translation and ro-
tation) between the corresponding start and end points of the PET and MR
models (pre-optimisation), using the method of Horn [12]. A straight line is fit-
ted to the 8 registered base phalange start points, again using a least squares
error minimisation approach. The pairs of start points (one for each data set)
are projected onto this line, and the mean taken as the “root node projection”



for that finger. These points are projected back into the original space for the
transformed data set (choice of which set to transform makes little difference to
the root node projections calculated). It should be noted that the root node con-
figuration is pre-calculated from the initial configuration rather than optimised
within the dynamic programming stage as it is the same for both PET and MR
networks (which are currently optimised separately). This gives consistency of
the starting points of the phalange tubes, which would be expected for data
taken from the same patient. The networks are optimised at increasingly finer
quantisations / smaller search ranges using the previous optimal as a starting
point, as illustrated in figure 4.

Optimise Radius

Bayesian Networks

Optimise Start/End

Bayesian Networks
Align Tube Ends

Decrease Search Range

Optimise Radius

Bayesian Networks

Fig. 4. Multi-scale Network optimisation flowchart

Parent/child end/start points are aligned after each application of the Start-
End network optimiser. The iteration detailed in figure 4 is performed 4 times
(with the start/end search range halved at each iteration). The total model
fitting process (including initialisation) takes just a few minutes to fit models to
both data sets

3.3 Non-rigid Transform Calculation

Once the tube based model has been fitted to corresponding PET and MR
datasets, it is a reasonably simple process to calculate a non-rigid (piecewise
rigid) transform between the two data sets. This transform may be used to warp
one of the data sets (we warp the PET data) into correspondence with the other.
First, a global rigid (translation and rotation) transform is calculated from the
corresponding start and end points of the phalange tubes in the two models.
The closed form least-squares error minimisation method of Horn is used [12].
Calculating local rigid transformations for each (globally aligned) tube pair is
performed using the same method. However, at least three points are required
for this method, and only two are available (the start & end of the tube). A third
point is generated by using principal components analysis (PCA) to calculate
the eigenvector of the globally aligned annotated hand points (both sets) with
the smallest eigenvalue. This ‘minor axis vector’ (Vma) defines a plane with the
tube direction (Tdir) in which the third point lies. This third point is calculated
as in equation 6.

P3 = Tstart + Tlength × D3 (6)

Where D3 is the vector in the plane defined by Vma and Tdir perpendicular to
Tdir, where the dot product of D3 and Vma is positive. Transformation of any
point or voxel within a single tube is simply a matter of performing the global
transform, followed by the appropriate tube transform (or the inverse operations
in the opposite order for the reverse transform). Points outside the tubes may
simply be transformed using the global transform only. In fact we interpolate
the transform near the edges and when a point is in more than one tube. Details
are omitted for brevity. Figure 5 shows some results of these transforms applied
to annotated point and voxel data.



a) b)

c) d)

Fig. 5. Registration results; a)&b) Global (Rigid) and Local (Non-rigid) registration
applied to annotated hand points, c) Warped PET slice, d) Corresponding MR slice

4 Evaluation

Our method was evaluated by application to a number of data sets. The princi-
pal behind the evaluation is that the closest annotated point in the ‘other’ data
set to a registered/transformed ‘hand’ point should be a hand point. Our chosen
evaluation metric is to count the proportion of these ‘correct points’ for the trans-
forms in either direction. It should be noted that the absolute values presented
are fairly meaningless as PET and MR data sets don’t image exactly the same
part of the hand (parts may be missing in one set or another). However, relative
values for a data set demonstrate improvement in registration quality. Results
are presented in table 5. Results show a statistically significant improvement

Data Set PET→MR Nearest Correct Prop. MR→PET Nearest Correct Prop.
A [0.844/0.866]→[0.920/0.970] (0.026) [0.774/0.821]→[0.816/0.919] (0.325)
B [0.834/0.887]→[0.829/0.910] (0.018) [0.766/0.835]→[0.769/0.909] (0.302)
C [0.525/0.714]→[0.586/0.906] (0.132) ) [0.552/0.762]→[0.651/0.931] (0.374)
D [0.930/0.931]→[0.951/0.953] (0) [0.712/0.732]→[0.757/0.841] (0)
E [0.518/0.520]→[0.704/0.764] (0.054) [0.689/0.680]→[0.908/0.941] (0.306)
F [0.880/0.892]→[0.956/0.977] (0.553) [0.758/0.788]→[0.890/0.914] (0.119)

Mean inc. [0.069/0.111] [0.090/0.139]
Results show initial [Global Trans./Local Trans.] → final [Global Trans./Local Trans.] (Raw, for reference)

italics imply registration fit decrease (for data set GJ PET→MR Global registration only)

Table 5. Nearest Neighbour Correct Evaluation Results

(at 5% confidence) in the local and global registrations (especially local) over all
data sets after application of our method. Also, local registration always outper-
forms global registration. Our chosen metric says nothing about the magnitude
of registration errors, although by inspection maximum error appears well under
5mm. Ground truth would be required to verify this. We plan experiments with
imaging phantoms and pseudo-synthetic data to do this verification.



5 Discussion, Future Work and Acknowledgements

We have posed a problem of non-rigid multi-modal volume registration as one
of model fitting by optimisation of a set of Bayesian networks. Quantisation,
and local search, allow the efficient use of dynamic programming to find a glob-
ally optimal solution (within a locally quantised space). Applying this approach
iteratively at multiple, decreasing, scales gives robust model fits within a few
minutes. We have applied this approach to the registration of PET and MR
volumes of hands, for the study of bone growth/erosion in arthritis. The net-
works we have proposed include no learned (or measured) prior terms. Such
terms could easily be included if sufficiently accurate (and useful) models were
available. However, it is debatable whether such models would add anything for
the application presented as patients with arthritis often have rather unusual
hand poses. In the near future we intend to automate the process of hand/not
hand point annotation of volumetric data sets. We intend to further evaluate the
exact accuracy of registrations using imaging phantoms with easily identifiable
localisation points. Evaluation using pseudo-synthetic data is also planned.

D. McGonagle has been funded by the UK Medical Research Council to carry
out the high-resolution imaging studies of arthritis used in this paper.
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