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Motivation and Goals

Memory management in low-resource embedded systems:

simplistic at best

mainly software, lacking hardware support

hardly real-time

Our goal – designing a Garbage Collector:

for the Java Optimised Processor (JOP)

3+1 stages pipelined stack machine
microprogrammed
direct execution of bytecodes

hardware accelerated

concurrent, low latency

real-time capable
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Approach

Step-by-step design and test:

1 Software, Stop-the-World, for JOP

algorithm and structures check
executable image generator check

2 Hardware, on a Test Platform (MicroBlaze)

garbage collector unit test
system integration check
comparison vs. software

3 Hardware, on the Target Platform (JOP)

processor modifications check
full system test



Introduction The Garbage Collection Algorithm Garbage Collection Unit Design Summary & Conclusions

Mark-Compact GC

Heap1 2 3 4 5 6
Stack

A cycle starts with a mixed heap of live and dead objects. . .

1 Identify and mark root references

2 Mark references pointed by already marked objects

3 Move and compact marked objects at the bottom of the heap
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Mark-Compact GC

Heap2 4 6
Stack

A cycle starts with a mixed heap of live and dead objects. . .

1 Identify and mark root references

2 Mark references pointed by already marked objects

3 Move and compact marked objects at the bottom of the heap
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Object and Address Space Organisation
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Architecture

GCU
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Operation

CPU view of:
A GC cycle:

1 initialize GCU

2 register root handles

3 allow compact

Object access (rd/wr):

1 lock handle

2 perform operation

3 unlock handle
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Evaluation on a Test Platform
Stop-the-World on MicroBlaze with FSL channels
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Adding Processor Support

Issue: Large latency of object operations (> 19clk):
MicroBlaze→FSL→Reactive→Background→back

JOP solution: Dedicated register, visible from GCU,
New dedicated load/store µinstructions,
Use stall instead of ACK

CPUGCU
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(GC tasks)
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(Cmd Handler)

Locked Handle
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JOP Stack
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CmdHi
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Evaluation on the Target Platform

After complete implementation of the GCU-JOP system on a
Xilinx Spartan2e 600:

Resource utilisation
Unit GCU JOP Full system JOP, JOP, GCU

resources only only resources RAM, IPs RAM, IPs
Slice FF 900 400 Slices 1543 (22%) 3053 (44%)

4LUT 2966 1783 BRAMs 71 (98%) 71 (98%)

Synchronisation latency
read access bytecodes write access bytecodes

class latency (clock cycles) class latency (clock cycles)
before after change before after change

gefield 28 31 11% putfield 30 45 50%
*aload 41 44 7% *astore 45 60 33%

arraylen 15 18 20% new, Java
invoke* > 100 +3 < 3% *newarray methods < 1%
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Summary & Conclusions

design of a low interference, concurrent hardware GCU

gradual design and test to handle complexity

processor modifications for high GCU-CPU integration

suitable for real-time systems, especially as time-triggered GC

some issues remain . . . (see the discussion in the paper)
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