
An Animation System for Fracturing of Rigid

Objects

Ayşe Küçükyılmaz, Bülent H. Özgüç

Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey
{aysek,ozguc}@bilkent.edu.tr

Abstract. This paper describes a system for the animation of fracturing
of brittle objects. The system combines rigid body simulation methods
with a constraint-based model to animate fracturing of arbitrary polyhe-
dral shaped objects under impact. The objects are represented as sets of
masses, where each two masses are connected via a distance-preserving
linear constraint. Lagrange multipliers are used to compute the forces ex-
erted by those constraints, where those forces determine how and where
the object will break. However, a problem with existing systems is that
the initial body models exhibit well-defined uniformity, which makes the
generated animations unrealistic. In order to generate visually different,
and more realistic effects, some heuristics are introduced to modify the
initial models of the objects. Those heuristics are advantageous since
they are easy to implement and apply on different models.

1 Introduction

With the developments in visualization techniques, computer animation gained
an important value, because of its extensive usage in imitating natural phenom-
ena. Computer graphics is widely used by the movie and advertisement industry,
mainly for the creation of expensive, difficult, and mainly destructive effects such
as explosions, fire, and shattering of objects.

Realistic animation of fracture is a difficult one, because in order to generate
a convincing animation, we need to understand the physical properties of the
objects in a scene, rather than considering them as merely geometric shapes.
These bodies should be thought of as real objects that have mass, elasticity,
momentum, etc., and that are governed by certain material properties. Another
difficulty of fracture animation is that the scenes change dynamically during
the animation. The bodies are fragmented to create new bodies which are again
subject to the same effects. Such animations cannot be realized successfully by
hand, not only because it is time consuming and hard, but also the real motions
and the fragmentation of objects require an extensive amount of calculations.
However, such great accuracy is not requisite for animation purposes. By using
physically based animation techniques, we can create realistic-looking shatters
and breaks with much less effort, yet with as much visual precision as necessary.

In this paper we discuss a system for computer animation that is imple-
mented for generating animations of rigid objects that involve fracturing. This

Ayse Kucukyilmaz
Text Box
Preprint version Kucukyilmaz, A., & Ozguc, B. (2005, October). An animation system for fracturing of rigid objects. In International Symposium on Computer and Information Sciences (pp. 688-697). Springer, Berlin, Heidelberg.Full text available at https://link.springer.com/chapter/10.1007/11569596_71



implementation combines the methods for simulating the fracturing of brittle
objects with the rigid body simulation techniques in order to generate realistic-
looking fracturing animations. Additionally, an improvement to this system is
made through some techniques used for generating and modifying the object
models more realistically.

The organization is as follows: In Sect. 2, we give a description of the object
model that is proposed by Smith, Witkin and Baraff [14], which forms the basis
for the simulation of the fracturing process. The process of generating each
animation frame, which combines the rigid body and the fracture simulation
techniques, are described in Sect. 3. Finally, some example animations generated
by our system and conclusions are provided in Sect. 4 and 5, respectively.

2 Object Models

For the simulation of the fracturing of the objects, each object is modeled as
a system of particles connected by distance-preserving constraints. The object
models are constructed from the tetrahedral mesh representations of the objects,
which can be generated by using a tetrahedral mesh-generation software package
such as NETGEN [10]. For each tetrahedron in the mesh, a particle is located
at its center of mass, where the mass of each particle is a function of the volume
of the tetrahedron it represents, and the density of the material at that point.
For each pair of tetrahedra with a shared face, the corresponding particles are
connected with a rigid constraint, which has strength proportional to the area of
the shared face. The usage of distance-preserving constraints realistically models
the inflexible nature of the objects that we are trying to animate by preventing
the neighboring particles to change their positions relative to each other.

Although these constraints model the fracturing behavior successfully, the
effects generated by using them alone are not satisfactorily realistic. This is due
to the fact that the generated mesh, which characterize the models’ density is
uniform. Thus the cracks are developed deterministically.

