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Abstract. The IA-64 architecture provides a rich set of features tatladdcom-
piler in exploiting instruction-level parallelism to aele high performance. Cur-
rently, GCC is a widely used open-source compiler for 1A-Bdt its perfor-
mance, especially its floating-point performance, is paampared to that of
commercial compilers because it has not fully utilized A& chitectural fea-
tures. Since late 2003 we have been working on improving #rfopnance of
GCC on IA-64. This paper reports four improvements on enimgnits floating-
point performance, namely alias analysis for FORTRAN (&g fior COMMON
variables already committed in GCC 4.0.0), general inductiariable optimiza-
tion, loop unrolling and prefetching arrays in loops. Thasprovements have
significantly improved the floating-point performance of GOn 1A-64 as ex-
tensively validated using SPECfp2000 and NAS benchmarks.

1 Introduction

Based on EPIC (Explicitly Parallel Instruction Computirigthnology, the IA-64 ar-
chitecture[8, 9] was designed to allow the compiler expticintrol over the execution
resources of the processor in order to maximize instrudéwoal parallelism (ILP). To
achieve this, the 1A-64 architecture provides a rich setdigectural features to facili-
tate and maximize the ability of the compiler to expose, eshand exploit instruction-
level parallelism (ILP). These features include specolgtpredication, register rota-
tion, advanced branch architecture, special instructsored as data prefetching, load
pre- increment, store pre-increment and many others. Thesompiler’s ability to de-
liver many of the functionalities that are commonly reatdize the processor hardware
greatly impacts the performance of the processors in thédAamily.

GCC (GNU Compiler Collection) is an open-source, multigaage and multi-
platform compiler. Being fairly portable and highly optinmg, GCC is widely used
in research, business, industry and education. Howesgogeitformance, especially its
floating-point performance, on the 1A-64 architecture ,aspcompared to that of com-
mercial compilers such as Intel’s icc [4]. We have measuhedperformance results
of GCC (version 3.5-tree-ssa) and icc (version 8.0) usingGERPU2000 benchmarks
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on a 1.0 GHz Itanium 2 system. GCC has attained 70% of the imeafuce of icc
for SPECint2000. In the case of SPECfp2000, however, thi®meance of GCC has
dropped to 30% of that of icc. Since 2001 several projecte li@en underway on im-
proving the performance of GCC on IA-64 [16]. While the oVeaechitecture of GCC
has undergone some major changes, its performance on lasddt improved much.

This paper describes some progress we have made in our gngi@ject on im-
proving the performance of GCC on the |1A-64 architecturen@eercial compilers such
as Intel'sicc and HP’s compilers are proprietary. Reseaothpilers such as ORC [15]
and openIMPACT [14] are open-source but include only a femtiends (some of which
are not extensively tested). GCC is attractive to us siniseaih open-source, portable,
multi-language and multi-platform compiler. We are insteg in 1A-64 partly because
it is a challenging platform for compiler research and pdsttcause of our desire in
developing also an open-source compiler framework for Vidiwedded processors.

In late 2003, we initiated this project on improving the peniance of GCC on
IA-64. We have done most of our research in GCC 3.5-treeAss#his version fails
to compile many SPECfp2000 and NAS benchmarks, we have fhedr©ORTRAN
frontend so that all except the two SPECfp2000 benchméarka3d andsi xt r ack,
can compile successfully. We are currently porting our worteCC 4.0.0.

In this paper, we report four improvements we have incorjgaranto GCC for im-
proving its floating-point performance, namely, alias szl for FORTRAN, general
induction variable optimization, loop unrolling and pret@ing arrays in loops. Our
alias analysis for COMMON variables has already been cotadhih GCC 4.0.0. The
four improvements were originally implemented in GCC 3.5l éuave recently been
ported to GCC 4.0.0 as well. In GCC 3.5, we have observed apeaice increase of
41.8% for SPECfp2000 and 56.1% for the NAS benchmark suige @ GHz Itanium
2 system. In GCC 4.0.0, its new loop unrolling has a perforrediug: it does not (al-
though it should have) split induction variables as it did3@C 3.5. This affects the
benefit of our loop unrolling negatively in some benchma@xs: improvements incor-
porated into GCC 4.0.0 have resulted a performance ince#dge7% for SPECfp2000
and 32.0% for NAS benchmark suite, respectively. Finallgd3.5 (with our four im-
provements included) outperforms GCC 4.0.0 (the latest @&l€ase) by 32.5% for
SPECfp2000 and 48.9% for NAS benchmark suite, respectively

