Skip to main content

Solving a Dynamic Cell Formation Problem with Machine Cost and Alternative Process Plan by Memetic Algorithms

  • Conference paper
Book cover Stochastic Algorithms: Foundations and Applications (SAGA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3777))

Included in the following conference series:

Abstract

In this paper, we present a new model of a cell formation problem (CFP) for a multi-period planning horizon where the product mix and demand are different in each period, but they are deterministic. As a consequence, the formed cells in the current period may be not optimal for the next period. This evolution results from reformulation of part families, manufacturing cells, and reconfiguration of the CFP as required. Reconfiguration consists of reforming part families, machine groups, and machine relocations. The objective of the model is to determine the optimal number of cells while minimizing the machine amortization/relocation costs as well as the inter-cell movements in each period. In the proposed model, parts have alternative process plans, operation sequence, and produce as batch. The machine capacity is also limited and machine duplication is allowed. The proposed model for real-world instances cannot be solved optimally within a reasonable amount of computational time. Thus, we propose an efficient memetic algorithm (MA) with a simulated annealing-based local search engine for solving the proposed model. This model is solved optimally by the Lingo software then the optimal solution is compared with the MA implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wemmerlov, U., Hyer, N.: Cellular manufacturing in the US industry: A survey of users. Int. J. of Production research 27, 1511–1530 (1989)

    Article  Google Scholar 

  2. Schaller, J.E., Erenguc, S.S., Vakharia, A.J.: A mathematical approach for integrating the cell design and production planning decision. Int. J. of Production Research 38, 3953–3971 (2000)

    Article  MATH  Google Scholar 

  3. Chen, M.: A model for integrated production planning in cellular manufacturing systems. Integrated Manufacturing Systems 12, 275–284 (2001)

    Article  Google Scholar 

  4. Foulds, L.R., Neumann, K.: Techniques for machine group formation in manufacturing cells. Mathematical and Computer Modeling 38, 623–635 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Shafer, S., Rogers, D.: A goal programming approach to the cell formation problem. J. of Operations Management 10, 28–43 (1991)

    Article  Google Scholar 

  6. Wilhelm, W., Chou, C., Chang, D.: Integrating design and planning considerations in cell formation. Annals of Operations Research 77, 97–107 (1998)

    Article  MATH  Google Scholar 

  7. Chen, M.: A mathematical programming model for systems reconfiguration in a dynamic cell formation condition. Annals of Operations Research 77, 109–128 (1998)

    Article  MATH  Google Scholar 

  8. Monteruiln, B., Laforge, A.: Dynamic layout design given a scenario tree of probable future. Eur. J. of Operational Research 63, 271–286 (1992)

    Article  Google Scholar 

  9. Rogers, G., Bottaci, L.: Modular production systems: A new manufacturing paradigm. J. of Intelligent Manufacturing 8, 147–156 (1997)

    Article  Google Scholar 

  10. Black, J.T.: The design of the factory with a future. McGraw-Hill, New York (1991)

    Google Scholar 

  11. Baykasogylu, A., Gindy, N.: A simulated annealing algorithm for dynamic layout problem. Computers and Operation Research 28, 1403–1426 (2001)

    Article  Google Scholar 

  12. Lacksonen, T.A.: Static and dynamic layout problems with varying areas. J. of Operational Research Society 45, 59–69 (1994)

    MATH  Google Scholar 

  13. Lacksonen, T.A.: Preprocessing for static and dynamic layout problems. Int. J. of Production Research 35, 1095–1106 (1997)

    Article  MATH  Google Scholar 

  14. Song, S., Hitomi, K.: Integrating the production planning and cellular layout for flexible cellular manufacturing. Int. J. of Production Planning and Control. 7, 585–593 (1996)

    Article  Google Scholar 

  15. Harhalaks, G., Nagi, R., Proth, J.: An effective heuristic in manufacturing cell formation for group technology applications. Int. J. of Production Research. 28, 185–198 (1990)

    Article  Google Scholar 

  16. Caux, C., Bruniaux, R., Pierreval, H.: Manufacturing cell formation with alternative process plans and machine capacity constraints: a new combined approach. Int. J. of Production Economics. 64, 279–284 (2000)

