
Arithmetic Data Value Speculation

A thesis submitted to

the School of Electrical and Electronic Engineering

of the University of Adelaide

by

Daniel R. Kelly

B.E. (Computer Systems)(Hons),

B.Sc. (Maths & Computer Science)

in fulfillment of the requirements for

the degree of Doctor of Philosophy (Microelectronics)

Commenced, April 2005

Thesis Submitted, August 2010



���������	
 	�

���
�
�����

This work contains no material that has been accepted for the award of any other degree

or diploma in any university or other tertiary institution and, to the best of my knowledge

and belief, contains no material previously published or written by another person, except

where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, be-

ing available for loan, photocopying, and dissemination through the library digital thesis

collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the

web, via the University’s digital research repository, the Library catalogue, the Australasian

Digital Thesis Program (ADTP) and also through web search engines, unless permission

has been granted by the University to restrict access for a period of time.

������ �� 	���

School of Electrical and Electronic Engineering

The University of Adelaide

September 13, 2010



��������	
�����


I wish to acknowledge my principal supervisor, Dr. Braden J. Phillips, for all of his help

and guidance in all the things that mattered, including: identifying a stimulating research

project; establishing my scholarship that made the project possible; being flexible enough

to allowmy sometimes backwards approach but firm enough to reignme in where needed;

and an attention to detail and conviction in the importance of good, clear writing (if in

coming pages you disagree, I am happy to award him blame or credit ;P).

My co-supervisor Dr. Said Al-Sarawi has been invaluable in providing a very focused,

objective critique—with an attention to detail and response time that was amazing. I am

grateful for the time and resources that Said has committed tome when needed, above and

beyond the call of duty.

Dr. Andrew Beaumont-Smith has been extremely generous in providing an industry

perspective and finding opportunities to work in the job of a lifetime. Andrew’s influence

on me has been to contextualise my research and to change my perspective in a way that

no one else has. “Just get your PhD ASAP”.

Fiona Tselentis has been behind the scenes gently pushing me along and helping in so

many ways that she doesn’t even know about.

Finally I would like to thank my parents for their support and encouragement. This

thesis would not have been possible without them.

This project has been a rewarding and challenging undertaking. I will never, ever do

one again. Without further ado, I present my thesis, warts and all.

������ �� 	���

September 13, 2010



��������

Arithmetic approximation is used to decrease the latency of an arithmetic circuit by short-

ening the critical path delay or the sampling period so that result is not guaranteed to be

correct for every input combination. Thus, an acceptable compromise between the circuit

latency and the average probability of correctness drives the circuit design. Two methods

of arithmetic approximation are:

temporally incompleteness where circuits quote the result before the critical path de-

lay (overclocking); and

logically incompleteness where circuits use simplified logic, so that most input cases

are calculated correctly, but the slowest cases are calculated incorrectly.

Arithmetic data value speculation (ADVS) is a speculation scheme based on arithmetic

approximation, and is used to increase the throughput of a general purpose processor. ADVS

is similar to branch prediction, an arithmetic instruction is issued to an exact arithmetic

unit and an approximate arithmetic unit which provides an approximate result faster than

the exact counterpart. The approximate result is forwarded to dependent operations so

theymay be speculatively issued. When the exact result is eventually known, it is compared

to the approximate result, and the pipeline is flushed if they differ.

This thesis, ‘‘ArithmeticDataValueSpeculation’’, presents work in the field of digital arith-

metic and computer architecture. A summary of current probabilistic arithmetic methods

from the literature is provided, and novel designs of approximate integer arithmetic units

are presented, including results from logical synthesis. A case study demonstrates approx-

imate arithmetic units used to increase the average throughput of benchmark programs by

speculatively issuing dependent operations in a RISC processor.

The average correctness of the approximate arithmetic units are shown to be highly

data dependent, results vary depending on the benchmarks being run. In addition, the



Abstract

average correctness when running benchmarks is consistently higher than for random in-

puts. Simulations show that many arithmetic operations are often repeated in the same

benchmark, leading to a high variation in correctness. Speculative gains from one opera-

tion can be offset by speculation losses due repeated incorrect approximation of another

approximate unit, so typical throughput gains through speculation in a general purpose

processor pipeline are low. The minimum threshold correctness of an approximate arith-

metic unit used for speculation is shown to be approximately 95. Logic synthesis is used

to determine power, area and timing information for approximate units implemented from

novel algorithms, and show a reduction in arithmetic cycle latency for integer operations,

and the expense of 50 leakage and area, and 90 dynamic power.

Value speculation can be complemented by result caching; repeated pipeline flushes can

be avoided if the correct result is know before speculation, the average operation latency

can be reduced, and caching can be used for operations that are difficult to approximate.

vi



���������	
�

The following is a list of publications published or submitted during the Ph.D. candidature

by the author.

Published book chapters

1. Daniel R. Kelly and Braden J. Phillips, “Arithmetic data value speculation”, in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 3740 NCS, pp. 353–366, 2005.

2. Daniel R.Kelly, Braden J. Phillips and SaidAl-Sarawi,Algorithm-ArchitectureMatching

for Signal and Image Processing, volume 73 of Lecture Notes in Electrical Engineering,

chapter 4 “Operators for embedded systems: Approximate Multiplication and Di-

vision for Arithmetic Data Value Speculation in a RISC Processor”. Springer, st

edition, December 2010. ISBN: 978-90-481-9964-8.

Published conference papers

3. Daniel R. Kelly, Braden J. Phillips and Said Al-Sarawi, “An open source synthesis-

able model in VHDL of a 64-bit MIPS-based processor”, in Proceedings of SPIE—The

International Society for Optical Engineering, vol. 6414, (Adelaide, Australia), 2007.

4. Braden J. Phillips, Daniel R. Kelly and Brian W. Ng, “Estimating adders for a low

density parity check decoder”, in Proceedings of SPIE—The International Society for

Optical Engineering, vol. 6313, (San Diego, CA, United States), 2006.



Publications

5. Braden J. Phillips, Cain D. Schmidt and Daniel R. Kelly, “Recovering data from

USB flash memory sticks that have been damaged or electronically erased”, in e-

Forensics ’08: Proceedings of the 1st international conference on Forensic applications

and techniques in telecommunications, information, and multimedia and workshop,

(ICST, Brussels, Belgium, Belgium), pp. 1–6, ICST (Institute for Computer Sciences,

Social Informatics and Telecommunications Engineering), 2008.

6. Daniel R. Kelly, Braden J. Phillips and Said Al-Sarawi, “Approximate unsigned bi-

nary integer dividers for arithmetic data value speculation”. In Proceedings of the

Conference on Design and Architectures for Signal and Image Processing (DASIP),

SophiaAntipolis, France, September 22–24, 2009. http://www.ecsi-association.org/ecsi/

dasip/dasip09.

7. Daniel R. Kelly, Braden J. Phillips and Said Al-Sarawi, “Approximate signed binary

integer multipliers for arithmetic data value speculation”. In Proceedings of the Con-

ference on Design and Architectures for Signal and Image Processing (DASIP), Sophia

Antipolis, France, September 22–24, 2009. http://www.ecsi-association.org/ecsi/dasip/

dasip09.

8. Daniel R. Kelly, Braden J. Phillips and Said Al-Sarawi, “Increasing throughput of a

RISC system using arithmetic data value speculation”. In Conference Record of the

Forty-Third Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,

California, USA, November 1–4, 2009.

viii



��������

Declaration of Originality i

Acknowledgements iii

Abstract v

Publications vii

Contents 7

List of Figures 11

List of Tables 15

List of Algorithms 17

List of Acronyms 19

Nomenclature 21

1 Introduction 23

1.1 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Research outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

I Background 31

2 A Brief Review of Computer Architecture and Digital Arithmetic 33



Contents

2.1 Digital arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 SimpleScalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 System components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Pipeline overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.3 Arithmetic operation latencies . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Arithmetic benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Mediabench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 SPEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.4 Test benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.5 Benchmark sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.6 Arithmetic operations in benchmark programs . . . . . . . . . . . . 49

2.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Theory and Applications of Arithmetic Approximation 51

3.1 Methods of approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Logical incompleteness . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.2 Temporal incompleteness . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Fundamental arithmetic results . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Addition and subtraction . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 Approximate parallel prefix adders . . . . . . . . . . . . . . . . . . . 76

3.2.3 Multiplication and Division . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Applications of approximate arithmetic . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 Addition and subtraction . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.2 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.3 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Can ADVS Improve the Performance of a Generic RISC Processor? 85

4.1 Program execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Integer arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Types of integer arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Signed and unsigned arithmetic . . . . . . . . . . . . . . . . . . . . . 89

4.2.3 Operand magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2



Contents

4.3 Floating point arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Types of floating point arithmetic . . . . . . . . . . . . . . . . . . . . 95

4.3.2 Signed and unsigned arithmetic . . . . . . . . . . . . . . . . . . . . . 96

4.3.3 Operand magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Performance limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.2 Throughput upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.3 Compiler optimisation effects . . . . . . . . . . . . . . . . . . . . . . 109