The plan of this paper is as follows. Section 2 reviews thealstructure of GCC.
Section 3 discusses its limitations that we have identifretaaddressed in this work. In
Section 4, we present our improvements for addressing tmegations. In Section 5,
we present the performance benefits of all our improvemenSRPECfp2000 and NAS
benchmarks on an Itanium 2 system. Section 6 reviews thédelaork. Section 7
concludes the paper and discusses some future researctiotise

2 GCC Overview

GCC consists of language-specific frontends, a languadgpendent backend and
architecture-specific machine descriptions [18, 20]. Tbatend for a language trans-
lates a program in that language into an abstract syntaxalessl GIMPLE. High-level

optimizations, such as alias analysis, function inlinitbgp transformations and par-



tial redundancy elimination (PRE), are carried out on GINEPHowever, high-level
optimizations in GCC are limited and are thus topics of soawent projects [5].

Once all the tree-level optimizations have been perforrttezlsyntax tree is con-
verted into an intermediate representation caf8d (Register Transfer Language).
Many classic optimizations are done at the RTL level, intigastrength reduction, in-
duction variable optimization, loop unrolling, prefetagiarrays in loops, instruction
scheduling, register allocation and machine-dependetih@ations. In comparison
with the tree-level optimizations (done on GIMPLE), the RI-RTL passes are more
comprehensive and more effective in boosting applicatenfigpmance.

Finally, the RTL representation is translated into assgncbde. Amachine de-
scription for a target machine contains all machine-specific inforomatonsulted by
various compiler passes. Such a description consists trfigt®n patterns used for
generating RTL instructions from GIMPLE and for generatitsgembly code after all
RTL-to-RTL passes. Properly defined instruction pattearsteelp generate optimized
code. In addition, a machine description also contains mdefinitions for the target
processor (e.g., processor architecture and functioimgalbnventions).

3 Limitations of GCC on |IA-64

The performance of GCC is quite far behind that of icc: GCCraaches only 70%
and 30% of icc 8.0 in SPECint2000 and SPECfp2000, respéct@empared to icc,
GCC 3.5 lacks loop transformations such as loop interchdogg distribution, loop fu-
sion and loop tiling, software pipelining and interprocedwptimizations. These three
kinds of important optimizations are critical for icc’s p@mance advantages. The im-
portance of these optimizations for improving the perfanoeof GCC was noted [16].
However, little progress has been made in GCC 4.0.0. Thetitminlining remains
the only interprocedural optimization supported in GCC.@.0Che SWING modulo
scheduler [7] was included in GCC 4.0.0 to support softwé@pelming. According to
our experimental results, it cannot successfully schealyeoops in the SPECfp2000
and NAS benchmarks on 1A-64. Loop interchange was added i@ &G.0 but again it
has not interchanged any loops in the SPECfp2000 and NAShhearks on |1A-64.
One of our long-term goals is to develop and implement thieseetkinds of im-
portant optimizations in GCC to boost its performance or6lA-At the same time,
we will try to maintain the competitive edge of GCC as an openrce, multi-language
and multi-platform compiler. In this early stage of our @i our strategy is to identify
some limitations in the current GCC framework so that thefinements can lead to sig-
nificant increase in the floating-point performance of GCQ/A64. We have analyzed
extensively the performance results of benchmarks cochpiheler different optimiza-
tion levels and different (user-invisible) tunable optzation parameters in GCC using
tools such agpr of andpf nmon. We have also analyzed numerous assembly programs
generated by GCC. The following two problem areas of GCC c4/are identified:

— There is no alias analysis for FORTRAN programs in GCC. Thk ¢ alias infor-
mation reduces opportunities for many later RTL-level mjigations.



