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Abstract. The IA-64 architecture provides a rich set of features to aidthe com-
piler in exploiting instruction-level parallelism to achieve high performance. Cur-
rently, GCC is a widely used open-source compiler for IA-64,but its perfor-
mance, especially its floating-point performance, is poor compared to that of
commercial compilers because it has not fully utilized IA-64 architectural fea-
tures. Since late 2003 we have been working on improving the performance of
GCC on IA-64. This paper reports four improvements on enhancing its floating-
point performance, namely alias analysis for FORTRAN (its part for COMMON
variables already committed in GCC 4.0.0), general induction variable optimiza-
tion, loop unrolling and prefetching arrays in loops. Theseimprovements have
significantly improved the floating-point performance of GCC on IA-64 as ex-
tensively validated using SPECfp2000 and NAS benchmarks.

1 Introduction

Based on EPIC (Explicitly Parallel Instruction Computing)technology, the IA-64 ar-
chitecture[8,9] was designed to allow the compiler explicit control over the execution
resources of the processor in order to maximize instruction-level parallelism (ILP). To
achieve this, the IA-64 architecture provides a rich set of architectural features to facili-
tate and maximize the ability of the compiler to expose, enhance and exploit instruction-
level parallelism (ILP). These features include speculation, predication, register rota-
tion, advanced branch architecture, special instructionssuch as data prefetching, load
pre- increment, store pre-increment and many others. Thus,the compiler’s ability to de-
liver many of the functionalities that are commonly realized in the processor hardware
greatly impacts the performance of the processors in the IA-64 family.

GCC (GNU Compiler Collection) is an open-source, multi-language and multi-
platform compiler. Being fairly portable and highly optimizing, GCC is widely used
in research, business, industry and education. However, its performance, especially its
floating-point performance, on the IA-64 architecture, is poor compared to that of com-
mercial compilers such as Intel’s icc [4]. We have measured the performance results
of GCC (version 3.5-tree-ssa) and icc (version 8.0) using SPEC CPU2000 benchmarks
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on a 1.0 GHz Itanium 2 system. GCC has attained 70% of the performance of icc
for SPECint2000. In the case of SPECfp2000, however, the performance of GCC has
dropped to 30% of that of icc. Since 2001 several projects have been underway on im-
proving the performance of GCC on IA-64 [16]. While the overall architecture of GCC
has undergone some major changes, its performance on IA-64 has not improved much.

This paper describes some progress we have made in our ongoing project on im-
proving the performance of GCC on the IA-64 architecture. Commercial compilers such
as Intel’s icc and HP’s compilers are proprietary. Researchcompilers such as ORC [15]
and openIMPACT [14] are open-source but include only a few frontends (some of which
are not extensively tested). GCC is attractive to us since itis an open-source, portable,
multi-language and multi-platform compiler. We are interested in IA-64 partly because
it is a challenging platform for compiler research and partly because of our desire in
developing also an open-source compiler framework for VLIWembedded processors.

In late 2003, we initiated this project on improving the performance of GCC on
IA-64. We have done most of our research in GCC 3.5-tree-ssa.As this version fails
to compile many SPECfp2000 and NAS benchmarks, we have fixed the FORTRAN
frontend so that all except the two SPECfp2000 benchmarks,fma3d andsixtrack,
can compile successfully. We are currently porting our workto GCC 4.0.0.

In this paper, we report four improvements we have incorporated into GCC for im-
proving its floating-point performance, namely, alias analysis for FORTRAN, general
induction variable optimization, loop unrolling and prefetching arrays in loops. Our
alias analysis for COMMON variables has already been committed in GCC 4.0.0. The
four improvements were originally implemented in GCC 3.5 and have recently been
ported to GCC 4.0.0 as well. In GCC 3.5, we have observed a performance increase of
41.8% for SPECfp2000 and 56.1% for the NAS benchmark suite ona 1.0 GHz Itanium
2 system. In GCC 4.0.0, its new loop unrolling has a performance bug: it does not (al-
though it should have) split induction variables as it did inGCC 3.5. This affects the
benefit of our loop unrolling negatively in some benchmarks.Our improvements incor-
porated into GCC 4.0.0 have resulted a performance increaseof 14.7% for SPECfp2000
and 32.0% for NAS benchmark suite, respectively. Finally, GCC 3.5 (with our four im-
provements included) outperforms GCC 4.0.0 (the latest GCCrelease) by 32.5% for
SPECfp2000 and 48.9% for NAS benchmark suite, respectively.

