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Abstract

Standard image based segmentation approaches perform poorly when there is little or no contrast 

along boundaries of different regions. In such cases, segmentation is largely performed manually 

using prior knowledge of the shape and relative location of the underlying structures combined 

with partially discernible boundaries. We present an automated approach guided by covariant 

shape deformations of neighboring structures, which is an additional source of prior information. 

Captured by a shape atlas, these deformations are transformed into a statistical model using the 

logistic function. Structure boundaries, anatomical labels, and image inhomogeneities are 

estimated simultaneously within an Expectation-Maximization formulation of the maximum a 

posteriori probability estimation problem. We demonstrate the approach on 20 brain magnetic 

resonance images showing superior performance, particularly in cases where purely image based 

methods fail.

1 Introduction

To better understand brain diseases, many neuroscientists analyze medical images for 

cortical and subcortical structures that seem to be influenced by the disease [1]. The analysis 

is based on segmentations of the structures of interests, often performed by human experts. 

However, this manual process is not only expensive, but in addition, it increases risks related 

to inter- and intra-observer reliability [2]. In this paper, we describe an automatic method, 

which accurately segments these structures by considering anatomical shape constraints and 

image artifacts of Magnetic Resonance (MR) images.

The detection of substructures is difficult as many of them are defined by partially 

discernible boundaries, such as in the case of the boundary between thalamus and white 

matter [3]. However, the ventricles, the structure above the thalamus, is more easily 

identified. In order for the ventricles to guide the boundary detection between the thalamus 

and the white matter, automatic segmentation algorithms use spatial priors [4–6]. These 

spatial priors capture the spatial relationship between structures such as the fact that the 

ventricles are above the thalamus. This is one example in which neighboring structures are 

of great utility for segmentation purposes.
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These types of priors are often characterized by soft boundaries representing the large spatial 

variability of a structure within a population. Deformable models offer an alternative as they 

capture the shape and permissible modes of variation within a population. In contrast to 

spatial priors on tissue labels, segmentation methods based on deformable models are guided 

by structure specific boundary conditions such as the length of the boundary in relation to 

others.

The work of this paper is motived by the class of deformable model-based approaches called 

active contour methods [7–9], in which the shape of an anatomical structure is represented 

as a level set function in a higher dimensional space. Similarly, our method defines 

anatomical shape constraints using signed distance maps in combination with the modes of 

variations of a Principle Component Analysis (PCA) [13]. While active contour methods 

were originally motivated by physical models [10], many methods are based on a Bayesian 

framework [11, 14, 12], which we chose for our algorithm. A Bayesian framework allows us 

to explicitly model the image inhomogeneities of MR images in order to segment large data 

sets without manual intervention.

The optimal solution within our framework is defined by a Maximum A posteriori 

Probability (MAP) estimation problem with incomplete data. From the MAP estimation 

problem we derive an instance of the Expectation Maximization algorithm (EM). The main 

contribution of the current work is that while we represent the shape variations through an 

implicit low-dimensional PCA, we additionally derive from this an explicit space-

conditioned probability model by way of the logistic function. When combined with image-

coupling and other terms in our Bayesian framework, the mechanism is able to identify 

shapes that are not restricted to the low-dimensional PCA space.

In contrast to other EM implementations [11, 14, 15], our method explicitly models the 

boundary via the shape model. Consequently, we achieve smooth segmentations without 

underestimating fine structures; a common problem in EM implementations [15]. To 

demonstrate the capabilities of our approach, we outline 20 sets of MR images into the 

major tissue classes as well as subcortical structures. The reliability of our approach is 

determined by the correspondence of the automatic segmentations to expert manual ones.

2 Deriving a Unified Framework for Image Inhomogeneity Correction, Shape 

Modeling, and Segmentation

The accuracy of outlining structures with indistinct boundaries in MR images significantly 

depends on properly modeling the boundary of the structure as well as estimating the 

inhomogeneities in the image. In this section, we develop a unified framework that performs 

segmentation, shape detection, and inhomogeneity correction simultaneously.

Without additional assumptions, it is difficult to extract the inhomogeneities ℬ and the shape 

parameters  from the MR images I due to their complex dependencies. However, this 

problem is greatly simplified when formulated as an incomplete data problem via EM. 

Within this framework, we define the following MAP estimation problem:
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(1)

In general, this results in a system of equations for which there is no analytical solution. We 

introduce the labelmap , which assigns each voxel in the image to an anatomical structure. 