— The loop optimizations in GCC are weak. In particular, gahgrduction variable
optimization, loop unrolling and prefetching arrays inpsalo not fully utilize 1A-
64 architectural features in exposing and exploiting ingion-level parallelism.
Due to the lack of sophisticated high-level optimizatiahs, effectiveness of these
RTL optimizations can be critical to the overall performamt GCC.

4 Improvements of GCC for IA-64

In this section, we present our improvements for the four moments of GCC that
we identified in Section 3 in order to boost its floating-pgiatformance significantly.
These four components are alias analysis for FORTRAN, gémgduction variable
optimization, loop unrolling and prefetching arrays inpso The alias analysis is per-
formed on GIMPLE while the three optimizations are done atRfiL level.

We describe our improvements to the four components of GC&eparate sub-
sections. In each case, we first describe the current sthtG€E6, then present our
solution, and finally, evaluate its effectiveness using es@elected benchmarks. Once
having presented all the four improvements, we discusséhi@imance results of our
improvements for the SPECfp2000 benchmark suite and the hkShmark suite. In
this section, all benchmarks are compiled under GCC 3.5@8™-0on an Itanium 2
system, whose hardware details can be found in Section 5.

4.1 Alias Analysis

Alias analysis refers to the determination of storage locations that magdmessed
in more than one way. Alias information is generally gatldg the front-end of the
compiler and passed to the back-end to guide later compiienmations. In GCC,
alias analysis has been implemented for C/C++ but not for FOARN. This section
introduces a simple alias analysis module we have addedJ&TRAN in GCC.

GCC conducts alias analysis at the tree level (i.e., on GIE)Pka an interface
function, LANG.HOOKS GET_ALIAS _SET, common to all programming languages.
Each language-specific frontend provides its own impleatent of this interface func-
tion. We have completed a simple implementation of an imbegdural alias analysis
for FORTRAN, by mainly detecting the aliases created dueQWB/ALENCE state-
ments, pointers, objects with TARGET attributes and patame

In GCC, an alias set contains all memory references thatliaisea to each other.
Two memory references in different alias sets are not aialseour intraprocedural
alias analysis, the alias sets are constructed based oolliwgihg simple facts:

— A COMMON variable that is contained in a COMMON block is its malias set if
there are not EQUIVALENCE objects within this COMMON block.

— There are no aliases for a parameter of a function (exceptdremeter itself) if
the compiler switch “-fargument-noalias” is enabled by tiser.

— A local variable is in its own alias set if it is not a pointerdadoes not have a
TARGET attribute.



Figure 1 shows that such a simple alias analysis is alreddgt®f in removing
redundant load instructions. These results for the four@&pPEI00 benchmarks com-
piled under GCC 3.5 at “-O3" are obtained usimignon running with the train inputs.
The percentage reductions for the four benchmasism ngr i d, appl u andapsi
are 31.25%, 42.15%, 8.00% and 21.13%, respectively.

= 12000 N -
E 10000 \ O-Alias B+Alias

8000 -

6000

4000 -

2000 - -
04

171.swim 172.mgrid 173.applu 301.apsi

Number of Loads (

Fig. 1. Load instructions retired with (+Alias) and without (-Adipalias analysis (in GCC 3.5).

4.2 General Induction Variable Optimizations

Induction variables are variables whose successive values form an arithmetgr ¢s-
sion over some part (usually a loop) of a program. They arenoftivided into two
categories: basic induction variables (BIVs) and genadction variables (GIVs). A
BIV is modified (incremented or decremented) explicitly bg same constant amount
during each iteration of a loop. A GIV may be modified in a mooenplex manner.
There are two kinds of optimizations for induction variablenduction variable elim-
ination and strength reduction. We improve the efficiencthef strength reduction of
GIVs on |A-64 by utilizing some |A-64 architectural featgre

GCC can identify the&slV of the formb + ¢ x 1. If this is the address of an array,
thenb represents the base address of the aidray|oop variable and the size of the
array element. An address GIV can be strength reduced baadieplthe multiplication
¢ x I inthe GIV with additions. This enables the array accessaijmar and the address
increment/decrement to be combined into one instructismehSn optimization has
been implemented in GCC. However, there are no great peafoceniimprovements on
IA-64 since the legality test required for the optimizatiertoo conservative.