The plan of this paper is as follows. Section 2 reviews the overall structure of GCC.
Section 3 discusses its limitations that we have identified and addressed in this work. In
Section 4, we present our improvements for addressing theselimitations. In Section 5,
we present the performance benefits of all our improvements for SPECfp2000 and NAS
benchmarks on an Itanium 2 system. Section 6 reviews the related work. Section 7
concludes the paper and discusses some future research directions.

2 GCC Overview

GCC consists of language-specific frontends, a language-independent backend and
architecture-specific machine descriptions [18, 20]. The frontend for a language trans-
lates a program in that language into an abstract syntax treecalledGIMPLE. High-level
optimizations, such as alias analysis, function inlining,loop transformations and par-



tial redundancy elimination (PRE), are carried out on GIMPLE. However, high-level
optimizations in GCC are limited and are thus topics of some recent projects [5].

Once all the tree-level optimizations have been performed,the syntax tree is con-
verted into an intermediate representation calledRTL (Register Transfer Language).
Many classic optimizations are done at the RTL level, including strength reduction, in-
duction variable optimization, loop unrolling, prefetching arrays in loops, instruction
scheduling, register allocation and machine-dependent optimizations. In comparison
with the tree-level optimizations (done on GIMPLE), the RTL-to-RTL passes are more
comprehensive and more effective in boosting application performance.

Finally, the RTL representation is translated into assembly code. Amachine de-
scription for a target machine contains all machine-specific information consulted by
various compiler passes. Such a description consists of instruction patterns used for
generating RTL instructions from GIMPLE and for generatingassembly code after all
RTL-to-RTL passes. Properly defined instruction patterns can help generate optimized
code. In addition, a machine description also contains macro definitions for the target
processor (e.g., processor architecture and function calling conventions).

3 Limitations of GCC on IA-64

The performance of GCC is quite far behind that of icc: GCC 3.5reaches only 70%
and 30% of icc 8.0 in SPECint2000 and SPECfp2000, respectively. Compared to icc,
GCC 3.5 lacks loop transformations such as loop interchange, loop distribution, loop fu-
sion and loop tiling, software pipelining and interprocedural optimizations. These three
kinds of important optimizations are critical for icc’s performance advantages. The im-
portance of these optimizations for improving the performance of GCC was noted [16].
However, little progress has been made in GCC 4.0.0. The function inlining remains
the only interprocedural optimization supported in GCC 4.0.0. The SWING modulo
scheduler [7] was included in GCC 4.0.0 to support software pipelining. According to
our experimental results, it cannot successfully scheduleany loops in the SPECfp2000
and NAS benchmarks on IA-64. Loop interchange was added in GCC 4.0.0 but again it
has not interchanged any loops in the SPECfp2000 and NAS benchmarks on IA-64.

One of our long-term goals is to develop and implement these three kinds of im-
portant optimizations in GCC to boost its performance on IA-64. At the same time,
we will try to maintain the competitive edge of GCC as an open-source, multi-language
and multi-platform compiler. In this early stage of our project, our strategy is to identify
some limitations in the current GCC framework so that their refinements can lead to sig-
nificant increase in the floating-point performance of GCC onIA-64. We have analyzed
extensively the performance results of benchmarks compiled under different optimiza-
tion levels and different (user-invisible) tunable optimization parameters in GCC using
tools such asgprof andpfmon. We have also analyzed numerous assembly programs
generated by GCC. The following two problem areas of GCC on IA-64 are identified:

– There is no alias analysis for FORTRAN programs in GCC. The lack of alias infor-
mation reduces opportunities for many later RTL-level optimizations.



– The loop optimizations in GCC are weak. In particular, general induction variable
optimization, loop unrolling and prefetching arrays in loops do not fully utilize IA-
64 architectural features in exposing and exploiting instruction-level parallelism.
Due to the lack of sophisticated high-level optimizations,the effectiveness of these
RTL optimizations can be critical to the overall performance of GCC.