4.4.4 Delay-correctness lower bound . . . . . . . . . . . . . . . . . . . . . 110

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Preliminary Experiments 115

5.1 Validation of average worst-case carry length . . . . . . . . . . . . . . . . . . 116

5.2 Simple modifications to basic arithmetic circuits . . . . . . . . . . . . . . . . 118

5.2.1 Carry propagation in array multipliers . . . . . . . . . . . . . . . . . 119

5.2.2 Tree multipliers without a CPA . . . . . . . . . . . . . . . . . . . . . 120

5.2.3 Array multiplication with an l bit CPA . . . . . . . . . . . . . . . . . 124

5.2.4 Restoring division with t cycles . . . . . . . . . . . . . . . . . . . . . 127

5.2.5 Non-restoring division with t cycles . . . . . . . . . . . . . . . . . . 127

5.2.6 Floating point rounding . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

II Approximate Arithmetic 135

6 Approximate Integer Multiplication 137

6.1 Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 Multiplier topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.2 Allocation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.3 Uniform random inputs . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Unsigned multiplier results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.1 Benchmark data inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.2 Multiplier error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Signed approximate multiplication . . . . . . . . . . . . . . . . . . . . . . . . 150

3



Contents

6.4.1 Baugh-Wooley signed multiplication . . . . . . . . . . . . . . . . . . 150

6.4.2 Signed approximate multiplication error . . . . . . . . . . . . . . . . 153

6.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.6 Approximate integer multipliers for ADVS . . . . . . . . . . . . . . . . . . . 161

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7 Approximate Integer Division 163

7.1 Division algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.1.1 Exact division algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.1.2 Approximating division algorithm . . . . . . . . . . . . . . . . . . . 167

7.2 Hardware design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.2.1 Initialisation stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.2.2 Division stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2.3 Accumulation stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2.4 Implementation notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2.5 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 Probability of correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3.1 Approximating dividers . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3.2 Baseline SRT divider . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.4 Signed approximate integer division . . . . . . . . . . . . . . . . . . . . . . . 179

7.5 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6 Approximate integer dividers for ADVS . . . . . . . . . . . . . . . . . . . . . 186

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Approximate Floating Point Arithmetic 189

8.1 Approximating floating point units . . . . . . . . . . . . . . . . . . . . . . . . 190

8.1.1 Approximation techniques . . . . . . . . . . . . . . . . . . . . . . . . 193

8.2 Approximate FP unit correctness . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.2.1 Approximate FP adder correctness . . . . . . . . . . . . . . . . . . . 195

8.2.2 Approximate FP multiplier correctness . . . . . . . . . . . . . . . . . 196

8.2.3 Approximate FP divider correctness . . . . . . . . . . . . . . . . . . 198

8.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3.2 Approximate units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

4



Contents

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

III Application 205

9 Result Caching 207

9.1 Caching techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.1.1 Result caching schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.1.2 Result prediction schemes . . . . . . . . . . . . . . . . . . . . . . . . 210

9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.2.1 Operand Bit Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.2.2 Cache replacement policies . . . . . . . . . . . . . . . . . . . . . . . . 213

9.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.3 Result caches for ADVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

9.3.1 65 nm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

9.3.2 180 nm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10 Approximate Adders in LDPC 223

10.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

10.2 Low density parity check codes . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10.3 Approximate multioperand adders . . . . . . . . . . . . . . . . . . . . . . . . 226

10.4 LDPC using approximate multioperand adders . . . . . . . . . . . . . . . . . 233

10.4.1 LDPC check node synthesis . . . . . . . . . . . . . . . . . . . . . . . 233

10.5 LDPC decoding performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

11 ADVS Simulation 239

11.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

11.1.1 Pipelined arithmetic units . . . . . . . . . . . . . . . . . . . . . . . . 241

11.1.2 Synthesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

11.2 ADVS simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

11.2.1 Simulated arithmetic latencies . . . . . . . . . . . . . . . . . . . . . . 251

11.2.2 Benchmark simulation with ADVS . . . . . . . . . . . . . . . . . . . 252

5



Contents

11.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

12 Conclusions 269

12.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

12.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

IV Appendices 277

A GCCman pages 279

A.1 gccman pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

A.1.1 OPTIMIZATION OPTIONS . . . . . . . . . . . . . . . . . . . . . . 280

B Source Code 283

B.1 Probability of correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

B.1.1 backCount.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

B.1.2 fixGenRight.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

B.2 Logic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

B.2.1 approx.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

B.2.2 approx.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

B.2.3 reduce.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

B.2.4 io.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

B.3 Simple arithmetic benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 304

B.3.1 Dhrystone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

B.3.2 CalcPi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

B.4 VHDL multiplier generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

B.4.1 multgen.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

C Arithmetic Operands 317

C.1 Arithmetic operands in benchmark programs . . . . . . . . . . . . . . . . . 318

C.2 Operand bit-assertion tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

D Detailed benchmark descriptions 341

D.1 Mediabench benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

D.2 SPEC benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

D.2.1 SPEC CINT2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

6



Contents

D.3 Test benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

D.3.1 fbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

D.3.2 ffbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

E Arithmetic VHDL source code 359

E.1 32 bit (7; 2) unsigned multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . 360

E.2 32 bit approximate DI divider . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

E.2.1 Initialisation stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

E.2.2 Division stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

E.2.3 Accumulation stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

E.3 32 bit floating point adder/subtractor . . . . . . . . . . . . . . . . . . . . . . . 367

E.4 32 bit FP multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

E.5 32 bit FP divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

F SimpleScalar machine instructions 377

F.1 SimpleScalar machine instructions . . . . . . . . . . . . . . . . . . . . . . . . 378

Bibliography 389

Index 391

7



���� �� ���	
��

2.1 Overview of the SimpleScalar PISA pipeline. . . . . . . . . . . . . . . . . . . . 38

3.2 A dual-rail full-adder cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 AWCCL for signed two’s complement 32 bit additions. . . . . . . . . . . . . 66

3.4 An example of Liu and Lu’s approximate adder. . . . . . . . . . . . . . . . . 68

3.5 Correctness of N bit adders with a maximum carry length of l bits. . . . . . 73

3.6 Comparison of 32 bit adder latencies. . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 An exact and approximate 16 bit Sklansky adder. . . . . . . . . . . . . . . . . 77

3.8 An exact and approximate 16 bit Kogge-Stone adder. . . . . . . . . . . . . . 78

3.9 An exact and approximate Brent-Kung adder. . . . . . . . . . . . . . . . . . 79

4.1 Relative proportions of integer and floating-point instructions. . . . . . . . 87

4.2 Bit distribution patterns of integer addition and subtraction. . . . . . . . . . 92

4.3 Bit distribution patterns of integer multiplication. . . . . . . . . . . . . . . . 93

4.4 Bit distribution patters for integer division. . . . . . . . . . . . . . . . . . . . 94

4.5 Scatter plot of 32 bit floating point operands in benchmark programs. . . . 97

4.6 Bit assertion distributions of 32 bit FP addition and subtraction operands. . 99

4.7 Bit assertion distribution of 32 bit FP multiplication and division operands. 100

4.8 Correctness and latency of benchmarks simulated in SimpleScalar. . . . . . 105

4.9 Maximum throughput gain using single cycle arithmetic in ADVS. . . . . . . 107

4.10 Maximum throughput gain using perfect approximate arithmetic in ADVS. 108

4.11 Latency of SPEC 172.mgrid benchmark with different optimisation levels. . . 110

4.12 Delay-correctness using basic flushing. . . . . . . . . . . . . . . . . . . . . . 111

4.13 Delay-correctness using no-resteering flushing scheme. . . . . . . . . . . . . 112

5.1 Correctness of approximate Liu and Lu adders for SPEC CPU95data. . . . . . 117

5.2 Proportion of correct sums with a worst-case carry length of l bits. . . . . . 119



List of figures

5.3 Partial products in an array multiplier. . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Hot map of asserted COUT bits in an array multiplier. . . . . . . . . . . . . . . 121

5.5 An 8×8 bit Wallace multiplier with no CPA. . . . . . . . . . . . . . . . . . . . 123

5.6 Unsigned 16×16 bit array multipliers with modified CPA adders. . . . . . . 125

5.7 Correctness of unsigned multipliers with a l bit ripple-carry CPA. . . . . . 126

5.8 Correctness of an array multiplier with an l bit Liu and Lu CPA adder. . . . 126

5.9 Correctness of a restoring divider with t division rounds. . . . . . . . . . . . 128

5.10 Correctness of non-restoring dividers with t division rounds. . . . . . . . . 128

5.11 Correctness of a temporally incomplete 16×16 bit array multiplier. . . . . . 132

6.1 Comparison of exact and approximate counter-based integer multipliers. . 141

6.2 Partial product allocation schemes for integer multiplication. . . . . . . . . 144

6.3 Correlated partial products in integer multiplication. . . . . . . . . . . . . . 144

6.4 Histogram of integer multiplication operand magnitude. . . . . . . . . . . . 147

6.5 Histogram of bit errors for an approximate unsigned integer multiplier. . . 149

6.6 Relative error of an approximate unsigned (; ) 32 bit integer multiplier. . 150

6.7 Partial products in a Baugh-Wooley integer multiplier. . . . . . . . . . . . . 151

6.8 Comparison of exact and approximate counter-based integer multipliers. . 152

6.9 Relative error for an approximate signed (; ) integer multiplier. . . . . . . 155

6.10 Histogram of bit errors for an approximate signed integer multiplier. . . . . 156

6.11 Delay vs. correctness scatter plot for unsigned approximate multipliers. . . 157

6.12 Delay vs. correctness scatter plot for signed approximate multipliers. . . . . 158

7.1 Approximating integer dividers. . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Convergence of an approximated integer division. . . . . . . . . . . . . . . . 173