In programs running on 1A-64, the loop variablda BIV) is typically a 32-bit in-
teger variable while the address of an array element (a G\Wpically 64-bit long.
The address + ¢ x I is normally computed as follows. First, the BIVis evaluated
and extended into 64 bits. Thént ¢ x I is evaluated to obtain the address GIV. Be-
fore performing the strength reduction for the address GIRC first checks to see if
the BIV may overflow or not (as a 32-bit integer) during loogeution. If the BIV
may overflow, then whether the GIV can be legally reduced ¢depends on whether
I is unsigned or signed. In programming languages such as €,a8d¢ FORTRAN,
unsigned types have the special property of never overfipimiarithmetic. Therefore,
the strength reduction for the address GIV as discussedeaimay not be legal. For
signed types, the semantics for an overflow in programmingdages are usually un-
defined. In this case, GCC uses a compiler switch to deterifrine strength reduction



can be performed or not. If “-fwrapv” is turned on, then sidraithmetic overflow is
well-defined. The strength reduction for the address GIV matybe legal if the BIV
may overflow. If “-fwrapv” is turned off, then the strengthdiection can be performed.
In GCC, the function that performs the legality test for th&/Gtrength reduction is
checkext dependengivs. When compiling FORTRAN programs, the outcome of such
a legality test is almost always negative. This is becaus&®RTRAN frontend intro-
duces a temporary to replace the BlYcausing the test to fail in general.

We have made two refinements for this optimization. First, dtrength reduction
for an address GV is always performed if “-fwrapv” is turnefti (which is the default
case). The BIVs are signed in FORTRAN programs. This refimgtyield good perfor-
mance benefits for some benchmarks. Second, for unsignesd(B&in C benchmarks),
we perform a limited form of symbolic analysis to check ifteeBIVs may overflow or
not. If they do not overflow, then the GIV strength reductian de performed.

Figure 2 illustrates the performance impact of the impro&d optimization on
four SPECfp2000 benchmarks. These benchmarks are compiléer GCC 3.5 at
“-03” with our alias analysis being enabled. The cycle distiions on the Itanium
2 processors are obtained as per [19]. Reducing the strémgém address GIV cre-
ates the opportunity for the array address access and adidiement/decrement
operations to be merged into one instruction. Thereforstalled cycles for the four
benchmarks are significantly reduced. The percentagetiedadorwupwi se, sw m
ngri d andapsi are 14.82%, 25.34%, 19.59% and 23.96%, respectively.
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Fig. 2. Effects of the improved GIV optimization on Itanium cyclgegories (in GCC 3.5).

4.3 Loop Unrolling

Loop unrolling for a loop replicates the instructions in its loop body intoltiple copies.
In addition to reduce the loop overhead, loop unrolling dao anprove the effective-
ness of other optimizations such as common subexpressioimation, induction vari-
able optimizations, instruction scheduling and softwapeining. Loop unrolling is
particularly effective in exposing and enhancing instiarctievel parallelism.

In GCC, the effectiveness of loop unrolling is crucially éapent on a tunable
parameter called MAXUNROLLED_INSNS. This parameter specifies the maximum
number of (RTL) instructions that is allowed in an unrolledp. The default is 200.



The existing loop unrolling algorithm in GCC works as follewLet LOORCNT
be the number of iterations in a loop. Let NUMSNS be the number of instructions
in a loop. Let UNROLLFACTOR be the number of times that the loop is unrolled.
UNROLL_FACTOR is chosen so that the following condition always sold

NUM_INSNS x UNROLL.FACTOR < MAX_UNROLLED_INSNS (1)

The situation when the exact value of LO@MNT can be calculated statically (i.e., at
compile time) is handled specially. The loop will be fullyrotied when

NUML.INSNS x LOOP_.CNT < MAX_UNROLLED_INSNS (2)

Otherwise, UNROLLFACTOR is set as the largest divisible factor of LO@RT such
that (1) holds. If UNROLLFACTOR has not been determined so far or LOORT
can only be calculated exactly at run time, UNRQERCTOR is set as the largest in
{2, 4,8} such that (1) holds. Finally, the so-called preconditigrdnde is generated for
a loop whenever possible so that only one exit test is needixiunrolled loop.

Loop unrolling on 1A-64 is not effective since the default (20for
MAX _UNROLLED_INSNS is inappropriate for this architecture. We have doxe e
tensive benchmarking by trying different values. We foulnat ioop unrolling is the
most effective on 1A-64 if MAXUNROLLED_INSNS is set to be 600. Figure 3 gives
the cycle distributions of four SPECfp2000 benchmarks dedpinder GCC 3.5 at
“-03 -funroll-loops” with improved alias analysis and Gltimization and run under
the train inputs when MAXUNROLLED_INSNS takes four different values.
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Fig. 3. Effects of the improved loop unrolling on Itanium cycle aages (in GCC 3.5).

As shown in the experimental results, loop unrolling becomere effective when
performed more aggressively on I1A-64. Unrolling more itenas in a loop tends to in-
crease the amount of instruction-level parallelism in tapl As a result, the number of
unstalled cycles and the number of cycles spent on the FLtB ard both reduced. The
best performance results for the four benchmarks are attairwhen
MAX _UNROLLED_INSNS = 600. However, loop unrolling may increase registesp
sure and code size. As MAXINROLLED_INSNS increases, more loops and larger
loops may be unrolled, leading to potentially higher regigiressure and larger code
size. Fortunately, the IA-64 architecture possesses lagister files and can sustain
higher register pressure than other architectures. So weonmmmend



MAX _UNROLLED_INSNS to be set as 600. In future work, we will investigate aeno
sophisticated strategy that can also take register pegsioraccount.

4.4 Prefetching Arrays in Loops

Data prefetching techniques anticipates cache misses and issue fetches toeim-
ory system in advance of the actual memory accesses. Toderavoverlap between
processing and memory accesses, computation continuéstivbiprefetched data are
being brought into the cache. Data prefetching is thereforeplementary to data lo-
cality optimizations such as loop tiling and scalar rephaeat.

In GCC, the array elements in loops are prefetched at the BYél.|However, its
prefetching algorithm is not effective on IA-64. The prefeihg algorithm relies on a
number of tunable parameters. Those relevant to this werkammarised below.

1. PREFETCHBLOCK specifies the cache block size in bytes for the cachegat-a
ticular level. The default value is 32 bytes for the cachedldevels.

2. SIMULTANEOUS PREFETCHES specifies the maximum number of prefetch in-
structions that can be inserted into an innermost loop. Henpoefetch instructions
are needed in an innermost loop, then no prefetch instnetdll be issued at
all for the loop. The default value on 1A-64 is 6, which is ebteathe maximum
number of instructions that can be issued simultaneoushAesy.

3. PREFETCHBLOCKS_BEFORELOOP-MAX specifies the maximum of prefetch
instructions inserted before a loop (to prefetch the cadbekb for the first few
iterations of the loop). The default value is also 6.

4. PREFETCHDENSEMEM represents the so-called memory access density for a
prefetch instruction. It refers to the ratio of the numbelbytes actually accessed to
the number of bytes prefetched in a prefetch instructiottalmum 2, the cache line
sizes ofits L1, L2 and L3 caches are 64 bytes, 128 bytes antyt28, respectively.

It is therefore possible that some data prefetched by atgtefestruction may not
be accessed. Thus, PREFETCHENSEMEM reflects the effectiveness of a single
prefetch instruction. The default value for this paramet@20/256.

Our experimental evaluations show that the default valoegHe first three pa-
rameters are not reasonable. Figure 4 plots some statidimst prefetch instructions
required inside loops in four SPECfp2000 benchmarks. A gaiat (x, y%) for a
benchmark means that the percentage number of loops megjuitdr fewer prefetch
instructions in that benchmark ig%. The statistics are obtained using GCC 3.5 at the
optimization level “-O3 -funroll-loops -fprefetch-looprrays” with the alias analysis
for FORTRAN, GIV optimization and loop unrolling incorpdea. Inswi m the num-
ber of prefetch instructions required by 81.00% of the loigdess than or equal to 6,
but these loops account for a small portion of the executme bf the program. The
loops that are responsible for the most of the execution timag require 7 or more
prefetch instructions. For example, loop 100 in functionlCA, loop 200 in function
CALC?2 loop 300 in function CACL3 and loop 400 in function CAGZ require 14,
20, 9 and 9 prefetch instructions, respectivelyyr i d, loop 600 in function PSINV
and loop 800 in function RESID account for nearly all the extemn time. They re-
quire 10 and 12 prefetch instructions, respectively. Irnttadise loops requiring more



than 6 prefetch instructions, no instructions will be atiyumserted according to the
semantics of SIMULTANEOUSPREFETCHES.
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Fig. 4. Prefetch instructions required in four SPECfp2000 benecken@n GCC 3.5).