4 Improvements of GCC for IA-64

In this section, we present our improvements for the four components of GCC that
we identified in Section 3 in order to boost its floating-pointperformance significantly.
These four components are alias analysis for FORTRAN, general induction variable
optimization, loop unrolling and prefetching arrays in loops. The alias analysis is per-
formed on GIMPLE while the three optimizations are done at the RTL level.

We describe our improvements to the four components of GCC inseparate sub-
sections. In each case, we first describe the current status of GCC, then present our
solution, and finally, evaluate its effectiveness using some selected benchmarks. Once
having presented all the four improvements, we discuss the performance results of our
improvements for the SPECfp2000 benchmark suite and the NASbenchmark suite. In
this section, all benchmarks are compiled under GCC 3.5 at “-O3” on an Itanium 2
system, whose hardware details can be found in Section 5.

4.1 Alias Analysis

Alias analysis refers to the determination of storage locations that may beaccessed
in more than one way. Alias information is generally gathered by the front-end of the
compiler and passed to the back-end to guide later compile optimizations. In GCC,
alias analysis has been implemented for C/C++ but not for FORTRAN. This section
introduces a simple alias analysis module we have added for FORTRAN in GCC.

GCC conducts alias analysis at the tree level (i.e., on GIMPLE) via an interface
function, LANG HOOKS GET ALIAS SET, common to all programming languages.
Each language-specific frontend provides its own implementation of this interface func-
tion. We have completed a simple implementation of an intraprocedural alias analysis
for FORTRAN, by mainly detecting the aliases created due to EQUIVALENCE state-
ments, pointers, objects with TARGET attributes and parameters.

In GCC, an alias set contains all memory references that are aliases to each other.
Two memory references in different alias sets are not aliases. In our intraprocedural
alias analysis, the alias sets are constructed based on the following simple facts:

– A COMMON variable that is contained in a COMMON block is its own alias set if
there are not EQUIVALENCE objects within this COMMON block.

– There are no aliases for a parameter of a function (except theparameter itself) if
the compiler switch “-fargument-noalias” is enabled by theuser.

– A local variable is in its own alias set if it is not a pointer and does not have a
TARGET attribute.



Figure 1 shows that such a simple alias analysis is already effective in removing
redundant load instructions. These results for the four SPECfp2000 benchmarks com-
piled under GCC 3.5 at “-O3” are obtained usingpfmon running with the train inputs.
The percentage reductions for the four benchmarksswim, mgrid, applu andapsi
are 31.25%, 42.15%, 8.00% and 21.13%, respectively.

0
2000
4000
6000
8000

10000
12000
14000

171.swim 172.mgrid 173.applu 301.apsi

N
u

m
b

er
 o

f 
L

o
ad

s 
(m

ill
io

n
s)

-Alias +Alias

Fig. 1. Load instructions retired with (+Alias) and without (-Alias) alias analysis (in GCC 3.5).

4.2 General Induction Variable Optimizations

Induction variables are variables whose successive values form an arithmetic progres-
sion over some part (usually a loop) of a program. They are often divided into two
categories: basic induction variables (BIVs) and general induction variables (GIVs). A
BIV is modified (incremented or decremented) explicitly by the same constant amount
during each iteration of a loop. A GIV may be modified in a more complex manner.
There are two kinds of optimizations for induction variables: induction variable elim-
ination and strength reduction. We improve the efficiency ofthe strength reduction of
GIVs on IA-64 by utilizing some IA-64 architectural features.

GCC can identify theGIV of the formb + c × I. If this is the address of an array,
thenb represents the base address of the array,I a loop variable andc the size of the
array element. An address GIV can be strength reduced by replacing the multiplication
c× I in the GIV with additions. This enables the array access operation and the address
increment/decrement to be combined into one instruction. Such an optimization has
been implemented in GCC. However, there are no great performance improvements on
IA-64 since the legality test required for the optimizationis too conservative.