In order to achieve user control on the fracturing behavior of the objects,
some heuristics can be applied on them for modifying initial models. This might
be useful for defining the overall crack pattern of the final models. Cleaving
planes are used for systematically modifying the connection strengths along a
cross-section of the objects. Fig. 1 illustrates the cleaving effect on a sample
animation.

In addition, three-dimensional noise functions provide a way to change the
connection strength of the objects procedurally to achieve different fracturing
behavior for the same object geometry.

However, these methods are done as preprocessing on the models. Further
randomization can be achievable by modifying the connection strengths during
the fracture process. The idea depends on the fact that, in real life, when an
object shatters, its inner material properties change due to the cracks occurring
on it. This technique will be explained in Sect. 3.



Fig. 1. The cleaving effect

3 Generating the Animation

The animation frames are generated by calculating the motion paths of the
objects in the scene and determining their updated positions and orientations
for each frame by the bisection technique. In the case of a contact between two
objects, the motion paths of the objects are updated accordingly and fracture
calculations are performed. If these calculations result in the shattering of the
object, the resulting shards are modeled as new objects and they are included in
the animation calculations. This process is repeated until all the desired frames
of animation are generated.

3.1 Rigid Body Simulation

The states of the objects in the space can be represented by their positions,
orientations, and angular and linear velocities. Therefore, given the initial states,
finding the states at any given time is simply an initial value problem. This initial
value problem can be solved. An ODE integrator using the Fourth-Order Runge-
Kutta method with adaptive step sizing is implemented to solve this initial
value problem and calculate the motion of the objects (see [9]). By applying an
adaptive step-sizing algorithm, an upper bound for error is maintained in motion
calculations.

However, when there is collision between objects, these unconstrained motion
calculations fail to give realistic results. Thus, by applying appropriate responses
on the objects when they are in contact, the impenetrability constraints can be
enforced throughout the animation, letting the objects continue their uncon-
strained motion paths.

A contact between two objects is defined by the contact normal and a con-
tact point extracted from contacting features of the two objects. In the case of
multiple contact points between two objects, each contact point is considered
as a separate contact.After the contact points and the corresponding contact
normals of a contact are determined, the appropriate response for the contact is
determined by looking at the projection of the relative velocity of the objects at
the contact points over the contact normal.



The vector J , which is the impulse that acts on an object that is in contact,
can be defined as:

J =

∫

F (t)dt (1)

where, F (t) is the vector function that defines the contact force acting on the
object during the course of the contact. The required change in the velocity of the
object due to this collision can be achieved by applying the changes ∆P (t) and
∆L(t) to the linear and angular momentums of the object respectively. ∆P (t)
and ∆L(t) are defined as:

c∆P (tc) = J, (2)

∆L(tc) = (p − x(tc)) × J. (3)

Here, p is the contact point, x(t) is the position of the center of mass of the
object and tc is the time of the collision.

Even though the contacting objects are neither moving towards each other
nor moving apart at the contact point (i.e. a resting contact), the impenetrability
constraint can still be violated if the contacting objects are accelerating towards
each other. In this case, contact forces must be calculated and applied to the
objects in order to prevent them from accelerating into each other.

Besides requiring the relative acceleration of the objects, arel, to be nonneg-
ative, two other conditions must be satisfied while calculating the contact forces.
Firstly, the contact forces should never be attractive; and secondly, the contact
forces must remain as long as the corresponding contact remains and no more.
By combining these conditions together, we can formulate the problem of finding
the contact forces as a quadratic programming (QP) problem as follows:

min fT (Af + b) subject to

{

(Af + b) ≥ 0
f ≥ 0

(4)

Here (Af + b) is the concatenation of all the arel values for all of the resting
contacts and f is the concatenated vector of contact forces that are required for
enforcing the impenetrability constraints. The concatenated vector is separated
into its force dependent and force independent parts in order to be able to
formulate it as a QP problem.