Therefore, it is too simplistic to use a uniform upper bouadimit the number
of prefetch instructions issued in all loops. Some loops magd more prefetch in-
structions than others. Inserting too many prefetch igtivas into a loop may result
in performance degradation. However, such a situation eaallbviated by adopting
rotating register allocation [3]. Unfortunately, such dame is not supported in GCC.

We have refined the prefetching algorithm in GCC for IA-64 alfofvs: All the
default values are chosen by extensive benchmarking oraaiuih 2 system.

— First, we should allow more prefetch instructions to beéssan 1A-64:

PREFETCHBLOCKS_.BEFORELOOP.MAX =12
SIMULTANEOUS PREFETCHES = 12

— Second, we introduce a new parameter, PMAX, which is usedccterahine the
maximum number of prefetch instructions, that can be iesirtside a loop:

PMAX = MIN (SIMULTANEOUS_PREFETCHES, NUMNSNS - 6).

where NUMINSNS is the number of instructions in the loop. If the numbér
prefetch instructions calculated are no large than PMAXnthll will be issued.
Otherwise, the PMAX most effective prefetch instructioril be issued. Prefetch
instructionF; is more effective than prefetch instructiéh if more array accesses
can use the data prefetched By than that byF,. That being equalF; is more
effective thanF; if F, has a higher memory access density than

— Third, there are three levels of cache in the Itanium 2 premmss The L1 cache
is only for integer values. The cache line sizes for L1, L2 &3dcaches are
64, 128 and 128 bytes, respectively. We set PREFEBLBCK=64 for integer
values and PREFETCIBLOCK=128 for floating-point values. In addition, we
use the prefetch instructidrf et ch to cache integer values at the L1 cache and
| f et ch. nt 1 to cache floating-point values at the L2 cache. Our expettiahes+
sults show that this third refinement leads to only slighfgrenance improvements
in a few benchmarks. Note that the statistical results shiowfigure 4 remain



nearly the same when the two different values for PREFEIBLIDCK are used.
This is because in GCC, the prefetch instructions requedr array access inside
aloopis calculated as (STRIDE + PREFET@&HOCK - 1)/PREFETCHBLOCK,
where STRIDE is 8 bytes for almost all array accesses.
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Fig. 5. Effects of the improved prefetching on Itanium cycle categg{in GCC 3.5).

Figure 5 illustrates the effectiveness of our improvedgtietfing algorithm. All four
benchmarks are compiled under GCC at “-O3 -funroll-loopsefetch-loop-arrays”
with alias analysis, GIV optimization and loop unrollingciaded. The percentage re-
ductionsin the D-cache (L1 cache) categorwfapwi se,swi mngri d andequake
are 51.66%, -5.356%, 84.59% and 0.99%, respectively. Tieeptage reductions in the
FLP units for the same four benchmarks are 7.28%, 57.38%7%4 and 15.45%, re-
spectively. This category includes the stalls caused byabister-register dependences
and the stalls when instructions are waiting for the sougerands from the mem-
ory subsystem. By prefetching array data more aggressinetpmputation-intensive
loops, the memory stalls in these benchmarks have beenaéduare significantly.

5 Experimental Results

We have implemented our techniques in GCC 3.5 and GCC 4.0e0eWluate this
work using SPECfp2000 and NAS benchmarks on a 1.0 GHz ItaBigystem running
Redhat Linux AS 2.1 with 2GB RAM. The system has a 16KB L1 instion cache,
a 16KB data cache, a 256KB L2 (unified) cache and a 3MB L3 (ujiftache. We
have excluded the two SPECfp2000 benchmdrk®3d andsi xt r ack, in our ex-
periments since they cannot compile and run successfullgu@CC 3.5. We present
and discuss our results under GCC 3.5 and GCC 4.0.0 in twoaepaubsections.