In programs running on IA-64, the loop variableI (a BIV) is typically a 32-bit in-
teger variable while the address of an array element (a GIV) is typically 64-bit long.
The addressb + c × I is normally computed as follows. First, the BIVI is evaluated
and extended into 64 bits. Thenb + c × I is evaluated to obtain the address GIV. Be-
fore performing the strength reduction for the address GIV,GCC first checks to see if
the BIV may overflow or not (as a 32-bit integer) during loop execution. If the BIV
may overflow, then whether the GIV can be legally reduced or not depends on whether
I is unsigned or signed. In programming languages such as C, C++ and FORTRAN,
unsigned types have the special property of never overflowing in arithmetic. Therefore,
the strength reduction for the address GIV as discussed above may not be legal. For
signed types, the semantics for an overflow in programming languages are usually un-
defined. In this case, GCC uses a compiler switch to determineif the strength reduction



can be performed or not. If “-fwrapv” is turned on, then signed arithmetic overflow is
well-defined. The strength reduction for the address GIV maynot be legal if the BIV
may overflow. If “-fwrapv” is turned off, then the strength reduction can be performed.
In GCC, the function that performs the legality test for the GIV strength reduction is
checkext dependentgivs. When compiling FORTRAN programs, the outcome of such
a legality test is almost always negative. This is because the FORTRAN frontend intro-
duces a temporary to replace the BIVI, causing the test to fail in general.

We have made two refinements for this optimization. First, the strength reduction
for an address GIV is always performed if “-fwrapv” is turnedoff (which is the default
case). The BIVs are signed in FORTRAN programs. This refinement yield good perfor-
mance benefits for some benchmarks. Second, for unsigned BIVs (as in C benchmarks),
we perform a limited form of symbolic analysis to check if these BIVs may overflow or
not. If they do not overflow, then the GIV strength reduction can be performed.

Figure 2 illustrates the performance impact of the improvedGIV optimization on
four SPECfp2000 benchmarks. These benchmarks are compiledunder GCC 3.5 at
“-O3” with our alias analysis being enabled. The cycle distributions on the Itanium
2 processors are obtained as per [19]. Reducing the strengthfor an address GIV cre-
ates the opportunity for the array address access and address increment/decrement
operations to be merged into one instruction. Therefore, unstalled cycles for the four
benchmarks are significantly reduced. The percentage reductions forwupwise,swim,
mgrid andapsi are 14.82%, 25.34%, 19.59% and 23.96%, respectively.
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Fig. 2.Effects of the improved GIV optimization on Itanium cycle categories (in GCC 3.5).

4.3 Loop Unrolling

Loop unrolling for a loop replicates the instructions in its loop body into multiple copies.
In addition to reduce the loop overhead, loop unrolling can also improve the effective-
ness of other optimizations such as common subexpression elimination, induction vari-
able optimizations, instruction scheduling and software pipelining. Loop unrolling is
particularly effective in exposing and enhancing instruction-level parallelism.

In GCC, the effectiveness of loop unrolling is crucially dependent on a tunable
parameter called MAXUNROLLED INSNS. This parameter specifies the maximum
number of (RTL) instructions that is allowed in an unrolled loop. The default is 200.



The existing loop unrolling algorithm in GCC works as follows. Let LOOPCNT
be the number of iterations in a loop. Let NUMINSNS be the number of instructions
in a loop. Let UNROLLFACTOR be the number of times that the loop is unrolled.
UNROLL FACTOR is chosen so that the following condition always holds:

NUM INSNS × UNROLL FACTOR < MAX UNROLLED INSNS (1)

The situation when the exact value of LOOPCNT can be calculated statically (i.e., at
compile time) is handled specially. The loop will be fully unrolled when

NUM INSNS × LOOP CNT < MAX UNROLLED INSNS (2)

Otherwise, UNROLLFACTOR is set as the largest divisible factor of LOOPCNT such
that (1) holds. If UNROLLFACTOR has not been determined so far or LOOPCNT
can only be calculated exactly at run time, UNROLLFACTOR is set as the largest in
{2, 4, 8} such that (1) holds. Finally, the so-called preconditioning code is generated for
a loop whenever possible so that only one exit test is needed in the unrolled loop.