    Article  Google Scholar 

  17. Kollen, A., Pesch, E.: Genetic local search in combinatorial optimization. Discrete Applied Mathematics and Combinatorial Operation Research and Computer Science 48, 273–284 (1994)

    Google Scholar 

  18. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In: Corne, D., Dorigo, M., Glover, F. (eds.) New ideas in optimization. McGraw-Hill, London (1999)

    Google Scholar 

  19. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glower, F., Kochenberger, G. (eds.) Handbook of metaheuristics, pp. 1–56. Kluwer, Dordrecht (1999)

    Google Scholar 

  20. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms, Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, Technical Report 790 (1989)

    Google Scholar 

  21. Moscato, P.: A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. In: Valero, M., Onate, E., Jane, M., Larriba, J.L., Suarez, B. (eds.) Parallel computing and transporter Applications, pp. 176–177. IOS Press, Amsterdam (1992)

    Google Scholar 

  22. Dawkins, R.: The selfish gene. Oxford University Press, Oxford (1976)

    Google Scholar 

  23. Moscato, P., Norman, M.G.: A memetic approach for the Traveling Salesman Problem implementation of a computational ecology for combinatorial optimization on message-passing systems. In: Valero, M., Onate, E., Jane, M., Larriba, J.L., Suarez, B. (eds.) Parallel computing and Transporter Applications, pp. 177–186. IOS Press, Amsterdam (1992)

    Google Scholar 

  24. Berretta, R.E., Moscato, P.: The number partitioning problem: An open challenge for evolutionary computation? In: Corne, D., Glover, F., Dorigo, M. (eds.) New ideas in optimization, ch. 17, pp. 261–278. McGraw-Hill, Maidenhead (1999)

    Google Scholar 

  25. Holstein, D., Moscato, P.: Memetic algorithms using guided local search: A case study. In: Corne, D., Glover, F., Dorigo, M. (eds.) New ideas in optimization, ch. 15, pp. 235–244. McGraw-Hill, Maidenhead (1999)

    Google Scholar 

  26. Merz, P.: Analysis of gene expression profiles: an application of memetic algorithms to the minimum sum-of-squares clustering problem. BioSystems 72, 99–109 (2003)

    Article  Google Scholar 

  27. Merz, P., Katayama, K.: Memetic algorithms for the unconstrained binary quadratic programming problem. BioSystems 78, 99–118 (2004)

    Article  Google Scholar 

  28. Berrettaa, R., Rodrigues, L.F.: A memetic algorithm for a multistage capacitated lot-sizing problem. Int. J. Production Economics 87, 67–81 (2004)

    Article  Google Scholar 

  29. Lacomme, P., Prins, C., Ramdane, W.: cherif, Competitive memetic algorithms for arc routing problems. Annals of Operations Research 131, 159–185 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Buriol, L., Franca, P.M., Moscato, P.: A New Memetic Algorithm for the asymmetric traveling salesman problem. J. of Heuristics 10, 483–506 (2004)

    Article  MATH  Google Scholar 

  31. Tavakkoli-Moghaddam, R., Aryanezhad, M.B., Safaei, N., Azaron, A.: Solving a dynamic cell formation problem using metaheuristics. Applied Mathematics and Computation (Article in press) (2005)

    Google Scholar 

  32. Glover, F., Greenberg, H.: New approach heuristic search: a bilateral linkage with artificial intelligence. Eur. J. Oper. Res. 39(2), 119–130 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Krasnogor, N.: Studies on the theory and design space of memetic algorithms. Ph.D. dissertation, Univ. of the West of England, Bristol, U.K. (2002)

    Google Scholar 

  34. Gen, M., Cheng, R.: Genetic algorithms and engineering design. Wiley, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tavakkoli-Moghaddam, R., Safaei, N., Babakhani, M. (2005). Solving a Dynamic Cell Formation Problem with Machine Cost and Alternative Process Plan by Memetic Algorithms. In: Lupanov, O.B., Kasim-Zade, O.M., Chaskin, A.V., Steinhöfel, K. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2005. Lecture Notes in Computer Science, vol 3777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11571155_18

Download citation

  • DOI: https://doi.org/10.1007/11571155_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29498-6

  • Online ISBN: 978-3-540-32245-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics