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Introduction
°

Motivation and Goals

Memory management in low-resource embedded systems:
@ simplistic at best
@ mainly software, lacking hardware support
o hardly real-time

Our goal — designing a Garbage Collector:
e for the Java Optimised Processor (JOP)

e 341 stages pipelined stack machine
@ microprogrammed
e direct execution of bytecodes

@ hardware accelerated
@ concurrent, low latency

@ real-time capable



Introduction
.

Approach

Step-by-step design and test:

@ Software, Stop-the-World, for JOP
e algorithm and structures check
e executable image generator check
@ Hardware, on a Test Platform (MicroBlaze)
e garbage collector unit test
e system integration check
e comparison vs. software

© Hardware, on the Target Platform (JOP)

e processor modifications check
o full system test



The Garbage Collection Algorithm
°

Mark-Compact GC

Stack

Heap

A cycle starts with a mixed heap of live and dead objects. ..
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The Garbage Collection Algorithm
°

Mark-Compact GC

tack
Stac ZI_I/L 4 6 Heap

A cycle starts with a mixed heap of live and dead objects. ..
@ Identify and mark root references
@ Mark references pointed by already marked objects
© Move and compact marked objects at the bottom of the heap



The Garbage Collection Algorithm
°

Object and Address Space Organisation
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Garbage Collection Unit Design
°

Architecture

Reactive
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Operation

Garbage Collection Unit Design

CPU view of:
A GC cycle:

@ initialize GCU

@ register root handles

@ allow cOMPACT
Object access (rd/wr):

O lock handle

@ perform operation

© unlock handle
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Garbage Collection Unit Design
°

Evaluation on a Test Platform
Stop-the-World on MicroBlaze with FSL channels
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Garbage Collection Unit Design
°

Adding Processor Support

Issue: Large latency of object operations (> 19clk):
MicroBlaze—FSL— Reactive—Background— back
JOP solution: Dedicated register, visible from GCU,

New dedicated load/store puinstructions,
Use stall instead of ACK
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Garbage Collection Unit Design

Evaluation on the Target Platform

After complete implementation of the GCU-JOP system on a
Xilinx Spartan2e 600:

@ Resource utilisation

Unit

GCU

JOP Full system JOP, JOP, GCU

resources only only resources RAM, IPs RAM, IPs
Slice FF 900 400 Slices | 1543 (22%) | 3053 (44%)
4LUT | 2966 | 1783 BRAMs 71 (98%) 71 (98%)

@ Synchronisation latency

read access bytecodes write access bytecodes
class latency (clock cycles) class latency (clock cycles)
before | after | change before | after | change
GEFIELD 28 31 11% PUTFIELD 30 45 50%
*ALOAD 41 44 7% *ASTORE 45 60 33%
ARRAYLEN 15 18 20% NEW, Java
INVOKE™* > 100 +3 <3% *NEWARRAY methods <1%




Summary & Conclusions

Summary & Conclusions

design of a low interference, concurrent hardware GCU

°
@ gradual design and test to handle complexity

@ processor modifications for high GCU-CPU integration
°

suitable for real-time systems, especially as time-triggered GC

@ some issues remain ... (see the discussion in the paper)
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