7.3 Correctness of unsigned DI and SMT dividers. . . . . . . . . . . . . . . . . . 175

7.4 Average correctness for unsigned approximating integer dividers. . . . . . . 176

7.5 P-D diagram of a baseline exact SRT divider. . . . . . . . . . . . . . . . . . . 177

7.6 Delay of a 32 bit variable latency unsigned radix-4 divider. . . . . . . . . . . 178

7.7 Average correctness of a signed approximating integer divider. . . . . . . . 181

7.8 Delay of a 32 bit variable latency signed radix-4 divider. . . . . . . . . . . . . 183

8.1 Block diagrams of IEEE Std. 754 floating point units. . . . . . . . . . . . . . 191

8.2 Correctness of a Liu and Lu floating point significand adder. . . . . . . . . . 195

8.3 Counter input bits vs. correctness in a floating point multiplier. . . . . . . . 197

10



List of figures

8.4 Average error in the fpDiv approximated significand. . . . . . . . . . . . . . 199

8.5 Average correctness of approximated significands in floating point division. 200

8.6 Approximate floating point multiplier latency vs. correctness. . . . . . . . . 203

9.1 Bit assertion histograms for intMult and intDiv . . . . . . . . . . . . . . . 213

9.2 Hit rate of direct mapped result caches. . . . . . . . . . . . . . . . . . . . . . 216

9.3 Hit rate of LRU result caches with different levels of associativity. . . . . . . . 217

9.4 Hit rates of FIFO caches with different levels of associativity. . . . . . . . . . 218

9.5 Comparison of result cache replacement schemes. . . . . . . . . . . . . . . . 219

9.6 Average IPC gain for when implementing result caches. . . . . . . . . . . . 220

10.1 Graph of LDPC check nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

10.2 Architecture of a k input check node. . . . . . . . . . . . . . . . . . . . . . . . 227

10.3 Counters and compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.4 Exact (6; 2) compressors using (3; 2) counters. . . . . . . . . . . . . . . . . . 230

10.5 Exact (; ) compressors using (; ) counters. . . . . . . . . . . . . . . . . . 231

10.6 Schematic view of a (; ) counter. . . . . . . . . . . . . . . . . . . . . . . . . 231

10.7 Schematic view of a (; ) saturating counter. . . . . . . . . . . . . . . . . . . 232

10.8 4 bit approximate compressors. . . . . . . . . . . . . . . . . . . . . . . . . . . 234

10.9 7 bit compressor LDPC error frequency. . . . . . . . . . . . . . . . . . . . . . . 235

10.10 LDPC frame error rate and average decoder iterations vs. SNR. . . . . . . . 236

11.1 Pipelined IEEE Std. 754 FP Adder/Subtractor. . . . . . . . . . . . . . . . . . . 244

11.2 Pipelined IEEE Std. 754 FP Multiplier. . . . . . . . . . . . . . . . . . . . . . . 246

11.3 Pipelined IEEE Std. 754 FP Divider. . . . . . . . . . . . . . . . . . . . . . . . . 247

11.4 IPC of arithmetic benchmarks in an ADVS-enabled system. . . . . . . . . . 253

11.5 IPC for Mediabench benchmarks in an ADVS-enabled system. . . . . . . . . 254

11.6 IPC of SPEC benchmarks in an ADVS-enabled system. . . . . . . . . . . . . 255

11.7 IPC of test benchmarks in an ADVS-enabled system. . . . . . . . . . . . . . 256

11.8 Operand cache hit rates in an ADVS-enabled system. . . . . . . . . . . . . . . 257

11.9 Effect of approximate FP arithmetic on throughput in ADVS. . . . . . . . . . 263

11.10 Effect of operand caching in an ADVS-enabled system. . . . . . . . . . . . . . 265

11



���� �� ��	
��

2.1 SimpleScalar configuration used in this thesis. . . . . . . . . . . . . . . . . . . 40

2.2 SimpleScalar arithmetic unit latencies and repeat-rates. . . . . . . . . . . . . 41

2.3 Description of benchmarks in the SPEC CINT2000 suite. . . . . . . . . . . . . 46

2.4 SPEC CPU2000 benchmarks compiled for use with SimpleScalar. . . . . . . . . 47

2.5 File sizes of benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Predictions of the AWCCL for integer addition. . . . . . . . . . . . . . . . . 64

3.2 Summary of AWCCL for SPEC CINT2000 benchmarks . . . . . . . . . . . . . 65

3.3 AWCCL for addition of signed positive and negative operands. . . . . . . . 66

3.4 Calculated errors for a 8 bit adder with maximum carry length l bits. . . . . 71

3.5 Synthesis results of 32 bit Liu and Lu adders. . . . . . . . . . . . . . . . . . . 74

4.1 Average proportions of instructions executed. . . . . . . . . . . . . . . . . . 88

4.2 Ratio of signed to unsigned retired instructions in benchmarks. . . . . . . . 90

4.3 Proportion of unsigned integer arithmetic operands that are zero. . . . . . 91

4.4 Signed integer operand values . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 32 bit FP operand values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 64 bit FP operand values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Simulation parameters used for arithmetic and Mediabench benchmarks. . . 101

4.8 Simulation parameters used for SPEC benchmark simulation. . . . . . . . . 102

4.9 Throughput of arithmetic benchmarks with single-cycle arithmetic. . . . . . 102

4.10 Throughput of Mediabench benchmarks with single cycle arithmetic. . . . . 103

4.11 Throughput of SPEC benchmarks with single cycle arithmetic. . . . . . . . . 104

4.12 Average execution time of benchmarks without ADVS. . . . . . . . . . . . . 109

5.1 Correctness of tree multipliers without a CPA. . . . . . . . . . . . . . . . . . 122

5.2 Floating point rounding results identical to ‘round to nearest’. . . . . . . . . 131



List of Tables

6.1 Correctness of (n;m) counters with random inputs. . . . . . . . . . . . . . 140

6.2 Correctness of unsigned approximate multipliers with random data. . . . . 146

6.3 Correctness of unsigned approximate multipliers with benchmark data. . . 148

6.4 Correctness of signed approximate multipliers with random data. . . . . . . 153

6.5 Correctness of signed approximate multipliers with benchmark data. . . . 154

6.6 Synthesis results for unsigned (n;m) × bit multipliers . . . . . . . . . . 159

6.7 Synthesis results for signed approximate integer multipliers. . . . . . . . . . 160

7.1 An example demonstrating the approximation of −d. . . . . . . . . . . . . . 180

7.2 Peak correctness for DI dividers for random and benchmark data. . . . . . 182

7.3 Difference in correctness for signed dividers that approximate −d. . . . . . 182

7.4 Maximum correctness difference for DI, SMT and GBP dividers. . . . . . . 184

7.5 Synthesis results for unsigned 32 bit integer dividers. . . . . . . . . . . . . . 185

8.1 Correctness of 24 bit significand multipliers for fpMult. . . . . . . . . . . . 196

9.1 History table for a context-based value predictor. . . . . . . . . . . . . . . . 211

9.2 An ordered list of bit assertion frequency of arithmetic operands. . . . . . . 214

9.3 Modelled cache access times in a 65 nm process using CACTI 5.3. . . . . . . . 220

9.4 Modelled cache access times in a 65 nm process using CACTI 5.3. . . . . . . . 221

9.5 180 nm result caches process using CACTI 4.1. . . . . . . . . . . . . . . . . . . 221

10.1 Truth tables for saturating and reflecting (; ) counters. . . . . . . . . . . . 228

10.2 HSPICE simulation of a (; ) counter and a (; ) counter. . . . . . . . . . 232

10.3 LDPC check node synthesis results. . . . . . . . . . . . . . . . . . . . . . . . . 235

11.1 Synthesis results for exact integer multipliers. . . . . . . . . . . . . . . . . . . 242

11.2 Synthesis results for approximate integer multipliers. . . . . . . . . . . . . . 243

11.3 Synthesis results for pipelined exact integer dividers. . . . . . . . . . . . . . 243

11.4 Synthesis results for the pipelined floating point adder. . . . . . . . . . . . . 245

11.5 Synthesis results for the pipelined floating point multiplier. . . . . . . . . . 245

11.6 Synthesis results for the pipelined floating point divider. . . . . . . . . . . . 247

11.7 ADVS arithmetic unit area cost. . . . . . . . . . . . . . . . . . . . . . . . . . . 248

11.8 ADVS arithmetic unit dynamic power cost. . . . . . . . . . . . . . . . . . . . 249

11.9 ADVS arithmetic unit leakage power cost. . . . . . . . . . . . . . . . . . . . . 250

11.10 Exact and approximate arithmetic latencies used in ADVS simulation. . . . 251

14



List of Tables

11.11 Correctness of approximate units in a basic ADVS-enabled system. . . . . . 258

11.12 Correctness of approximate units with operand caching and ADVS. . . . . . 258

11.13 Operand cache hit rates in an ADVS-enabled system. . . . . . . . . . . . . . 259

11.14 Average IPC change for an ADVS-enabled system. . . . . . . . . . . . . . . . 259

11.15 Differences in glibc library values on a x86 platform compared to SimpleScalar. 262

C.1 Number of retired integer instructions in the arithmetic benchmarks. . . . . 319

C.2 Number of retired integer instructions in the Mediabench benchmarks. . . . 320

C.3 Number of retired integer instructions in the SPEC benchmarks. . . . . . . . 321

C.4 Number of retired integer instructions from each test benchmark. . . . . . 322

C.5 Proportion of integer instructions in the arithmetic benchmarks. . . . . . . 323

C.6 Proportion integer instructions in the Mediabench benchmarks. . . . . . . . 324

C.7 Proportion of integer instructions in the SPEC CPU2000 benchmarks. . . . . 325