3.2 Fracture Simulation

The simulation of the fracturing process makes use of the lattice model repre-
sentation of the objects. The crack initialization is invoked due to some external
force applied to a point on the outer surface or in the inner region of the object.
Upon the application of such a force, in response, constraint forces are calcu-
lated for connections in the lattice model in order to preserve the distances on
the lattice of particles. In case the constraint force for a connection is greater
than the current connection strength, that connection is removed. Otherwise,
the existing connection strength is weakened by the amount of the constraint



force applied on it. Any connection for which the resulting connection strength is
weaker than a predefined threshold is removed.The process of modifying the con-
nection strengths will be explained in detail after the details on how to calculate
the constraint forces are provided.

For calculating the constraint forces that act on the system of particles of
the object, the positions of the particles are placed in a vector named q, such
that, for an n particle system, q is a 3n × 1 vector defined as:

q =







q1

...
qn






. (5)

A mass matrix M is defined in such a way that it holds the particles’ masses
on the main diagonal, and 0’s elsewhere. So a mass matrix for n particles in 3D is
a 3n×3n matrix with diagonal elements {m1,m1,m1,m2,m2,m2, ...,mn,mn,mn}.

Finally, a global force vector Q is obtained by joining the forces on all parti-
cles, just as we did for the positions. From Newton’s Second Law of Motion, the
global equation on the particle system is as follows:

q̈ = M−1Q, (6)

where M−1 is the inverse of the mass matrix, M .
A similar global notation will be used for the set of constraints: Concate-

nating all scalar constraint functions form the vector function C(q). In 3D, for
n particles subject to m constraints, this constraint function has an input of a
3n × 1 vector, and an output of an m × 1 vector. In our case, this constraint
function consists of the scalar distance-preserving constraints in the form:

Ci(pa, pb) = ‖pa − pb‖ − di, (7)

where pa and pb are the positions of two particles connected to constraint i, and
di is the distance between the particles that needs to be preserved.

Assuming initial positions and velocities are legal, we try to come up with a
feasible constraint force vector Q̂ such that the distance preserving constraints
are held. In other words, for the initial conditions that satisfy C(q) = Ċ(q) = 0,
we are trying to find the constraint force vector Q̂, such that, when added to Q,
guarantees C̈(q) = 0. Taking the derivative of C(q), we get:

Ċ =
∂C

∂q
q̇. (8)

∂C
∂q

is called the Jacobian of C, and will be denoted by J . Differentiating the
above formula once again with respect to time gives

C̈ = J̇ q̇ + Jq̈. (9)

Replacing q̈ according to relation 6 and adding the constraint forces gives

C̈ = J̇ q̇ + JM−1(Q + Q̂). (10)



where Q̂ is the unknown constraint force vector. Setting C̈(q) = 0 gives

JM−1Q̂ = −J̇ q̇ − JM−1Q. (11)

In order not to break the balance of the system, it has to be assured that no
work is done by the constraint forces in system, for all valid position vectors:

Q̂.q̇ = 0, ∀q̇|Jq̇ = 0. (12)

All vectors that satisfy this requirement can be written as

Q̂ = JT λ, (13)

where λ is a vector with the same dimensions as C. The components of λ are
known as Lagrange multipliers and they tell how much of each constraint gradi-
ent is mixed into the constraint force. From 11 and 13:

JM−1JT λ = −J̇ q̇ − JM−1Q. (14)

Note that the above formula is a system of linear equations of the form
Ax = b where A is a matrix and x and b are vectors. By calculating the λ vector
from equation 14 and placing it in equation 13, the constraint force vector Q̂,
which satisfies the given rigidity constraints can be calculated.

Additionally, to ensure that the λ vector is a physically realizable solution
for the system, the conjugate gradient method [11], which gives the minimum
norm solution of the system, is used since the minimum norm solution of the
system is also the physically realizable one.

Modifying the Connection Strengths Once a crack is invoked at some point
of the model, due to some external or internal force, the connection strengths
are modified procedurally. Obviously, the connections that are close to the crack
region will be affected more than the connections that are far away from it. Thus,
the strengths are modified gradually as given in the following algorithm.