If  is known it eases the estimation of ℬ and  based on I. In our problem, the labelmap 

 is unknown so that the instance of the EM algorithm iteratively determines the solution of 

[16]. At each iteration, the method improves the estimates  of  through

(2)

The expected value is defined as .

In our case, Equation (2) is a less complicated MAP problem than Equation (1). However, 

we would like to further simplify this update rule as it depends on both shape  and 

inhomogeneities ℬ. To split Equation (2) into two separate MAP problems, we first rephrase 

Equation (2) by simply applying Bayes’ rule and dropping terms that do not depend on 

:

(3)

The optimization procedure decomposes nicely as a consequence of the following 

independence assumptions: First, we assume independence of I with respect to 

conditioned on  and ℬ because our model characterizes each anatomical structure by a 

stationary intensity distribution [11, 14]. Next, we assume independence of  with respect 

to ℬ conditioned on , as the image inhomogeneities do not influence the shape of a 

structure. Finally, we assume independence of ℬ with respect to  and that the two 

conditional probabilities  and  are defined by the product of the 

corresponding conditional probabilities over all the voxels in the image space. Thus, 

Equation (3) simplifies to

(4)

The labelmap  is composed of the indicator random vector 

, where x represents a voxel on the image grid. The vector ea is zero at 
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every position but a, where its value is one. For example, if  then voxel x is assigned 

to the structure a. We now define the E-Step of our EM implementation as

If we assume that  is independent of ℬ then

(5)

and Equation (4) reduces to

Now, the M-Step solves the following two separate MAP problems

(6)

(7)

A variety of closed-form solutions for Equation (7) have been proposed in the literature such 

as by [14] and [11]. The remainder of this paper therefore focuses on Equation (6).

In summary, we find a local maxima to the difficult MAP estimation problem of Equation 

(1) by solving the simpler Equation (2), derived from an EM formulation. Based on 

independence assumptions, our instance of the EM algorithm iterates between the E-Step, 

which calculates  via Equation (5), and the M-Step, which solves the MAP problems of 

Equation (6) and Equation (7).

3 Logistic Maps for Shape Probabilities

The solution of Equation (6) greatly depends on the shape representation that defines the 

space of  and the probabilities that define the relationship of the attributes within our 

model. This section gives an example for a derivation of this equation. Before we do so, we 

briefly review the shape representation defined by the signed distance map.
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Note, while we adopt a PCA representation of shape information, the final estimate is not 

restricted to the PCA parameterization of shape. This is facilitated by the use of the logistic 

function as described in Section 3.2. Consequently, our model captures a broader class of 

shapes than those methods that are restricted to the PCA model.

3.1 Shape Representation

As mentioned, the results of level set methods [7, 8, 17] using a PCA model on signed 

distance maps inspired us to introduce shape constraints in an EM framework. We follow the 

suggestion by Tsai [7], who applies PCA to all structures simultaneously to capture the 

covariation between structures. We initially model the shapes of all structures of interest by 

the distance map .  (x) is a vector of dimension equal to the number of structures of 

interests. It defines the distance of voxel x to the boundary of each structure. Positive values 

are assigned to voxels within the boundary of the object, while negative values indicate 

voxels outside the object.

We first turn a set of manual segmentations into signed distance maps and then apply PCA 

to the maps in order to determine the modes of variations of each structure. The resulting 

shape model is represented by the eigenvector or modes of variation matrix U, eigenvalue 

matrix Λ, and , where  is the mean distance map of the anatomical 

structure a. To reduce the computational complexity for the EM implementation, U and Λ 
are only defined by the first K eigenvectors. In our case K represents 99 % of the 

eigenvalues’ energy, which corresponds to the first five eigenvectors.

The shapes in a specific image are described by the expansion coefficients of the eigenvector 

representation, which are the shape parameters .  relates to the distance 

maps by , where  captures the distance maps of all structures of interest. 

We refer to the distance map of a specific structure a defined by shape  as 

, where Ua are the entries in U corresponding to structure a. This type of 

shape representation is only appropriate for defining local shape deformations as the space 

defined by signed distance maps is not a linear vector space. Thus,  is a local 

approximation to the manifold of distance maps.

We end this brief description of the shape model by defining the prior over the shape 

parameters as

(8)

which is based on the hidden Gaussian assumption in PCA.