51 GCC35

Figure 6(a) illustrates the cumulative effects of our foeehniques on improving the
performance of SPECfp2000. “GCC-3.5" refers to the confijan under which all
benchmarks are compiled using GCC 3.5 at “-O3 -funroll-Bdprefetch-loop-arrays”.
“+Alias” stands for GCC 3.5 with the alias analysis for FORARbeing included. In
“+GIV”, the GIV optimization is also enabled. In “+Unroll'gur loop unrolling is also



turned on. Finally, “+Prefetch” means that the optimizatfor prefetching arrays in
loops is also turned on. Therefore, “+Prefetch” refers toGGES with all our four
technigues being enabled.

The performance of each benchmark is the (normalized) oétize run time of the
benchmark to a SPEC-determined reference time. The rati8R&Cfp2000 is calcu-
lated as the geometric mean of the normalized ratios fohalbenchmarks.

Before our optimizations are used, the ratio of SPECfp28@@20.7. Alias analysis
helps lift the ratio to 455.1, resulting in a 8.2% performaimcrease for SPECfp2000.
The GIV optimization pushes the ratio further to 470.1, vihiepresents a net perfor-
mance increase of 3.3%. Loop unrolling is the most effectugce this optimization is
turned on, the ratio of SPECfp2000 reaches 540.1. This agtion alone improves the
SPECfp2000 performance by 14.9%. Finally, by prefetchimgya in loops, the ratio
of SPECfp2000 climaxes to 596.4. This optimization is aféeotive since a net perfor-
mance increase of 10.4% is observed. Our four optimizati@we increased the ratio
of SPECfp2000 from 420.7 to 596.4, resulting a performancesiase of 41.8%. For
SPECfp2000, loop unrolling and prefetching are the two refiettive optimizations.
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Fig. 6. Performance results of SPECfp and NAS benchmarks

Figure 6(b) shows the performance improvements for the N&t&bmarks. The ex-
ecution times of a benchmark under all configurations arenatized to that obtained
under “GCC-3.5” (with our techniques turned off). Therefahe Y-axis represents the
performance speedups of our optimization configuratioes t8CC-3.5". The perfor-
mance increase for the entire benchmark suite under eadige@tion is taken as the
geometric mean of the speedups of all the benchmarks undecdhnfiguration. The
speedups for “+Alias”, “+GIV”, “+Unroll” and “+Prefetch” eer “GCC-3.5" are 9.6%,
14.3%, 51.7% and 56.1%. Therefore, our four optimizatiangtresulted a 56.1% per-
formance increase for the NAS benchmark suite. For thesehinearks, alias analysis
and loop unrolling are the two most effective optimizations

5.2 GCC4.0.0

GCC 4.0.0 is the latest release of GCC, which includes (anothers) the SWING
modulo scheduler for software pipelining [7] and some lo@ms$formations such as



loop interchange. As we mentioned earlier, both are notiegpin 1A-64 for any
SPEC{p2000 or NAS benchmark. Therefore, they are not usedriexperiments.

We have also implemented our techniques in GCC 4.0.0. Natethle part of this
analysis for COMMON variables has already been committe@@C 4.0.0. In GCC
4.0.0, loop unrolling does not split induction variablestadid in GCC 3.5. The lack
of such a useful optimization has made our loop unrollingrojziation less effective in
GCC 4.0.0. (This “performance” bug may be fixed in future Ge@@ases.)

Figure 7(a) gives the performance results for SPECfp200th &Y our techniques
in place, a performance increase of 14.7% is obtained. Hsgltris less impressive
compared to our performance achievements in GCC 3.5. Thermegson is that loop
unrolling that is the most effective in GCC 3.5 has not achékits full potential due
to the performance bug regarding the induction variablitisyg we mentioned earlier.
However, GCC 3.5 with our improvements incorporated, repnéed by the “GCC-
3.5+OPTS” configuration, outperforms GCC 4.0.0 by 32.5%.
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Fig. 7. Performance results of SPECfp2000 and NAS benchmarks.