Algorithm: modifying the connection strengths
changeConnectionStrengths(latticeNode1, latticeNode2,−change)
1 decrease the connection strength between latticeNode1 and latticeNode2

by change

2 change ← α × change where 0 < α < 1
3 latticeNode ← {latticeNode1, latticeNode2}
4 choose a neighbor selNeighborNode ∈ neighbors of latticeNode randomly
5 str ← connection strength between selNeighborNode and latticeNode

6 str ← str − Θ where Θ is a valid change in strength ∧Θ > change

7 for (neighborNode ∈ neighbors of latticeNode) ∧
(neighborNode 6= selNeighborNode)

8 if change ≥ τ where τ is a predefined threshold
9 changeConnectionStrength(latticeNode, neighborNode,

change)
10 endif

11 end



In order to introduce a randomness into the crack pattern, some connections
are made weaker. These connections are selected randomly (lines 9-11). Sample
results for this technique are presented in 4.

4 Results

Fig. 2 shows an adobe wall struck by a heavy weight. The wall, which consists
of 4080 tetrahedra with 8897 shared faces, is fixed to the ground and experience
collision only with the heavy ball. In addition, since it is the only breakable
object in the scene, the fracture calculations are done only for it.

Fig. 2. An adobe wall breaking under the impact of a heavy ball.

In Fig. 3, cleaving is used to make the connections passing through the middle
of the table’s surface weaker than the rest of the surface to give a more realistic
look.

Fig. 3. Glass table breaking under the impact of a heavy ball.

Fig. 4 (a) and (b) compares the effect of modifying the connections randomly
and uniformly. With the technique used here, a successful randomization in
cracks is achieved

Three major steps take place during the creation of an animation. The first
step, generation of the object models, is performed once for an animation scene,



Fig. 4. A comparison of the crack patterns generated by modifying the connection
strengths (a)randomly (b)uniformly.

and the results are stored in a file. This is a very fast process, taking only a few
seconds even for very large numbers of tetrahedra. The second step, creation of
the animation, is the most time consuming one. The time required in this step for
the animation shown in Fig. 2 was 4437 seconds, giving an average calculation
speed of 61.7 seconds/frame. As it can be seen from the performance graph in
Fig. 5, the generation of the frames that are created just after the shattering
occurs took significantly more time than the average. The main reason for this is
the big number of contacts that occurred between the newly created fragments.
After a few frames, the calculation durations stabilize near 55 seconds. The time
required for the third step, visualization of the results, greatly depends on the
material qualities of the object in the animation scene.

Fig. 5. Calculation times for the breaking wall animation on a 1.6 GHz Pentium4
machine

5 Conclusion

This study explores and implements a method for animating brittle fracture in
a realistic way. The implementation follows the method explained in [12]: The
objects are initially represented as tetrahedral meshes. The tetrahedral mesh
models are converted into lattice models, which are constructed by locating
a point mass in the center of mass of each tetrahedron and connecting each
neighboring mass couple with constraints. In our implementation, the constraint



strengths can be further modified by some heuristics in order to simulate the
irregularity in the material properties. For each animation frame, the objects’
motion paths are calculated and the contacts between them are handled. For
collisions involving breakable objects, the fracturing behavior of the object is
determined by solving a system of dynamic constraints involving the tetrahedra
that forms the object.

Naturally, the number of the tetrahedra increases with respect to the com-
plexity of the object geometry, and for generating nice looking animations. How-
ever, the time required for generating the animation increases as this number
increases. Another limitation stems from the space requirements. The files de-
scribing the geometry of a high-resolution tetrahedral object are quite large. As
a result of this drawback, and considering the performances of the machines that
were used for testing, the tetrahedron meshes were generated just as dense to
illustrate the breaking behavior. However, with more powerful computers, much
better animations could have been generated.

The animation generated by the formulation presented in previous sections
outputs a fracture effect where there are several fragments consisting of single
tetrahedron. Although, Smith et. al. suggest in [12] that particles consisting of a
single tetrahedron can be eliminated without loss of visual effects, this approach
results with gaps around the cracks that seem to originate from nowhere. There-
fore, in this study, single tetrahedron objects are left as is. However, this resulted
with identical looking fragments, which can be seen in the results section.