Loop unrolling on IA-64 is not effective since the default 200 for
MAX UNROLLED INSNS is inappropriate for this architecture. We have done ex-
tensive benchmarking by trying different values. We found that loop unrolling is the
most effective on IA-64 if MAXUNROLLED INSNS is set to be 600. Figure 3 gives
the cycle distributions of four SPECfp2000 benchmarks compiled under GCC 3.5 at
“-O3 -funroll-loops” with improved alias analysis and GIV optimization and run under
the train inputs when MAXUNROLLED INSNS takes four different values.
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Fig. 3. Effects of the improved loop unrolling on Itanium cycle categories (in GCC 3.5).

As shown in the experimental results, loop unrolling becomes more effective when
performed more aggressively on IA-64. Unrolling more iterations in a loop tends to in-
crease the amount of instruction-level parallelism in the loop. As a result, the number of
unstalled cycles and the number of cycles spent on the FLP units are both reduced. The
best performance results for the four benchmarks are attained when
MAX UNROLLED INSNS = 600. However, loop unrolling may increase register pres-
sure and code size. As MAXUNROLLED INSNS increases, more loops and larger
loops may be unrolled, leading to potentially higher register pressure and larger code
size. Fortunately, the IA-64 architecture possesses largeregister files and can sustain
higher register pressure than other architectures. So we recommend



MAX UNROLLED INSNS to be set as 600. In future work, we will investigate a more
sophisticated strategy that can also take register pressure into account.

4.4 Prefetching Arrays in Loops

Data prefetching techniques anticipates cache misses and issue fetches to the mem-
ory system in advance of the actual memory accesses. To provide a overlap between
processing and memory accesses, computation continues while the prefetched data are
being brought into the cache. Data prefetching is thereforecomplementary to data lo-
cality optimizations such as loop tiling and scalar replacement.

In GCC, the array elements in loops are prefetched at the RTL level. However, its
prefetching algorithm is not effective on IA-64. The prefetching algorithm relies on a
number of tunable parameters. Those relevant to this work are summarised below.

1. PREFETCHBLOCK specifies the cache block size in bytes for the cache at apar-
ticular level. The default value is 32 bytes for the caches atall levels.

2. SIMULTANEOUS PREFETCHES specifies the maximum number of prefetch in-
structions that can be inserted into an innermost loop. If more prefetch instructions
are needed in an innermost loop, then no prefetch instructions will be issued at
all for the loop. The default value on IA-64 is 6, which is equal to the maximum
number of instructions that can be issued simultaneously onIA-64.

3. PREFETCHBLOCKS BEFORELOOP MAX specifies the maximum of prefetch
instructions inserted before a loop (to prefetch the cache blocks for the first few
iterations of the loop). The default value is also 6.

4. PREFETCHDENSE MEM represents the so-called memory access density for a
prefetch instruction. It refers to the ratio of the number ofbytes actually accessed to
the number of bytes prefetched in a prefetch instruction. InItanium 2, the cache line
sizes of its L1, L2 and L3 caches are 64 bytes, 128 bytes and 128bytes, respectively.
It is therefore possible that some data prefetched by a prefetch instruction may not
be accessed. Thus, PREFETCHDENSEMEM reflects the effectiveness of a single
prefetch instruction. The default value for this parameteris 220/256.

Our experimental evaluations show that the default values for the first three pa-
rameters are not reasonable. Figure 4 plots some statisticsabout prefetch instructions
required inside loops in four SPECfp2000 benchmarks. A datapoint (x, y%) for a
benchmark means that the percentage number of loops requiring x or fewer prefetch
instructions in that benchmark isy%. The statistics are obtained using GCC 3.5 at the
optimization level “-O3 -funroll-loops -fprefetch-loop-arrays” with the alias analysis
for FORTRAN, GIV optimization and loop unrolling incorporated. Inswim, the num-
ber of prefetch instructions required by 81.00% of the loopsis less than or equal to 6,
but these loops account for a small portion of the execution time of the program. The
loops that are responsible for the most of the execution timemay require 7 or more
prefetch instructions. For example, loop 100 in function CALC1, loop 200 in function
CALC2 loop 300 in function CACL3 and loop 400 in function CACL3Z require 14,
20, 9 and 9 prefetch instructions, respectively. Inmgrid, loop 600 in function PSINV
and loop 800 in function RESID account for nearly all the execution time. They re-
quire 10 and 12 prefetch instructions, respectively. In allthese loops requiring more



than 6 prefetch instructions, no instructions will be actually inserted according to the
semantics of SIMULTANEOUSPREFETCHES.
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Fig. 4. Prefetch instructions required in four SPECfp2000 benchmarks (in GCC 3.5).