3.2 Estimating the Shape

In this section, we define the relationship of the unknown labelmap  and the shape 

parameter  captured by the conditional probability  of Equation (6). The 
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task is not straight-forward because unlike active contour methods, we also model the 

unknown labelmap  and the image inhomogeneities ℬ explicitly. The shape  captures 

global characteristics of structures, while  and ℬ characterize local properties. Motivated 

by the need to combine global and local information, we describe the use of the logistic 

function of the distance transform. The logistic function provides an implicit representation 

of the shape and an explicit space-conditioned probability model.

As mentioned previously, our model captures the relationship between the shape parameters 

 (which corresponds to a signed distance map) and the labelmap  through the 

conditional probability  Since the random variable  is discrete, we define 

the conditional probability in terms of a generic shape function (·,·) as

Given the motivation above, a natural choice for this formulation is the logistic function

which maps the distance map to the range [0,1]. For example, if  is positive, then 

the voxel is inside the object and . The variations within 

 depend on ca, which captures the certainty of the method with respect to the 

shape model. Uncertainty about the shape model is represented by relative small ca. This 

results in a wide slope of the spatial distribution (see Figure 1), which allows greater 

mobility of the boundary. Large ca define spatial priors with steep slopes, which tend to 

position the boundary of a structure.

The probability of the segmentation conditioned on the shape is now defined as

(9)

so that the MAP estimation problem of Equation (6) transforms to
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(10)

Determining a closed form solution to this estimation problem is generally very difficult so 

that we approximate its solution using Powell’s method [18].

In summary, the parameters  are seen within the context of a shape atlas created by PCA 

on signed distance maps. We relate the shape model to the EM algorithm of the previous 

section by defining  of Equation (6) as a composition of logistic functions on 

distance maps. The E-Step of the EM algorithm calculates the  based on the shape 

parameters , intensity I, image inhomogeneities , and voxel x

The distribution of  depends on the underlying image inhomogeneity 

model, which is an ongoing discussion [11, 14]. We choose the model by Wells et al. [11] 

that defines  by the Gaussian distribution . 

capture the mean and variance of the intensity distribution of the structure a.

The M-Step updates the estimates of the inhomogeneities  and shape  based on the 

weights . The update rule of  (Equation (7)) reduces to a system of linear equations and 

is solved in closed form [11]. The shape  is updated according to Equation (10) for which 

a solution is found via Powell’s method [18].

4 Validation

This section compares the accuracy of our new method with (EM-Shape) and without shape 

modeling (EM-NoShape). Both methods segment 22 test cases into the three brain tissue 

classes - white matter, grey matter and corticospinal fluid. As in Figure 2, the right (pink) 

and left ventricle (turquoise) are extracted from the corticospinal fluid, and the grey matter is 

further parcellated into right (red) and left (purple) thalamus, and right (green) and left 

caudate (blue). We determine the accuracy of the approaches by comparing the automatic 

segmentations of the thalamus and the caudate to manual ones, which we view as ground-

truth.
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With respect to EM-Shape, the atlas of Section 3.1 represents the shape of the thalamus, 

caudate, and the ventricles. The three brain tissue classes are excluded from the dynamic 

shape model as their spatial distributions are defined by the spatial atlas of [15] and not 

Equation (9). The model of EM-NoShape represents all anatomical structures by the spatial 

atlas.

We focus on the thalamus and caudate as they are challenging structures to segment. Purely 

intensity based segmentation methods, such as EM without spatial priors, cannot outline 

these structures because part of the boundary is invisible on MR images. Consequently, EM 

relies heavily on the prior information. In addition, the two structures are characterized by 

very different shapes (see Figure 2). While the right and left thalamus are shaped like an 

oval with a hook attached to it, the caudate is defined by long, thin horns wrapped around 

the ventricles. The segmentation methods also segment the ventricles because they are 

clearly visible on MR images. This structure further constrains the space of possible 

solutions for EM-Shape as all structures of interest have to be in proper proportion to each 

other.

To measure the quality of the automatic generated results, we compare them to the manual 

segmentations using the volume overlap measure DICE [19]. The graph in Figure 2 shows 

the average DICE measures and standard error for the two methods with respect to the 

thalamus and caudate. For the thalamus, EM-Shape achieves a higher average score (88.4 

±1.0%; mean DICE score ± standard error) than EM-NoShape (87.3 ±1.2%). The impact of 

the shape model on the segmentation results is even more apparent in the case of the 

caudate, where EM-Shape (84.9 ± 0.8%) is significantly better than EM-NoShape (82.7 

±1.2%). The greater accuracy of EM-Shape is attributed to the shape atlas, which better 

captures the subject specific bending of the horn shaped caudate than the spatial atlas.

