
Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Designing a Concurrent Hardware Garbage
Collector for Small Embedded Systems

Flavius Gruian and Zoran Salcic
. . .

{f.gruian,z.salcic}@auckland.ac.nz
Dept. of Electrical and Computer Engineering

The University of Auckland

10th Asia-Pacific Computer Systems Architecture Conference



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Outline

1 Introduction
Motivation and Goals
Approach

2 The Garbage Collection Algorithm
Mark-Compact GC
Object and Address Space Organisation

3 Garbage Collection Unit Design
Architecture
Operation
Evaluation on a Test Platform
Adding Processor Support
Evaluation on the Target Platform

4 Summary & Conclusions



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Motivation and Goals

Memory management in low-resource embedded systems:

simplistic at best

mainly software, lacking hardware support

hardly real-time

Our goal – designing a Garbage Collector:

for the Java Optimised Processor (JOP)

3+1 stages pipelined stack machine
microprogrammed
direct execution of bytecodes

hardware accelerated

concurrent, low latency

real-time capable



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Approach

Step-by-step design and test:

1 Software, Stop-the-World, for JOP

algorithm and structures check
executable image generator check

2 Hardware, on a Test Platform (MicroBlaze)

garbage collector unit test
system integration check
comparison vs. software

3 Hardware, on the Target Platform (JOP)

processor modifications check
full system test



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Mark-Compact GC

Heap1 2 3 4 5 6
Stack

A cycle starts with a mixed heap of live and dead objects. . .

1 Identify and mark root references

2 Mark references pointed by already marked objects

3 Move and compact marked objects at the bottom of the heap



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Mark-Compact GC

Heap1 2 3 4 5 6
Stack

A cycle starts with a mixed heap of live and dead objects. . .

1 Identify and mark root references

2 Mark references pointed by already marked objects

3 Move and compact marked objects at the bottom of the heap



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Mark-Compact GC

Heap1 2 3 4 5 6
Stack

A cycle starts with a mixed heap of live and dead objects. . .

1 Identify and mark root references

2 Mark references pointed by already marked objects

3 Move and compact marked objects at the bottom of the heap



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Mark-Compact GC

Heap2 4 6
Stack

A cycle starts with a mixed heap of live and dead objects. . .

1 Identify and mark root references

2 Mark references pointed by already marked objects

3 Move and compact marked objects at the bottom of the heap



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Object and Address Space Organisation

HandleM
Size

Data

Instance
mark
bit

NEntries
Refs Skips

Refs Skips

GC info

...

ClassStructPtr
InstancePtr

Handle

M GCInfoPtr

Class Struct

use handles to easily update
moving objects

specialised structure GCInfo to
track references inside objects

Marked bit packed together
with addresses

Use part of the heap for:

object handles

yet to scan handles
(mark phase)

Application Image
(GCInfo,...)

Actual Heap
(Instances)

GC Stack
(Grey Handles)

Handles

fix
ed

Low

EoH

High



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Architecture

GCU
Background
(GC tasks)

Reactive
(Cmd Handler)

Arbiter

Stack 
MonitorMemory IF Cmd IF

Arbiter

to RAM to CPU

two main processes

Background: basic GC
Reactive: commands and
synchronisation handler

shared resources

interfaces
handle stack monitor

Bus (OPB)

Dual 
port 
RAM GCU

CPU
(MicroBlaze,

JOP)

cmd-ifmem-if

direct channel to CPU for
commands

direct channel to RAM for
data

dual-port RAM to offload
the system bus



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Operation

CPU view of:
A GC cycle:

1 initialize GCU

2 register root handles

3 allow compact

Object access (rd/wr):

1 lock handle

2 perform operation

3 unlock handle

GCU CPU

stackinit

rootref

rootref

docmpct

waitidle
Id

le
M

ar
k

Co
m

pa
ct

Id
le

Ap
pl

ica
tio

n
a)

new

lock

use the address
returned by lock

unlock

CPU GCU

Ne
w

G
et

fie
ld

b)

Timing and protocol of typical
CPU-GCU interraction



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Evaluation on a Test Platform
Stop-the-World on MicroBlaze with FSL channels

two linked lists

3576

1012

3863

973 1211
375

10536

2932

11403

2833
3451

1055

17496

4852

18943

4693

5691

1735

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

soft gc gcu soft gc gcu soft gc gcu

both live both live one live one live none live none live

c
lk

s

10

30

50

two lists of 10, 30, and 50 elements



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Adding Processor Support

Issue: Large latency of object operations (> 19clk):
MicroBlaze→FSL→Reactive→Background→back

JOP solution: Dedicated register, visible from GCU,
New dedicated load/store µinstructions,
Use stall instead of ACK

CPUGCU
Background
(GC tasks)

Reactive
(Cmd Handler)

Locked Handle
(FCR)bb

JOP Stack
ToS

CmdHi

CmdAck

CmdLo

Stall

00 - rdlock 01 - wrlock
11 - unlock 10 - other



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Evaluation on the Target Platform

After complete implementation of the GCU-JOP system on a
Xilinx Spartan2e 600:

Resource utilisation
Unit GCU JOP Full system JOP, JOP, GCU

resources only only resources RAM, IPs RAM, IPs
Slice FF 900 400 Slices 1543 (22%) 3053 (44%)

4LUT 2966 1783 BRAMs 71 (98%) 71 (98%)

Synchronisation latency
read access bytecodes write access bytecodes

class latency (clock cycles) class latency (clock cycles)
before after change before after change

gefield 28 31 11% putfield 30 45 50%
*aload 41 44 7% *astore 45 60 33%

arraylen 15 18 20% new, Java
invoke* > 100 +3 < 3% *newarray methods < 1%



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Summary & Conclusions

design of a low interference, concurrent hardware GCU

gradual design and test to handle complexity

processor modifications for high GCU-CPU integration

suitable for real-time systems, especially as time-triggered GC

some issues remain . . . (see the discussion in the paper)


	Introduction
	Motivation and Goals
	Approach

	The Garbage Collection Algorithm
	Mark-Compact GC
	Object and Address Space Organisation

	Garbage Collection Unit Design
	Architecture
	Operation
	Evaluation on a Test Platform
	Adding Processor Support
	Evaluation on the Target Platform

	Summary & Conclusions