Therefore, it is too simplistic to use a uniform upper bound to limit the number
of prefetch instructions issued in all loops. Some loops mayneed more prefetch in-
structions than others. Inserting too many prefetch instructions into a loop may result
in performance degradation. However, such a situation can be alleviated by adopting
rotating register allocation [3]. Unfortunately, such a scheme is not supported in GCC.

We have refined the prefetching algorithm in GCC for IA-64 as follows: All the
default values are chosen by extensive benchmarking on an Itanium 2 system.

– First, we should allow more prefetch instructions to be issued on IA-64:

PREFETCHBLOCKS BEFORELOOP MAX = 12
SIMULTANEOUS PREFETCHES = 12

– Second, we introduce a new parameter, PMAX, which is used to determine the
maximum number of prefetch instructions, that can be inserted inside a loop:

PMAX = MIN (SIMULTANEOUS PREFETCHES, NUMINSNS÷ 6).

where NUMINSNS is the number of instructions in the loop. If the numberof
prefetch instructions calculated are no large than PMAX, then all will be issued.
Otherwise, the PMAX most effective prefetch instructions will be issued. Prefetch
instructionF1 is more effective than prefetch instructionF2 if more array accesses
can use the data prefetched byF1 than that byF2. That being equal,F1 is more
effective thanF2 if F1 has a higher memory access density thanF2.

– Third, there are three levels of cache in the Itanium 2 processors. The L1 cache
is only for integer values. The cache line sizes for L1, L2 andL3 caches are
64, 128 and 128 bytes, respectively. We set PREFETCHBLOCK=64 for integer
values and PREFETCHBLOCK=128 for floating-point values. In addition, we
use the prefetch instructionlfetch to cache integer values at the L1 cache and
lfetch.nt1 to cache floating-point values at the L2 cache. Our experimental re-
sults show that this third refinement leads to only slight performance improvements
in a few benchmarks. Note that the statistical results shownin Figure 4 remain



nearly the same when the two different values for PREFETCHBLOCK are used.
This is because in GCC, the prefetch instructions required for an array access inside
a loop is calculated as (STRIDE + PREFETCHBLOCK - 1)/PREFETCHBLOCK,
where STRIDE is 8 bytes for almost all array accesses.
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Fig. 5. Effects of the improved prefetching on Itanium cycle categories(in GCC 3.5).

Figure 5 illustrates the effectiveness of our improved prefetching algorithm. All four
benchmarks are compiled under GCC at “-O3 -funroll-loops -fprefetch-loop-arrays”
with alias analysis, GIV optimization and loop unrolling included. The percentage re-
ductions in the D-cache (L1 cache) category forwupwise,swim,mgrid andequake
are 51.66%, -5.356%, 84.59% and 0.99%, respectively. The percentage reductions in the
FLP units for the same four benchmarks are 7.28%, 57.38%, 31.77% and 15.45%, re-
spectively. This category includes the stalls caused by theregister-register dependences
and the stalls when instructions are waiting for the source operands from the mem-
ory subsystem. By prefetching array data more aggressivelyin computation-intensive
loops, the memory stalls in these benchmarks have been reduced more significantly.

5 Experimental Results

We have implemented our techniques in GCC 3.5 and GCC 4.0.0. We evaluate this
work using SPECfp2000 and NAS benchmarks on a 1.0 GHz Itanium2 system running
Redhat Linux AS 2.1 with 2GB RAM. The system has a 16KB L1 instruction cache,
a 16KB data cache, a 256KB L2 (unified) cache and a 3MB L3 (unified) cache. We
have excluded the two SPECfp2000 benchmarks,fma3d andsixtrack, in our ex-
periments since they cannot compile and run successfully under GCC 3.5. We present
and discuss our results under GCC 3.5 and GCC 4.0.0 in two separate subsections.