C.8 Proportion of integer instructions in the test benchmarks. . . . . . . . . . . 326

C.9 Number of floating point instructions in the arithmetic benchmarks. . . . . 327

C.10 Number of floating point instructions in the Mediabench benchmarks. . . . 328

C.11 Number of floating point instructions in the SPEC CPU2000 benchmarks. . . 329

C.12 Number of floating point instructions in the test benchmarks. . . . . . . . . 330

C.13 Proportion of floating point instructions in the arithmetic benchmarks. . . 331

C.14 Proportion of floating point instructions in the Mediabench benchmarks. . 332

C.15 Proportion of floating point instructions in the SPEC benchmarks. . . . . . 333

C.16 Proportion of floating point instructions in the test benchmarks. . . . . . . 334

C.17 Bit assertion probabilities for signed 32 bit operands. . . . . . . . . . . . . . 336

C.18 Bit assertion probabilities for unsigned integer operands. . . . . . . . . . . . 337

C.19 Bit assertion probabilities for single precision floating point numbers. . . . 338

C.20 Bit assertion probabilities for double precision floating point numbers. . . 339

C.21 (continued. . . ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

F.1 Machine instructions provided in the PISA architecture. . . . . . . . . . . . . 378

F.1 (continued. . . ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

F.1 (continued. . . ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

15



���� �� ��	�
�����

3.1 logicApprox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 BackCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



���� �� ��	�
���

ADPCM adaptive differential pulse code modulation

AWCCL average worst-case carry length, in bits

AWGN additive white gaussian noise

CCITT International Telegraph and Telephone Consultative Committee

CMOS complementary metal oxide semiconductor

DFT discrete fourier transform

FP floating point

EPIC Efficient Pyramid Image Coder

FA full adder

FFT fast fourier transform—an efficient algorithm to compute the discrete

fourier transform (DFT) and its inverse.

GSM Global System forMobile communications: originally fromGroupe Spé-

cial Mobile

HA half adder

IEEE Institute of Electrical and Electronic Engineers

INT integer

ISA instruction set architecture

JPEG Joint Photographic Experts Group



List of Algorithms

LSB least significant bit

MPEG Moving Picture Experts Group

MSB most significant bit

MUX Multiplexor

SNR signal-to-noise ratio

QPSK quadrature phase-shift keying

PGP Pretty Good Privacy

SPEC Standard Performance Evaluation Corporation

SPHERE SPeech HEader REsources

ULP Unit of least precision

20



��������	
��

Mathematical notation

f (n) ∈ O(n) f (n) ≤ g(n)⋅k, f is bounded above by g (up to constant factor) asymp-

totically

f (n) ∈ Ω(n) f (n) ≥ g(n)⋅k, f is bounded below by g (up to constant factor) asymp-

totically

f (n) ∈ Ω(g(n)) g(n) ⋅ k ≤ f (n) ≤ g(n) ⋅ k, f is bounded both above and below by g

asymptotically

⌊x⌋ floor(x), greatest integer ≤ x

⌈x⌉ ceiling(x), least integer ≥ x

PM probability of correctness for a multiplier

PC probability of correctness for a counter

Standard notation

N Number of bits in an operand; word length

aN Average worst-case carry length for N bit addition

l Length in bits of a carry-chain in an adder

PC Program Counter register

SP Stack Pointer register

Multiplication

n number of input bits to a counter



Nomenclature

m number of output bits from a counter

Division

z dividend

d divisor

q exact quotient after division q = z/d

dH least binary power greater than or equal to d

dL greatest binary power less than or equal to d

d̃ approximate divisor

D̃ log(d), or the number of zeros after the MSB of d

qi quotient after round i

ri remainder after round i

ei error in qi after round i

n number of bits in the unsigned binary representation of z and d

k number of bits in the quotient, q

t maximum number of division rounds

f number of fractional bits maintained in qi

m constant multiplicand in the division round: m = d − d̃

p most significant non-zero partial product in the binary multiplication

ri ×m

p after p, the next most significant partial product in the binary multi-

plication ri ×m

22



Chapter 1

���������	��

“Any effort that has self-glorification as its final endpoint is bound to end in disaster.”

Robert M. Pirsig (1928 —), in

Zen and the Art of Motorcycle Maintenance:

An Inquiry Into Values

This chapter introduces approximate arithmetic and arithmetic data value specu-

lation (ADVS), and defines the goals of the research project: to design approximate

arithmetic units, profile their design tradeoffs, and investigate their implementa-

tion in a speculative scheme to increase the throughput of a processor pipeline.

An overview of the remaining chapters is presented, and the main contributions

of this thesis are briefly summarised.



Chapter 1: Introduction

Modern processors are complex machines. Transistor counts on proces-

sors have increased exponentially from 2300 transistors on the Intel 4004

in 1971, to over two billion on the latest upcoming Intel Itanium proces-

sors in 2009 [Intel Corp., 2009]. Over the past 38 years many technologies and design

paradigms have been tested, with CMOS emerging as the dominant technology and high

performance processors having moved towards multiple cores, very long instruction word

(VLIW) instructions and hardware support for multiple threading [NVIDIACorp., 2009].

Speculation techniques such as branch prediction have matured and become pervasive, al-

though many other forms of speculation have not.

Power dissipation has also increased, and become a first order design constraint for many

designs. Coupled with the ubiquity of mobile computing and “good-enough” computing,

power consumption has forced engineers to maximise efficiency and carefully consider

all aspects of their designs to achieve their design goals. Customer expectations can be

markedly different in various markets, and it is often price, not performance that is the

primary concern of consumers.

Researchers andmanufacturers have begun to consider approximate andprobabilistic com-

puting to extend battery life (or cost for the same performance) to satisfy the good-enough,

low performance market. Simultaneously, value speculation has remained largely uncom-

mon in high performance designs to increase performance by breaking the data flow limit.

Approximate hardware provides a result faster than an exact unit, and has applications to

designs at both ends of the performance spectrum. A lowperformance designmight accept

the potential errors, or be tolerant of them to some threshold; a high performance design

can use the approximate result to speculatively execute instead of idly waiting for the exact

result to become available.

24



Research outcome

1.1 Research objective

Approximate hardware is characterised by its probability of correctness—the chance that

the approximate hardware will provide the correct result—and the delay required for the

output bits to be asserted, from the time the inputs are provided. The delay of the approx-

imate circuit should be less than the delay of an exact arithmetic circuit.

The research objectives of this thesis are:

• to investigate the trade-off between arithmetic latency and probability of correctness

for a number of fundamental modules such as integer multipliers and dividers;

• to adapt these modules to IEEE floating point units and investigate the effect on

probability of correctness and delay;

• to demonstrate the feasibility of these approximate modules in a speculative execu-

tion scheme in a RISC processor pipeline, and the effect on the retired instructions

per clock for benchmarks programs.

For this thesis approximate arithmetic hardware for each of the fundamental integer opera-

tions of addition, subtraction,multiplication and divisionwas designed. Thenewhardware

units were profiled in terms of their delay and probability of correctness for traced bench-

mark operands. Each feasible approximate integer unit was also integrated into an IEEE

floating point design. This research seeks to determine if approximate arithmetic hard-

ware can be utilised in a processor pipeline in a speculative execution scheme to increase

throughput.

1.2 Research outcome

This thesis demonstrates that ADVS can be successfully employed in a processor pipeline

to increase throughput. As a caveat, it is noted that the proposed system modifications are

expensive in terms of area and power. The area, power, and correctness of each component

25



Chapter 1: Introduction

is reported individually, and on a per-benchmark basis so that an implementor can balance

the potential gains versus the cost.

The designs for approximate arithmetic hardware units arising from this thesis have been

carefully characterised, and can be adapted to use in error tolerant systems where addi-

tional hardware is not required to correct errors. In fact, it is shown that the approximate

units designed are often smaller, faster and consume less power.

1.3 Thesis outline

This thesis explores the use of approximate arithmetic for speculative execution in high

performance computing, and is presented in 4 parts.

Preliminary matter is covered in Part I Background.

Chapter 2 A Brief Review of Computer Architecture and Digital Arithmetic contains an

overview of digital arithmetic and computer architecture. The fundamental integer oper-

ations of addition, subtraction, multiplication and division are discussed, along with their

application in floating point calculations. The platform and tools used for the main inves-

tigation of this thesis are discussed: the PISA instruction set architecture (ISA) determines

the types and format of arithmetic operations; the SimpleScalar tool set was used to model

and trace execution; and a variety of benchmarks are selected.

Chapter 3 Theory and Applications of Arithmetic Approximation reports results and de-

signs of approximate arithmetic units from the literature that are used in current methods

of probabilistic computing and arithmetic approximation. Some preliminary simulations

were conducted with random and benchmark data, to assess the probability of correctness

of these units.

Chapter 4 Can ADVS Improve the Performance of a Generic RISC Processor? defines the

scope of the research project, establishing that this thesis sets out to determine the feasi-

bility of using arithmetic data value speculation to improve the throughput of a modified

RISC processor.

26



Thesis outline

Chapter 5 Preliminary Experiments presents the results of simulations where simple arith-

metic operations were modified to produce a result quickly, but with a probability of error.

It is shown that it is difficult to yield a high probability of correctness when the critical path

is shortened, because of the high degree of dependence that intermediate results have on

input operands in arithmetic operations.

Part II Approximate Arithmetic presents designs for approximate arithmetic units.

Chapter 6 Approximate Integer Multiplication presents a design for an unsigned approxi-

mate integer multiplier, which was extended to accommodate signed operands. The new

approximate multipliers were based on modern high performance tree multipliers built

from counter units. Logically incomplete counters were used as the fundamental unit for

a family of multipliers that had a reduced latency and probability of correctness compared

to a baseline Wallace tree multiplier constructed from exact full-adder cells.

Chapter 7 Approximate Integer Division presents an iterative division algorithm in which

the quotient was calculated by convergence, with a variable number of quotient digits cal-

culated per iteration. The latency of the divider was reduced by reducing the precision

of the intermediate calculations, and restricting the number of division rounds. The new

division algorithm was sufficient to calculate the integer (but not necessarily fractional)

bits of the quotient result for operands typically observed in benchmark programs, with a

lower latency than a similar variable-cycle radix-4 SRT divider.

Chapter 8 Approximate Floating Point Arithmetic adapts the approximate integer adder,

multiplier and divider units developed previously to IEEE floating point designs. The delay,

area, power and probability of correctness of the floating point units are compared to a

baseline implementations, and their suitability for ADVS is assessed.

Chapter 9 Result Caching investigates the caching of arithmetic results to further reduce

the average effective latency of arithmetic operations, including operations where no fea-

sible approximate hardware exists. Indexing schemes were developed to better distribute

entries within the cache. Replacement policies from the literature were used to introduce

set associativity, and improved the hit rate over direct mapped result caches.

Part III Application focuses on the application and implementation of approximate arith-

metic.

27



Chapter 1: Introduction

In Chapter 10 approximate adders are demonstrated in an error tolerant application—low

density parity check decoding, where it is found that approximate compressors can yield

a saving to area, power and delay, as well as decreasing the frame error rate and average

number of decoding iterations.

Chapter 11 adapts the hardware developed in Chapters 6, 7, 8 and 9 for implementation in

a processor pipeline. The latencies of each approximate arithmetic unit were compared to

each other and their baseline exact systems to determine the operation latency in cycles.

A range of arithmetic benchmarks were simulated running on a modified RISC processor

with result caching and arithmetic data value speculation. The cost of ADVS was assessed

in terms of the increased area and power due to the exact systems used for result checking.

In Chapter 12 Conclusions, a brief summary of the designs and simulation outcomes in this

thesis are presented and discussed, with an emphasis on the engineering trade offs neces-

sary to implement ADVS, and uses of approximate arithmetic in general. Future research

avenues are identified.

Appendices are provided inPart IV, andprovide excerpts fromdocumentationused through-

out the project, samples of source code written by the author to generate results, and ex-

tended tables of results summarised in earlier chapters.

1.4 Research Contributions

This thesis makes the following contributions:

1. an analysis of typical arithmetic operands in benchmark software;

2. an extended investigation of existing designs for approximate integer adders and

subtractors;

3. designs and synthesis results of approximate arithmetic hardware for signed and un-

signed integer multiplication and division;

4. an analysis of approximate arithmetic adapted for IEEE floating point multipliers

and dividers;

28



Research Contributions

5. an in depth study of caching arithmetic results to improve performance;

6. the use of inexact arithmetic to reduce the latency of a low density parity check de-

coder; and

7. simulation results that define upper and lower bounds for performance improve-

ment by employing ADVS in a RISC processor, and a simulated implementation

incorporating the approximate arithmetic designs proposed.

29



���� �

����	�
��




Chapter 2

� ����� �����	 
�

�
�
���� ������������

��� ������� ����������

“Speed isn’t everything, it’s the only thing.”

Seymour Cray (1925–1966)

This chapter contains an overview of digital arithmetic and computer architecture.

The fundamental integer operations of addition, subtraction, multiplication and

division, and their application in floating point calculations are summarised. The

tool sets, libraries and benchmarks used for the project are introduced, and a

summary of the literature is presented.



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

The aim of this thesis is to test the feasibility of increasing of the throughput

of a RISC processor by speculating on the result of arithmetic instruc-

tions that are calculated quickly, but with a probability that the result is

incorrect. This arithmetic data value speculation (ADVS) scheme requires the design of

approximate arithmetic units to provide results faster than their exact counterparts.

In the following sections a summary of tools used consistently throughout the thesis is

presented. Section 2.1 presents a brief review of digital arithmetic, focusing on integer and

floating point representations and the fundamental operations of addition, subtraction,

multiplication and division. The tool set SimpleScalar is presented in Section 2.2. These

tools are used to trace arithmetic operations from benchmark programs, and simulate the

operation of a regular RISC processor, and one that uses ADVS. In Section 2.3 a collection

of benchmarks are presented that are used to measure the average correctness of arith-

metic units, and throughput gains when used in a pipeline using ADVS. Finally, Section 2.4

summarises the tools used to synthesise the digital arithmetic circuit designs used in this

project.

2.1 Digital arithmetic

This section provides an overview of digital arithmetic, focusing on number representa-

tions typically found in modern computers, including signed and unsigned integer arith-

metic, and IEEE-754 floating point arithmetic.

The hardware designs in this thesis were developed for a 32 bit RISC processor with a MIPS

ISA. Hence the designs and results are based almost exclusively on 32 bit operands. Most

arithmetic operations are binary, and calculate one 32 bit result from two inputs. Square

root is a unary operation, but is not addressed in this project. Integer multiplication pro-

duces a 64 bit result, and integer division produces a 32 bit quotient and remainder. Both

operations are defined to write to special architectural registers, instead of the normal in-

teger register file. Later in this thesis, an approximate divider is developed, but is only

34



SimpleScalar

capable of generating the quotient result. The remainder was found to be used rarely after

a division, and even less frequently was both the quotient and remainder used.

However, the approximate divider can still be used in this processor, despite the absence of

the remainder—in this pipeline the latency required to calculate andmove the remainder to

the main register file is the same as if only the quotient was calculated and written directly

to the register file, and the remainder calculated by a subtraction.

Signed and unsigned versions of all integer arithmetic operations are available in the ISA,

and approximating hardware was developed for both. Signed integers use a twos comple-

ment representation.

Although single and double precision IEEE-754 floating point is a part of the ISA, only 32 bit

formats were addressed. In most cases, benchmarks could be compiled using a fixed preci-

sion, but in cases where they could not, the less frequent double precision operations were

not approximated. Single precision floating point numbers consist of a 1 bit sign, an 8 bit

exponent, and a 23 bit significand that is generally extended to include a hidden bit and

possible additional bits to maintain precision for rounding. Approximate floating point

hardware was devised by scaling approximate 32 bit integer hardware down to 24 or more

bits for the significand.

2.2 SimpleScalar

SimpleScalar is a tool set to perform simulations of processors that implement the Sim-

pleScalar architecture (a close derivative of the MIPS III architecture). It includes a modified

version of gcc version 2.6.3 to cross compile C programs for a SimpleScalar target [Burger

and Austin, 1997]. SimpleScalar was used as the target platform for all benchmarks in this

thesis.

The SimpleScalar tool set contains several special purpose simulators. Each simulator and

its function is listed below.

sim-bpred Implements a branch predictor analyser.

35



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

sim-cache Simulates cache access patterns for various replacement schemes.

sim-eio Generates an external event trace (EIO trace) for later re-execution. In-

cludes support for checkpointing.

sim-fast Executes instructions serially. Does no time accounting and assumes no

cache.

sim-safe Same as sim-fast, but also checks alignment and access permissions for each

memory reference.

sim-profile Implements a functional simulator, with profiling support.

sim-outorder Implements a very detailed out-of-order issue superscalar processor with a two

level memory system and speculative execution support. This simulator is a

performance simulator, tracking the latency of all pipeline operations.

2.2.1 System components

This section describes someof the system level components implemented in the SimpleScalar

simulator. The ISA used is a MIPS-like hypothetical architecture, including floating point

and atomic memory synchronisation primitives.

2.2.1.1 Registers

Theprocessor has 32 general purpose registers, and a floating point coprocessor for IEEE-754

floating point arithmetic that has 32×32 bit registers. 64 bit double precision floating point

operands are held in adjacent even-odd indexed registers, reducing the effective number

of registers available.

Two special registers called HI and LO store the result of arithmetic operations that require

a double precision result, or two result fields. The intMult instruction calculates the 64 bit

product of two 32 bit operands, and the intDiv instruction calculates the 32 bit quotient

and 32 bit remainder from two 32 bit operands.

36



SimpleScalar

2.2.1.2 Branch predictor

The branch predictor in the SimpleScalar simulator can be set to one of several different

types, including predict-taken, predict-not-taken, perfect, bimodal, two-level and combi-

nation of bimodal and two-level predictors. The branch predictor history table defaults to

1024 entries, despite the configuration.

The return address stack defaults to 8 entries. The branch target buffer has 512 entries and

4way set associativity. The branch predictor history table is not updated with the result of

an instruction executed on the speculative path. The default 1024 entry bimodal predictor

was used in simulations presented in this thesis.

2.2.1.3 Cache

SimpleScalar uses aHarvard architecture, with separate instruction (iCache) and data caches
(dCache). The 16 kB level 1 dCache is a 128 set, 32 block, 4 way associative, least recently used (LRU)

replacement cache. The dCache has a 1 cycle hit latency. The 16 kB level 1 iCache is a 512 set, 32

block, 1 way associative (direct mapped), LRU replacement cache. The iCache and dCache have a

1 cycle hit latency.

The 256 kB level 2 cache is unified instruction and data cache, with 1024 sets, 64 blocks, 4 way set

associativity, and an LRU replacement policy. The level 2 cache has a 6 cycle hit latency.