The initial DICE score of EM-Shape is generally lower than that of EM-NoShape because 

the shape model misrepresents the patient specific structures. For example, Figure 3 shows 

the outcome of EM-Shape after every fifth iteration. Initially, the segmentation is noisy, 

which indicates discrepancy between the initial shape model defined by the mean shape and 

the patient specific shape. With each iteration, the arch of the caudate widens and the 

segmentations get smoother. After 20 iterations the method converges to a solution that 

generally outperforms EM-NoShape.

As mentioned, it is difficult to determine the exact shape of a structure with weakly visible 

boundaries. From the MR images, the size of the oval and the position of the hook of the 

thalamus are often not clearly defined. The top-left image of Figure 4 shows an example of 

such a scenario. The segmentations are the results of the two automatic segmentation 

methods where black indicates the outline of the human expert. In this example, EM-

NoShape underestimates the hook of the thalamus, which we found to be true throughout 

this experiment. EM-Shape can better cope with this problem as the shape model adds 

global constraints to the local analysis of the intensities. An example of a global constraint is 

the explicit definition of shape dependencies across anatomical structures. This causes the 

shape of the thalamus to be proportional to one of the easily segmentable ventricles. This 
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impacts the accuracy of EM-Shape as it further constrains the space of possible 

segmentations.

The other structure of interest in this experiment is the caudate. The structure is adjacent to 

the putamen, another subcortical structure with an identical intensity distribution. In the MR 

image of the middle column of Figure 4, the putamen is located on the outside of image. 

Neither the intensity pattern nor the spatial prior can properly separate these two structures, 

as indicated by the noisy segmentations of EM-NoShape. The outliers visible in EM-

NoShape violate the shape constraints of EM-Shape as the boundary has to satisfy the 

conditions set by the ventricles and the thalamus.

For both structures, EM-NoShape did not adequately segment the ends of the structure. In 

the right column of Figure 4, EM-NoShape underestimates the tip of the caudate. The 

opposite is true for the thalamus where EM-NoShape overestimates the ends. Again, spatial 

and intensity distributions do not allow discrimination between anatomical structures in this 

area. In summary, on the 20 test cases our shape based method EM-Shape was performing 

much better than EM-NoShape, which uses a spatial atlas instead of a shape atlas.

5 Summary and Conclusions

We presented a statistical framework for the segmentation of anatomical structures in MR 

images. The framework is guided but not restricted to the low-dimensional PCA shape 

model as the shape representation is turned into space-conditioned probability model using 

the logistic function. The approach is especially well suited for structures with weakly 

visible boundaries as it simultaneously estimates the image inhomogeneities, explicitly 

models the boundaries through a deformable shape model, and segments the MR images 

into anatomical structures. Our approach was validated by automatically segmenting 20 test 

cases and comparing the results to a similar EM implementation without shape priors. In 

general, our new method performs much better. The improvement is primarily due to explicit 

modelling of the shape constraints along the boundary of anatomical structures.
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Fig. 1. 
The image to the left is a labelmap of a circle whose corresponding distance map is shown to 

its right. Based on the distance map, two different logistic functions are plotted. The first 

logistic function is defined by a large slope (ca < 1) and the second plot represents a logistic 

function with a steep slope (ca > 1).
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Fig. 2. 
A 3D model generated by EM-Shape of the right (red) and left thalamus (purple), right 

(green) and left caudate (blue), and the right (pink) and left ventricle (turquoise). The graph 

to the right summarizes the validation results. For both structures EM-Shape clearly 

performs better than EM-NoShape.
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Fig. 3. 
The 3D models are based on the segmentations generated by our new method through 20 

iterations. The method is initialized with the mean shape of each structure. The very noisy 

initial segmentation is an indication of the disagreement between the mean and the patient 

specific shape. As the algorithm proceeds the shape of the caudate and thalamus adjusts to 

the patient specific situation. After about 20 iterations the algorithm converges to a smoother 

segmentation.
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Fig. 4. 
The figure is a collection of different subcortical regions. The black lines in the automatic 

segmentations are the thalamus or caudate outlined by the human expert. The left column 

shows a MR image with corresponding segmentations of the oval shaped body of the 

thalamus with attached hook. The middle column shows part of the caudate which is 

adjacent to the putamen, another subcortical structure with identical intensity distribution. 

The right column shows the top of the caudate which is generally is underestimated by EM-

NoShape. In all three examples, EM-NoShape performs worse than EM-Shape because the 

discriminatory power of spatial prior and intensity pattern is too low to determine the 

boundary of the structure.
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