5.1 GCC 3.5

Figure 6(a) illustrates the cumulative effects of our four techniques on improving the
performance of SPECfp2000. “GCC-3.5” refers to the configuration under which all
benchmarks are compiled using GCC 3.5 at “-O3 -funroll-loops -fprefetch-loop-arrays”.
“+Alias” stands for GCC 3.5 with the alias analysis for FORTRAN being included. In
“+GIV”, the GIV optimization is also enabled. In “+Unroll”,our loop unrolling is also



turned on. Finally, “+Prefetch” means that the optimization for prefetching arrays in
loops is also turned on. Therefore, “+Prefetch” refers to GCC 3.5 with all our four
techniques being enabled.

The performance of each benchmark is the (normalized) ratioof the run time of the
benchmark to a SPEC-determined reference time. The ratio for SPECfp2000 is calcu-
lated as the geometric mean of the normalized ratios for all the benchmarks.

Before our optimizations are used, the ratio of SPECfp2000 is 420.7. Alias analysis
helps lift the ratio to 455.1, resulting in a 8.2% performance increase for SPECfp2000.
The GIV optimization pushes the ratio further to 470.1, which represents a net perfor-
mance increase of 3.3%. Loop unrolling is the most effective. Once this optimization is
turned on, the ratio of SPECfp2000 reaches 540.1. This optimization alone improves the
SPECfp2000 performance by 14.9%. Finally, by prefetching arrays in loops, the ratio
of SPECfp2000 climaxes to 596.4. This optimization is also effective since a net perfor-
mance increase of 10.4% is observed. Our four optimizationshave increased the ratio
of SPECfp2000 from 420.7 to 596.4, resulting a performance increase of 41.8%. For
SPECfp2000, loop unrolling and prefetching are the two mosteffective optimizations.
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Fig. 6. Performance results of SPECfp and NAS benchmarks

Figure 6(b) shows the performance improvements for the NAS benchmarks. The ex-
ecution times of a benchmark under all configurations are normalized to that obtained
under “GCC-3.5” (with our techniques turned off). Therefore, the Y-axis represents the
performance speedups of our optimization configurations over “GCC-3.5”. The perfor-
mance increase for the entire benchmark suite under each configuration is taken as the
geometric mean of the speedups of all the benchmarks under that configuration. The
speedups for “+Alias”, “+GIV”, “+Unroll” and “+Prefetch” over “GCC-3.5” are 9.6%,
14.3%, 51.7% and 56.1%. Therefore, our four optimizations have resulted a 56.1% per-
formance increase for the NAS benchmark suite. For these benchmarks, alias analysis
and loop unrolling are the two most effective optimizations.

5.2 GCC 4.0.0

GCC 4.0.0 is the latest release of GCC, which includes (amongothers) the SWING
modulo scheduler for software pipelining [7] and some loop transformations such as



loop interchange. As we mentioned earlier, both are not applied on IA-64 for any
SPECfp2000 or NAS benchmark. Therefore, they are not used inour experiments.

We have also implemented our techniques in GCC 4.0.0. Note that the part of this
analysis for COMMON variables has already been committed inGCC 4.0.0. In GCC
4.0.0, loop unrolling does not split induction variables asit did in GCC 3.5. The lack
of such a useful optimization has made our loop unrolling optimization less effective in
GCC 4.0.0. (This “performance” bug may be fixed in future GCC releases.)

Figure 7(a) gives the performance results for SPECfp2000. With all our techniques
in place, a performance increase of 14.7% is obtained. This result is less impressive
compared to our performance achievements in GCC 3.5. The major reason is that loop
unrolling that is the most effective in GCC 3.5 has not achieved its full potential due
to the performance bug regarding the induction variable splitting we mentioned earlier.
However, GCC 3.5 with our improvements incorporated, represented by the “GCC-
3.5+OPTS” configuration, outperforms GCC 4.0.0 by 32.5%.
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Fig. 7. Performance results of SPECfp2000 and NAS benchmarks.