2.2.1.4 Memory

A translation look-aside buffer (TLB) is maintained for the iCache and dCache to cache physical

memory addresses for the memory paging system. The instruction translation look-aside buffer

(iTLB) is a 16 set, 4096 block, 4 way associative, LRU replacement buffer. The data TLB (dTLB) is a

32 set, 4096 block, 4 way associative, LRU replacement buffer. Both TLBs have a miss latency of 30

cycles.

The memory uses an 8 byte (64 bit) bus. The initial access latency is 18 cycles, with 2 cycles for each

additional 8 byte chunk.

37



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

Figure 2.1: Overview the of SimpleScalar PISA pipeline. In the execution
stage, instructions are executed in individual functional units that might have a
multi-cycle latency, before continuing to the write-back stage.

2.2.2 Pipeline overview

The SimpleScalar PISA pipeline is similar to the classic MIPS I architecture, but the instruction set

architecture (ISA) is closer to theMIPS III ISA, including exclusive memory operations, and floating

point support. A list of instructions and opcodes for the PISA architecture is provided inAppendix F.

The SimpleScalar pipeline has 6 stages. Every instruction is either a memory operation, or register-

register operation. There are no instructions in the architecture that compound both. These oper-

ations are distinct, on the premise that they are fast. Figure 2.1 shows the basic instruction flow in

the processor pipeline, from fetch to commit. Instructions issue to dedicated functional units for

the execution stage, such as one of the ALUs or intDiv units shown.

In the PISA architecture, the pipeline stages are:

Fetch Up to 4 instructions are fetched from one iCache line and are inserted into the

dispatch queue.

Decode Instructions on the dispatch queue are decoded and register renaming is per-

formed. Decoded instructions are inserted on the scheduler queue.

Scheduler Instructions on the scheduler queue that have all source operations available are

issued to functional units, including arithmetic units, and inserted in the Reg-

ister Update Unit (RUU), a queue that maintains program order until commit.

Memory operations are also added to the Load Store Queue (LSQ) for in-order

38



SimpleScalar

memory access.

Execute The functional units execute ready instructions issued to them. Load operations

access the dCache.

Write-back Results from completed instructions in the RUU are written back to memory,

and the dependents of completed instructions are marked as ready.

Commit Completed instructions are committed in-order in the RUU to maintain pro-

gram semantics, updating the dCache and memory.

SimpleScalar is configurable to allow testingwith a number of different hardware settings, including

cache size, instruction latency, branch prediction algorithm, etc. The SimpleScalar configuration

used in this thesis is shown in Table 2.1.

The register update unit (RUU) maintains program order for out-of-order execution and holds up

to 16 instructions. The load-store queue (LSQ) maintains memory ordering and holds up to 8 in-

structions. The front end can fetch up to 4 instructions in each stage, and up to 4 instructions

can be issued and committed per cycle, depending on availability of functional units and memory

alignment. The memory subsystem has 1 read port and 1 write port.

The size of the RUU and the LSQ are important to overall system throughput, and must be balanced

with the processor frequency, pipeline depth and operation latency. Longer queues allow more

instructions “in flight” at any time, and in an out-of-order processor more younger independent

operations may be issued and executed if an older, high latency operation is causing a stall.

2.2.3 Arithmetic operation latencies

In SimpleScalar all ALU operations are single cycle, except for some arithmetic instructions. Ad-

ditions, subtractions, logic and load/store operations are performed in ALUs in the Execute stage

(iALU) and floating point coprocessor (fpALU).There are dedicated units for integermultiplication

(intMult), integer division (intDiv), and floating point multiplication (fpMult). There is also a

combined unit for floating point division (fpDiv) and square root (fpSqrt). There are 4 iALUs

and fpALUs, and one each of the other arithmetic units.

The latency and repeat-rate of the arithmetic operations in SimpleScalar is listed in Table 2.2. In the

original version of SimpleScalar, the integer multiplier and divider are combined into a single unit,

39



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

T
a
b
le

2
.1
:

Co
nf
ig
ur
at
io
n
us
ed

in
Si
m
pl
eS
ca
la
r.

C
ha

ra
ct
er
is
tic

D
es
cr
ip
tio

n

In
st
ru
ct
io
n
fe
tc
h

U
p
to
4
in
st
ru
ct
io
ns

pe
rc
yc
le
,a
cr
os
sm

ul
tip

le
br
an
ch
es
an
d
ca
ch
e
lin

e
bo
un

da
ri
es
,s
to
pp
in
g
on

an
i
C
a
c
h
e
m
iss

In
st
ru
ct
io
n
ca
ch
e
(i
C
a
c
h
e
)

16
kB

di
re
ct
m
ap
pe
d
32
B
lin

es
,6

cy
cl
e
la
te
nc
y

Br
an
ch

pr
ed
ic
to
r

20
48

en
tr
y,
4
w
ay

se
ta
ss
oc
ia
tiv
e
bi
m
od
al
pr
ed
ic
to
r

Sp
ec
ul
at
iv
e
ex
ec
ut
io
n

O
ut
-o
f-
or
de
ri
ss
ue

up
to
4
op
er
at
io
ns

pe
rc
yc
le
,1
6
en
tr
y
re
or
de
rb

uff
er
,8

en
tr
y
lo
ad
-s
to
re
qu
eu
e

w
ith

st
or
e/
lo
ad

by
pa
ss
in
g

A
rc
hi
te
ct
ur
al
re
gi
st
er
s

32
ge
ne
ra
lp
ur
po
se
an
d
32
flo
at
in
g
po
in
t

Fu
nc
tio

na
lu
ni
tl
at
en
cy

i
A
L
U
1/
1,
i
n
t
M
u
l
t
3/
1,
i
n
t
D
i
v
20
/1
9,
f
p
A
d
d
2/
1,
f
p
M
u
l
t
4/
1,
f
p
D
i
v
12
/1
2
f
p
S
q
r
t
24
/2
4

A
rit
hm

et
ic

32
bi
tw

or
d
an
d
32
bi
ta
dd
re
ss
,l
itt
le
en
di
an

D
at
a
ca
ch
e
(d
C
a
c
h
e
)

16
kB

2w
ay

se
ta
ss
oc
ia
tiv
e
32
B
lin
es
,6

cy
cl
e
m
iss

la
te
nc
y,
re
ad

po
rt
an
d
w
rit
e
po
rt
,o
ne

ou
ts
ta
nd

in
g
m
iss

pe
rr
eg
ist
er

40



Benchmarks

Table 2.2: Arithmetic operation latencies and repeat-rates simulated in
SimpleScalar.

Operation Units
Latency Repeat-rate
(cycles) (cycles)

iALU 4 1 1
intMult 1 3 1
intDiv 1 20 19
fpALU 4 2 1
fpMult 1 4 1
fpDiv 1 12 9
fpSqrt 1 24 18

however the operation latency and repeat-rate for integer multiplication and division are different.

The same is true for the combined floating point multiplier/divider/square-rooter.

For this thesis SimpleScalar was modified so that each arithmetic operation could be studied in-

dependently. The integer multiplier/divider unit and floating point multiplier/divider unit were

separated into distinct units, but maintained their original latency and repeat-rate shown in Ta-

ble 2.2.

TheiALUs perform logical operations andunsigned and signed integer additions for jumps, branches,

loads, stores and integer addition instructions. The fpALU performs floating point addition, integer

conversion and comparison operations. The fpDiv and fpSqrt are combined into a single unit.

2.3 Benchmarks

This section introduces the benchmarks used throughout the research project. The benchmarks

were compiled for the SimpleScalar PISAplatformusinggcc version 2.6.3 suppliedwith SimpleScalar.

Four benchmark sets were used: arithmetic,Mediabench, SPEC, and a test set that was not used in

the design stage. They are described in more detail below.

Each benchmark was compiled at various compilation levels: -O0, -O1, -O2, -O3, -O3 -funroll-loops

and -O3 -finline-functions. Increasing the compiler level often has the effect of increasing the code

41



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

density; ideally the same work is done in fewer machine operations, improving the speed of execu-

tion. High density code generally has a higher number of dependencies per instruction than low

density code.

Consider two versions of the same program, with high and low code densities. A program with

high density could gain a greater relative throughput increase for highly dependent serialised code.

However, parallelism and long latency stalls can mask some of the speculative gains. On a relative

scale, low density code is naturally more insulated from these stalls due to its inefficiency. Con-

versely, speculation of serial code might be more detrimental to high density programs as specula-

tion losses represents more of the overall execution.

Execution traces were captured with the in-order SimpleScalar tool sim-profile. The arithmetic op-

erations were extracted and used to measure the average probability of correctness of the approx-

imate arithmetic units in the design stage. The same benchmarks were later used in out-of-order

simulations using the sim-outorder tool, with the addition of the test benchmark set.

2.3.1 Arithmetic benchmarks

The arithmetic set consists of benchmarks with a high arithmetic density. They are synthetic bench-

marks that generally suffer from over-simplification and test only a small fraction of a CPU’s ca-

pabilities. For instance, some benchmarks might intensively use integer, but not floating point in-

structions. Most have such a small memory footprint they fit entirely in the caches, removing the

memory access latency from the overall system performance.

Most of the arithmetic benchmarks iterate through a main loop, repeating few operations many

times. The total execution time, or execution rate is often quoted as a performance metric.

Many of the synthetic benchmarks used in the arithmetic set are highly repetitive. In each loop

iteration the input operands might not change, or have many of the same values in common. This

repetition can bias the evaluated correctness. For repeatability and automated testing some of the

benchmarks were modified to remove human input.