Figure 7(b) shows the performance results for NAS benchsaagain, loop un-
rolling is not as effective as it was in GCC 3.5 for the reaseplaned earlier. How-
ever, our technigues have resulted in a performance inei@a32.0%. Alias analysis
and loop unrolling are still the two most effective techréquFinally, GCC 3.5 with
our improvements incorporated, represented by the “GGEGPTS” configuration,
outperforms GCC 4.0.0 by 48.9%.

6 Related Work

There are a number of open-source compilers for the 1A-64lyaprocessors. The
Open Research Compiler (ORC) [15] targets only the 1A-64iffaprocessors. There
are frontends for C, C++ and FORTRAN. The openIMPACT conijild] is also de-
signed for the 1A-64 architecture alone. Its frontends far@ C++ are not completed
yet. One of its design goals is to make openIMPACT fully cotiipa with GCC.

We have adopted GCC as a compiler platform for this ongoisgarch because
GCC is a multi-language and multi-platform compiler. In #iteh, GCC is very portable



and highly optimizing for a number of architectures. It ismature than ORC and
openIMPACT since ORC and openIMPACT can often fail to compilograms.

There are GNU projects on improving the performance of GCQAs64 [16].
However, little results have been included in the latest GQX0 version. The SWING
modulo scheduler for software pipelining [7] is included@GCC 4.0.0 but does not
schedule any loops successfully on |1A-64 according to opegrental evaluations.

This work describes four improvements in the current GC@é&aork for improv-
ing the performance of GCC on IA-64. Our improvements areplirbut effective in
boosting the performance of GCC significantly on 1A-64.

Loop unrolling and induction variable optimizations arargtard techniques em-
ployed in modern compilers [13]. Alias analysis is an impattcomponent of an op-
timizing compiler [2]. In GCC, alias analysis should be @rout not only at both
its intermediate representations [6] but also at the fraaigefor specific programming
languages. However, the alias analysis component for F@RTRograms in GCC is
weak. This work demonstrates that a simple intraprocedliesd analysis can improve
the performance of FORTRAN programs quite significantly.

Software data prefetching [1,12, 17] works by bringing itadi@om memaory well
before it is needed by a memory operation. This hides theecauls latencies for
data accesses and thus improves performance. This optiomz&orks the best for
programs that have array accesses in which data accesmpatte regular. In such
cases, it is possible to predict ahead of time the cache thegsneed to be brought
from memory. Some work has been done on data prefetchingdioranray accesses
as well [10, 11]. Data prefetching represents one of the mibsttive optimizations in
commercial compilers [4, 3] for IA-64. For 1A-64, adoptingtating register allocation
to aid data prefetching in GCC is attractive.

7 Conclusion

In this paper, we describe some progress we have made onvimgtbe floating-point
performance of GCC on the |1A-64 architecture. Our four inweraents are simple but
effective. We have implemented our improvements in both @Xand GCC 4.0.0.
Our experimental results show significant performancesiases for both SPECfp2000
and NAS benchmark programs. The part of our alias analygigrdtng COMMON
variables has been committed in GCC 4.0.0.

Compared to Intel's icc, GCC still falls behind in terms of ierformance on |A-
64. The following three kinds of optimizations are critidat icc’'s performance ad-
vantages: loop transformations such as loop interchangp,distribution, loop fusion
and loop tiling, software pipelining and interprocedurptimizations. A preliminary
implementation for optimizing nested loops for GCC has #mreloped [5]. However,
its loop interchange transformation cannot even succiggiterchange any loops on
IA-64. The SWING modulo scheduler for software pipeliningshalso been incorpo-
rated in GCC 4.0.0 [7]. Due to the imprecision of the deperdeamnalysis in GCC
4.0.0, the SWING modulo scheduler can hardly make a suadesdfedule on IA-64.
In GCC 4.0.0, the function inlining remains to be the onlenprocedural optimization
supported. We plan to make contributions in these areastimefuvork. We strike, as



our long-term goal, to achieve performance on |A-64 comiplerto that by commer-
cial compilers while retaining the improved GCC as an opaurce, portable, multi-
language and multi-platform compiler.
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