Figure 7(b) shows the performance results for NAS benchmarks. Again, loop un-
rolling is not as effective as it was in GCC 3.5 for the reason explained earlier. How-
ever, our techniques have resulted in a performance increase of 32.0%. Alias analysis
and loop unrolling are still the two most effective techniques. Finally, GCC 3.5 with
our improvements incorporated, represented by the “GCC-3.5+OPTS” configuration,
outperforms GCC 4.0.0 by 48.9%.

6 Related Work

There are a number of open-source compilers for the IA-64 family processors. The
Open Research Compiler (ORC) [15] targets only the IA-64 family processors. There
are frontends for C, C++ and FORTRAN. The openIMPACT compiler [14] is also de-
signed for the IA-64 architecture alone. Its frontends for Cand C++ are not completed
yet. One of its design goals is to make openIMPACT fully compatible with GCC.

We have adopted GCC as a compiler platform for this ongoing research because
GCC is a multi-language and multi-platform compiler. In addition, GCC is very portable



and highly optimizing for a number of architectures. It is more mature than ORC and
openIMPACT since ORC and openIMPACT can often fail to compile programs.

There are GNU projects on improving the performance of GCC onIA-64 [16].
However, little results have been included in the latest GCC4.0.0 version. The SWING
modulo scheduler for software pipelining [7] is included inGCC 4.0.0 but does not
schedule any loops successfully on IA-64 according to our experimental evaluations.

This work describes four improvements in the current GCC framework for improv-
ing the performance of GCC on IA-64. Our improvements are simple but effective in
boosting the performance of GCC significantly on IA-64.

Loop unrolling and induction variable optimizations are standard techniques em-
ployed in modern compilers [13]. Alias analysis is an important component of an op-
timizing compiler [2]. In GCC, alias analysis should be carried out not only at both
its intermediate representations [6] but also at the frontends for specific programming
languages. However, the alias analysis component for FORTRAN programs in GCC is
weak. This work demonstrates that a simple intraproceduralalias analysis can improve
the performance of FORTRAN programs quite significantly.

Software data prefetching [1, 12, 17] works by bringing in data from memory well
before it is needed by a memory operation. This hides the cache miss latencies for
data accesses and thus improves performance. This optimization works the best for
programs that have array accesses in which data access patterns are regular. In such
cases, it is possible to predict ahead of time the cache linesthat need to be brought
from memory. Some work has been done on data prefetching for non-array accesses
as well [10, 11]. Data prefetching represents one of the mosteffective optimizations in
commercial compilers [4, 3] for IA-64. For IA-64, adopting rotating register allocation
to aid data prefetching in GCC is attractive.

7 Conclusion

In this paper, we describe some progress we have made on improving the floating-point
performance of GCC on the IA-64 architecture. Our four improvements are simple but
effective. We have implemented our improvements in both GCC3.5 and GCC 4.0.0.
Our experimental results show significant performance increases for both SPECfp2000
and NAS benchmark programs. The part of our alias analysis regarding COMMON
variables has been committed in GCC 4.0.0.

Compared to Intel’s icc, GCC still falls behind in terms of its performance on IA-
64. The following three kinds of optimizations are criticalfor icc’s performance ad-
vantages: loop transformations such as loop interchange, loop distribution, loop fusion
and loop tiling, software pipelining and interprocedural optimizations. A preliminary
implementation for optimizing nested loops for GCC has beendeveloped [5]. However,
its loop interchange transformation cannot even successfully interchange any loops on
IA-64. The SWING modulo scheduler for software pipelining has also been incorpo-
rated in GCC 4.0.0 [7]. Due to the imprecision of the dependence analysis in GCC
4.0.0, the SWING modulo scheduler can hardly make a successful schedule on IA-64.
In GCC 4.0.0, the function inlining remains to be the only interprocedural optimization
supported. We plan to make contributions in these areas in future work. We strike, as



our long-term goal, to achieve performance on IA-64 comparable to that by commer-
cial compilers while retaining the improved GCC as an open-source, portable, multi-
language and multi-platform compiler.
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