As explained in previous sections, the constraint-based model is not sufficient
on its own to mimic real world. Since the lattice construction assigns masses to
tetrahedra according to their volumes, the density of objects stay uniform at
every point of their bodies. This imposes that an object is never weak at some
parts of its body, and this results in a uniform shattering effect, which seems
dull. Since, it is desirable to have irregularities in objects’ mass distributions;
some techniques are implemented in order to eliminate such uniformities by
modifying the constraint strengths. The first class of these techniques, which
are done as preprocessing, include applying noise function on an object assigns
different strengths to different parts of a body in a random manner, and using a
cleaving function, which modifies the strengths at given regions. With cleaving,
the animation can be controlled dynamically, by assigning strengths appropri-
ately to regions that are desired to fall apart or stay intact. The other technique
involves changing the strengths dynamically during the process. This presents
good results, and require no user processing on models.

Because of the modeling, fracture can occur only at the boundaries of the
tetrahedra. An improvement to the current work, can be implementing local
re-meshing, as explained by O’Brien and Hodgins [8]. This way, the mesh struc-
ture is recreated at the boundaries after the fracture, so that the cracks look
smoother and more realistic.Another improvement can be achieved by applying
the constraint forces onto the object gradually, rather than directly. This way,
a more realistic impulse history can be created as opposed to creating a single
impulse.



References

1. Baraff, David: Analytical Methods for Dynamic Simulation of Non-penetrating
Rigid Bodies. SIGGRAPH 89 Conference Proceedings (1989) 223-237.

2. Baraff, David: Fast Contact Force Computation for Non-penetrating Rigid Bodies.
SIGGRAPH 94 Conference Proceedings (1994) 23-34.

3. Baraff, David: Non-Penetrating Rigid Body Simulation. Eurographics’93 State of
the Art Repors (1993).

4. Baraff, David: Physically Based Modeling: Principles and Practice, Chapter Rigid
Body Simulation. SIGGRAPH 2001 Course Notes, ACM SIGGRAPH (2001).

5. Mirtich, Brian: Impulse-based Dynamic Simulation of Rigid Body Systems, Ph.D.
Thesis, University of California, Berkeley (1996).

6. Moore Matthew and Jane Wilhelms: Collision Detection and Response for Computer
Animation. ACM Computer Graphics (1998) 22-4:289-298.

7. O’Brien, James F. and Hodgins, Jennifer: Animating Fracture. Communications of
the ACM, Vol. 43 No. 7 (2000).

8. O’Brien, James F. and Hodgins, Jennifer: Graphical Modeling and Animation of
Brittle Fracture. SIGGRAPH 99 Conference Proceedings (1999) 33:287-296.

9. Press, William. H., Flannery, Brian. P., Teukolsky, Saul. A. and Vetterling, William.
T: Numerical Recipes in C; The Art of Scientific Computing, 1st edn. Cambridge
University Press, Cambridge, NY, USA (1992).

10. Shcberl, Joachim: NETGEN - 4.3. www.sfb013.uni-linz.ac.at/ joachim/netgen/,
(2003).

11. Shewchuk, Jonathan R: An Introduction to the Conjugate Gradient Method With-
out the Agonizing Pain. Computer Science Tech. Report 94-125, Carnegie Mellon Uni-
versity, Pittsburgh, PA (1994) see also http://www.cs.cmu.edu/ quake/papers.html.

12. Smith, Jeffrey; Witkin, Andrew, and Baraff, David: Fast and Controllable Simu-
lation of the Shattering of Brittle Objects. Graphical Interface, Montreal, Canada
(2000).

13. Terzopoulos, Demetri and Fleischer, Kurt: Modeling Inelastic Deformation: Vis-
coelasticity, Plasticity, Fracture. SIGGRAPH 88 Conference Proceedings (1988)
22:287-296.

14. Witkin, Andrew and Baraff, David: Physically Based Modeling: Principles and
Practice, Chapter Differential Equation Basics. SIGGRAPH 2001 Course Notes,
ACM SIGGRAPH (2001).