The benchmarks in the arithmetic benchmark set are:

calc pi calculates the first 1,000 digits of pi using an arithmetic identity [Author un-

known, 2008].

dhrystone is a synthetic benchmark that tests integer performance [Weicker, 1984]. It was

42



Benchmarks

composed to be representative of typical programs. Version 2.1 was used. It is

written in C.

whetstone is a synthetic benchmark that measures floating point performance [Curnow

and Wichmann, 1976]. The version used was written in C.

linpack is a collection of subroutineswritten in Fortran (and translated toC) that analyse

and solve linear equations and linear least-squares problems [Dongarra et al.,

1986]. The systems are represented as different types of matrices including gen-

eral, banded, triangular, symmetric positive definite. linpack uses column op-

erations to increase pipelined hardware utilisation by exploiting spatial data lo-

cality in memory.

livermore is a benchmark developed at the Lawrence Livermore National Laboratories in

1970, later expanded and released in 1986 as Fortran source code. The bench-

mark includes 24 numerical computation kernels, including calculation of a hy-

drodynamics fragment,MonteCarlo search and aPlanckian distribution [McMa-

hon, 1986]. The version used was written in C.

2.3.2 Mediabench

Mediabench is a suite of applications and inputs assembled by Saint Louis University to be rep-

resentative of communications and multimedia applications. Each application in the Mediabench

suite is freely available [Lee et al., 1997]. A digest of applications in theMediabench suite is provided

below. More detailed descriptions are provided in Appendix D. Mediabench applications exhibit

statistically different characteristics to SPEC INT benchmarks in fourmetrics: achieved instructions-

per-clock, instruction cache hit rate, data cache read hit rate, andmemory bus utilisation [Lee et al.,

1997].

Mediabench was selected over the newer Mediabench 2.0 benchmark suite to limit size and num-

ber of tests performed, reducing simulation time in later experiments. Each compiled benchmark

was run unmodified, with standard inputs. Many of the benchmarks in the Mediabench suite are

programs to encode and decode pictures, sound and video to different formats. Results reported

in this thesis are averaged for encoding and decoding, where applicable. Not all of theMediabench

benchmarks could be compiled to SimpleScalar because of the availability of libraries, or syntax not

supported by the included compiler. The following benchmarks were used in this thesis:

43



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

JPEG A standardised compressionmethod for full-colour and gray-scale images. The

benchmark implements JPEG image compression and decompression. JPEG is

a lossy compression algorithm.

mpeg2play Aplayer forMPEG-1 andMPEG-2 video bit streams. It is based onmpeg2decode

by theMPEGSoftware SimulationGroup. This version is optimised for high ex-

ecution speed at the cost of a less straightforward implementation and slightly

non-compliant decoding.

ADPCM (Adaptive Differential Pulse Code Modulation). A family of speech compres-

sion and decompression algorithms. The Intel/DVI ADPCM code was used,

and is recommended by the IMA Digital Audio Technical Working Group.

G.721 The CCITT (International Telegraph and Telephone Consultative Committee)

implementation of G.721 voice compression. This source code is released by Sun

Microsystems, Inc. to the public domain.

PEGWIT A program for performing public key encryption and authentication. It uses an

elliptic curve over GF(), SHA1 for hashing, and the symmetric block cipher

square.

ghostscript A set of software that provides:

1. An interpreter for the PostScript™ language.

2. A set of C procedures (the Ghostscript library) that implement the graph-

ics capabilities that appear as primitive operations in the PostScript lan-

guage.

3. An interpreter for Portable Document Format (PDF) files.

Mesa A 3D graphics library with an API which is very similar to that of OpenGL.

RASTA A program for speech recognition that supports the following front-end tech-

niques: PLP, RASTA, and Jah-RASTA with fixed Jah-value. The Jah-Rasta tech-

nique simultaneously handles additive noise and spectral distortion.

EPIC (Efficient Pyramid Image Coder) is an experimental image data compression

utility. The filters have been designed to allow extremely fast decoding on non-

floating point hardware, at the expense of slower encoding and a slight degra-

dation in compression quality (as compared to a good orthogonal wavelet de-

composition).

44



Benchmarks

2.3.3 SPEC

SPEC CPU2000 is a benchmark suite published by Standard Performance Evaluation Corporation

(SPEC), and is divided into two subsets: the SPEC CINT2000 benchmarks profile the integer arith-

metic performance of CPUs, and the SPEC CFP2000 benchmarks are floating point intensive. Ideally

each benchmark is portable to many platforms, uses significant hardware resources, and has exe-

cution that is not dominated by I/O [Henning, 2000]. SPEC CPU2000 was chosen over the newer

SPEC CPU2006 suite to reduce simulation time and memory requirements [Standard Performance

Evaluation Corporation, 2000; Henning, 2007]. Each benchmark is written in C, C++, Fortran-77

or Fortran-90. A short description of each benchmark in the SPEC suite shown in Table 2.3.

SPEC CPU2000 benchmarks are designed to thoroughly test a wide range of attributes of a computer

system, hence the execution times for full tests are very long, and infeasible for an execution driven

simulation. The SPEC benchmark tool set includes three input sets, called test, train and ref .

The test input set operates on a small representative input set to test the likelihood that the com-

pilation of each SPEC binary was successful. The ref input set is the largest set, requiring more

system memory and execution time, and is used for standardised reporting of the benchmark re-

sults. The train input set was designed for a total running time in between the train and ref sets. It

is used to train a compiler in execution-directed compilation, generating better optimised code, at

the expense of an additional compilation pass.

To reduce the execution time of execution driven simulation with sim-outorder, the smallest input

set, test, was used in all reported instances of SPEC benchmark results throughout this thesis.

Due to difficulties and omissions with the compilers, libraries and implementations of certain sys-

tem calls in SimpleScalar, not all SPEC CPU2000 benchmarks could be compiled for use. Table 2.4

lists the benchmarks implemented.

2.3.4 Test benchmarks

The arithmetic, Mediabench and SimpleScalar benchmarks were used extensively to evaluate the

correctness of approximate arithmetic units; the distribution of operands in these benchmarks af-

fected their design. The test benchmark set was not used in the design stage so that it could be used

as an unbiased test.

The test benchmarks are written in portable C, and are:

45



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

Table 2.3: Brief description of the benchmarks in the SPEC CINT2000 suite.

Set Benchmark Language Category

SPEC INT

164.gzip C Compression
175.vpr C FPGA circuit placement and routing
gcc C C programming language compiler
181.mcf C Combinatorial optimisation
186.crafty C Game playing: chess
197.parser C Word processing
252.eon C++ Computer visualisation
253.perlbmk C PERL programming language
254.gap C Group theory, interpreter
255.vortex C Object-oriented database
256.bzip2 C Compression
300.twolf C Place and route simulator

SPEC FP

168.wupwise Fortran-77 Physics/quantum chromodynamics
171.swim Fortran-77 Shallow water modelling
172.mgrid Fortran-77 Multi-grid solver: 3D potential field
173.applu Fortran-77 Parabolic/elliptic partial differential equations
177.mesa C 3D graphics library
178.galgel Fortran-90 Computational fluid dynamics
179.art C Image recognition/neural networks
183.equake C Seismic wave propagation simulation
187.facerec Fortran-90 Image processing: face recognition
188.ammp C Computational chemistry
189.lucas Fortran-90 Number theory/primality testing
191.fma3d Fortran-90 Finite-element crash simulation
200.sixtrack Fortran-77 High energy nuclear physics accelerator design
301.apsi Fortran-77 Meteorology: pollutant distribution

46



Benchmarks

Table 2.4: SPEC CPU2000 benchmarks compiled for use with SimpleScalar.

Type Benchmark Compiles? Runs?

SPEC CFP2000

168.wupwise Yes Yes
171.swim Yes Yes
172.mgrid Yes Yes
173.applu Yes Yes
177.mesa Yes Yes
178.galgel No1 No8

179.art Yes Yes
183.equake Yes Yes
187.facerec No1 No8

188.ammp Yes Yes
189.lucas No1 No8

191.fma3d3d No1 No8

200.sixtrack Yes No7

301.apsi Yes Yes

SPEC CINT2000

164.gzip Yes Yes
175.vpr Yes Yes
gcc Yes Yes
181.mcf Yes Yes
186.crafty No2 No8

197.parser Yes Yes
252.eon No3 No8

253.perlbmk Yes No4

254.gap No5 No8

255.vortex Yes Yes
256.bzip2 Yes Yes
300.twolf Yes No4

∗There is no Fortran-90 compiler for SimpleScalar (PISA).
†gcc compiler uses unsupported opcodes.
‡gcc requires unavailable library iostream.
§Unimplemented system call in SimpleScalar.
¶System file termio.h is not available for SimpleScalar.
∗∗Runtime error.
††Unable to compile—gcc and glibc versions are too old.

47



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

arith-throughput A simple benchmark, similar to whetstone, that records the time taken to per-

form a number of loop iterations, where each loop performs integer, floating

point, trigonometric or I/O operations [Cowell-Shah, 2004]. Each operation is

performed on the loop index, so that the operands are guaranteed to be different

in each iteration, and cannot be optimised out by a compiler.

fbench Asmall ray tracing benchmark to test floating point performance [Walker, 1980].

The benchmark models optical ray-tracing using a coeffients taken from a text-

book that describes a basic lens. The benchmark is floating point intensive, and

contains many repeated operations.

ffbench A small FFT benchmark that performs a fourier transform, followed by an in-

verse fourier transform on a 256×256 double precision complexmatrix [Walker,

1989].

miller-rabin Asimple, portable program that implements theMiller-Rabin primality test [Au-

thor unknown, 2009]. A given number can be tested, non-deterministically, if

it is a prime number with k tests. The probability of error of the outcome is

−k . This program was modified to test the primality of 10 known primes and

10 known composites in the range ⋯. Faster implementations exist, but

require arbitrary precision number libraries that were difficult to port to Sim-

pleScalar.

