Designing a Concurrent Hardware Garbage
Collector for Small Embedded Systems

Flavius Gruian and Zoran Salcic
{f.gruian,z.salcic}@auckland.ac.nz

Dept. of Electrical and Computer Engineering
The University of Auckland

10th Asia-Pacific Computer Systems Architecture Conference

Outline

@ Introduction
@ Motivation and Goals
@ Approach

© The Garbage Collection Algorithm
@ Mark-Compact GC
@ Object and Address Space Organisation

© Garbage Collection Unit Design
@ Architecture
@ Operation
@ Evaluation on a Test Platform
@ Adding Processor Support
@ Evaluation on the Target Platform

@ Summary & Conclusions

Introduction
°

Motivation and Goals

Memory management in low-resource embedded systems:
@ simplistic at best
@ mainly software, lacking hardware support
o hardly real-time

Our goal — designing a Garbage Collector:
e for the Java Optimised Processor (JOP)

e 341 stages pipelined stack machine
@ microprogrammed
e direct execution of bytecodes

@ hardware accelerated
@ concurrent, low latency

@ real-time capable

Introduction
.

Approach

Step-by-step design and test:

@ Software, Stop-the-World, for JOP
e algorithm and structures check
e executable image generator check
@ Hardware, on a Test Platform (MicroBlaze)
e garbage collector unit test
e system integration check
e comparison vs. software

© Hardware, on the Target Platform (JOP)

e processor modifications check
o full system test

The Garbage Collection Algorithm
°

Mark-Compact GC

Stack

Heap

A cycle starts with a mixed heap of live and dead objects. ..

The Garbage Collection Algorithm
°

Mark-Compact GC

Stack

Heap

A cycle starts with a mixed heap of live and dead objects. ..

@ Identify and mark root references

The Garbage Collection Algorithm
°

Mark-Compact GC

Stack

Heap

A cycle starts with a mixed heap of live and dead objects. ..

@ Identify and mark root references

@ Mark references pointed by already marked objects

The Garbage Collection Algorithm
°

Mark-Compact GC

tack
Stac ZI_I/L 4 6 Heap

A cycle starts with a mixed heap of live and dead objects. ..
@ Identify and mark root references
@ Mark references pointed by already marked objects
© Move and compact marked objects at the bottom of the heap

The Garbage Collection Algorithm
°

Object and Address Space Organisation

Handle Class Struct

[ClassStucr —7 % Use part of the heap for:

J M | InstancePtr GClnfoPtr |

| .
mark :) @ object handles
bit Instance
M] Handle @ yet to scan handles

Size : GC info
NEniries _ (MARK phase)
Refs | Skips
Data
Refs | Skips g Ap;zlié.:gtliofn Im)age Low
& nfo,...
|
@ use handles to easily update Actual Heap
. . nstances;
moving objects
.. A EoH
@ specialised structure GClnfo to v GC Stack
.. . Grey Handles
track references inside objects ” . Hy - :
e High

@ Marked bit packed together
with addresses

Garbage Collection Unit Design
°

Architecture

Reactive
(Cmd Handler)

Background
(GC tasks)

Bus (OPB)

v 3 <
Arbiter/ : Dual mem-if cmd-if CPU
‘ ; port |4 "\ (MicroBlaze,
! s | [omar Lo Ll GCU JOP)
«m Memory IF Monitor m \’_V
@ two main processes @ direct channel to CPU for

e Background: basic GC commands
e Reactive: commands and

synchronisation handler

data
@ shared resources

@ direct channel to RAM for

o interfaces @ dual-port RAM to offload

e handle stack monitor the system

bus

Operation

Garbage Collection Unit Design

CPU view of:
A GC cycle:

@ initialize GCU

@ register root handles

@ allow cOMPACT
Object access (rd/wr):

O lock handle

@ perform operation

© unlock handle

Idle

Mark

Compact

Idle

GCU CPU CPU GCU
stackinit new” :
le— Mrootref Rl
/ rootref -°
/ docmpet””

-
.
.

use the address

returned by lock

<}
Getfield < New

Application

c
=
o
S
=

wattidlle

Timing and protocol of typical
CPU-GCU interraction

Garbage Collection Unit Design
°

Evaluation on a Test Platform
Stop-the-World on MicroBlaze with FSL channels

20000 - 18943
18000 17496

16000

14000

12000 11403
10536 o10

10000 m30
50

clks

8000
5691

6000 2552 AT
357 386

4000 -

1735

2000 + —

soft gc

gcu

soft gc gcu soft gc gcu

one live none live none live

both live both live one live

@ two lists of 10, 30, and 50 elements

Garbage Collection Unit Design
°

Adding Processor Support

Issue: Large latency of object operations (> 19clk):
MicroBlaze—FSL— Reactive—Background— back
JOP solution: Dedicated register, visible from GCU,

New dedicated load/store puinstructions,
Use stall instead of ACK

GCU P CPU
, CmdHi
Background ! ! bb LockeFdCI-éandIe
(GC tasks) | | (\)
1 1
A | CmdAck 00 - rdlock|01 - wrlock
\ 4 ! ! + 11 - unlock{ 10 - other
Reactive CmdLo ToS
I 1
(Cmd Handler) : ! JOP Stack
1Stall
1

Garbage Collection Unit Design

Evaluation on the Target Platform

After complete implementation of the GCU-JOP system on a
Xilinx Spartan2e 600:

@ Resource utilisation

Unit

GCU

JOP Full system JOP, JOP, GCU

resources only only resources RAM, IPs RAM, IPs
Slice FF 900 400 Slices | 1543 (22%) | 3053 (44%)
4LUT | 2966 | 1783 BRAMs 71 (98%) 71 (98%)

@ Synchronisation latency

read access bytecodes write access bytecodes
class latency (clock cycles) class latency (clock cycles)
before | after | change before | after | change
GEFIELD 28 31 11% PUTFIELD 30 45 50%
*ALOAD 41 44 7% *ASTORE 45 60 33%
ARRAYLEN 15 18 20% NEW, Java
INVOKE™* > 100 +3 <3% *NEWARRAY methods <1%

Summary & Conclusions

Summary & Conclusions

design of a low interference, concurrent hardware GCU

°
@ gradual design and test to handle complexity

@ processor modifications for high GCU-CPU integration
°

suitable for real-time systems, especially as time-triggered GC

@ some issues remain ... (see the discussion in the paper)

	Introduction
	Motivation and Goals
	Approach

	The Garbage Collection Algorithm
	Mark-Compact GC
	Object and Address Space Organisation

	Garbage Collection Unit Design
	Architecture
	Operation
	Evaluation on a Test Platform
	Adding Processor Support
	Evaluation on the Target Platform

	Summary & Conclusions