All of the benchmarks have configurable inputs for extended testing, but for simulation purposes

in this thesis the defaults are used. A more complete description is included in Section D.3.

2.3.5 Benchmark sizes

The totalmemory footprint of a program affects the overall performance of the system. Small binary

files that fit entirely in the level 1 iCache or level 2 cache are not subjected to much memory access

latency. The compiled binary sizes for a selection of benchmarks is shown in Table 2.5, and can be

compared to the cache sizes of Table 2.1.

The size of the benchmark binaries are larger than the level 2 unified cache, so it is likely that the

memory hierarchy will be exercised just by fetching instructions, and probably more when data

accesses are accounted for. Most benchmark binaries reduce in size when the compiler optimisa-

tion level is increased. Additional optimisations such as code inlining (-O3 -funroll-loops) and loop

48



Synthesis

unrolling (-O3 -finline-functions) tend to increase the binary sizes with compared to -O3 alone.

2.3.6 Arithmetic operations in benchmark programs

Benchmarks were traced with sim-profile. Tables C.1, C.2, C.3 on pages 319–321 show the number

of integer operations for arithmetic, Mediabench and SPEC benchmarks. Tables C.5, C.6, C.7 on

pages 323–325 express the number of integer arithmetic instructions as a percentage of total in-

structions retired.

Similar tables are shown for single and double precision floating point operations are in Tables C.9–

C.15 on pages 327–333.

2.4 Synthesis

Throughout this thesis synthesis results are presented to provide delay, area and power estimates

of digital circuits. Most digital circuits are described in synthesisable VHDL. The primary tools

used were Synopsys VHDL Analyser (version Y-2006.06-SP2) and Synopsys Design Compiler (DC)

(version B-2008.09-SP2). Each individual arithmetic unit tested was driven and loaded by a unit-

sized D flip-flop(DFF), and synthesised with high compiler effort and typical-conditions wire

load model.

A single target library was consistently used for the project to provide a fair comparison between

circuits. The synthesis library used was the TSMCArtisan 0.18 μmprocess 1.8 V SAGE-X™ standard

cell library, originally released in 2000. It provides basic logic cells, arithmetic cells, and register

file cells in a number of sizes and drive strengths, including low-power variants [Art, 2002].

The synthesis and simulation tools discussed in this chapter were used in the next chapter to derive

and verify fundamental arithmetic results, used later to design approximate arithmetic units.

49



Chapter 2: A Brief Review of Computer Architecture and Digital Arithmetic

Table 2.5: File sizes of the Arithmetic,Mediabench and SPEC benchmarks, in kB.

Benchmark -O0 -O1 -O2 -O3
-O3 -O3

-funroll -finline

arithmetic

calc pi 204 204 204 204 204 204
dhrystone 228 224 224 224 224 224
linpack 232 220 220 220 224 232
livermore 560 524 524 524 524 524
whetstone 244 240 240 240 240 240

Mediabench

ADPCM
216 216 216 216 216 216
216 216 216 216 216 216

EPIC
356 336 336 336 336 364
352 320 320 320 320 344

G.721
244 240 240 240 240 244
240 240 240 240 240 244

ghostscript 4088 2928 2920 3080 3080 3620

JPEG
528 452 452 476 476 544
604 484 488 496 496 560

Mesa

2012 1316 1300 1372 1372 1664
2088 1368 1352 1428 1428 1724
2008 1316 1296 1372 1372 1656

mpeg2play
508 436 432 436 436 460
404 360 360 360 360 384

PEGWIT 408 348 348 364 364 376

RASTA 956 908 908 904 904 910

SPEC

255.vortex 1860 1564 1548 1576 1580 1636
256.bzip2 336 296 296 320 324 388
300.twolf 1052 724 712 712 716 916
197.parser 644 540 536 604 608 800
188.ammp 704 704 704 704 548 704
181.mcf 308 292 292 292 296 312
183.equake 332 332 332 332 304 332
gcc 4836 3436 3392 3680 3684 4484
179.art 316 316 316 316 308 316
175.vpr 744 592 584 592 596 676
164.gzip 500 460 460 468 472 536

50



Chapter 3

������ ��	 
���
���
���

�� 
�
�����
�


�����
���
��

“Errors using inadequate data are much less than those using no data at all.”

Charles Babbage (1791–1871)

This chapter reviews digital arithmetic analyses and techniques found in the literature,

with examples of probabilistic computing and arithmetic approximation. Also included

are studies validating results found for approximate arithmetic units, and basic properties

of commonly executed arithmetic instructions.



Chapter 3: Theory and Applications of Arithmetic Approximation

Fundamental limits restrict the maximum instruction execution throughput for

computer processors. Firstly, there is a control limit, arising from instructions such

as branches that direct the execution of the program. Secondly, the availability of

physical hardware to execute instructions in the program flow impose a structural limit. Thirdly,

data dependencies between a data producing and a data consuming instruction impose a data flow

limit [Lipasti and Shen, 1998].

In a superscalar processor,multiple independent instructions can be executed simultaneously. Adding

extra hardware can ease the structural limit, but this does not reduce the number of dependencies.

In this case the control and data flow limits are exacerbated with increasing parallelism.

Approximation and prediction are used to break the data and control flow limits by providing a

speculative result before it would normally be available, so that dependent instructions can begin

execution earlier. The dependent instructions execute in a speculative mode until the exact result is

known, and checked against the speculative result. In the casewhere the speculative result is correct,

the speculative execution contributes to an increase in throughput. In the case where the exact

result is incorrect, all of the dependent operations must be executed again. This is likely to be costly

because time is taken to reset the internal machine state, and potentially re-execute instructions

that might have already been ready to retire. Hence, the required probability of correctness for a

unit in a speculative scheme is usually higher than 50. Throughout this thesis the probability of

correctness of a unit shall be referred to as the unit’s correctness.

Branch prediction and other speculation schemes have been common in high performance micro-

processor designs formany years [Com, 1998; SPA, 1992; IBM, 2007; Price, 1995]. Branch prediction

is a much researchedmethod of increasing the overall throughput of general purpose processors by

speculating on the predicted outcome of branch instructions [Yeh and Patt, 1991, 1992, 1993; Chang

et al., 1997]. It can require a prediction accuracy greater than 95 [Chang et al., 1994]. Multi-valued

schemes predict the outcome of a data value such a load target address rather than a binary out-

come such as branch-taken or branch-not-taken, and were common in the 1980s. More elaborate

schemes involving state machines and branch history buffers were introduced in early PowerPC

and Intel Pentium Pro architectures in the early 1990s [Lipasti and Shen, 1996]. The branch his-

tory buffer is an example of a multi-valued control speculation. Arithmetic data value speculation

(ADVS), the topic of this thesis, is also amulti-valued speculation scheme. The results of arithmetic

operations are approximated using specialised hardware, and are available for speculation before

the exact arithmetic result is known.

52



Methods of approximation

In the late 1990s a primary focus of computer architecture research was on reducing the latency of

specific types of instructions (usually loads frommemory) by rearranging pipeline stages, initiating

memory accesses earlier, or speculating that dependencies to older stores do not exist [Lipasti and

Shen, 1996; Moshovos et al., 1998]. As pipelines became increasingly complex, design issues such

as buffer bandwidth and simultaneous memory access became prevalent.

This chapter presents results from the literature in the subjects of digital arithmetic and computer

architecture. Section 3.1 introduces logic function approximation, and establishes a system of clas-

sification for functional approximation. Section 3.2 presents theoretical results that can be used

to construct or analyse the approximate arithmetic hardware for an ADVS system. A summary of

existing value prediction and approximation schemes and hardware is presented in Section 3.3.

3.1 Methods of approximation

This section discusses twomethods of logic approximation that can be employed at the fine grained

logic level or on largemega-cells. Approximation techniquesmodify the properties of circuits more

than worst-case design allows so that the critical path delay is reduced, and the output is incorrect

in as few cases as possible. Ideally approximation methods should be systematic so that they can

easily be used on large structures with minimal intervention. It is also desirable that changes to the

circuit result in predictable changes to power, area, delay, and correctness.

Two methods of logic approximation are [Kelly et al., 2009]:

temporal incompleteness The output is read before the result is guaranteed to be correct. This

is called over-clocking in synchronous systems.

logical incompleteness The logic implementing a function is simplified so that the effect on

correctness is predictable, and the critical path delay is reduced. Signal wires,

or logic gates for corner cases can be removed, so that the critical path delay is

shortened.

Sections 3.1.1 and 3.1.2 discuss these techniques in more detail.

53



Chapter 3: Theory and Applications of Arithmetic Approximation

3.1.1 Logical incompleteness

A circuit is logically incomplete if the output cannot be evaluated correctly for every input com-

bination. Logical incompleteness can be used on small or large structures. A simple method is to

remove wires and gates on data paths that are particularly slow, or that impose additional overhead

for corner cases. After the omission, the circuit is logically incomplete, hence the output will not be

correctly asserted in some cases.

Alternatively, the function output could be made to be asserted when it would otherwise not be.

This would correspond to adding additional terms when the logic function is represented in it’s

canonical form, as a sum of minterms.

Adding or removing logic can decrease the critical path delay, however, in most cases the most

significant delay reduction is realised when the modified logic is re-factored; often a faster imple-

mentation of the structurally incomplete circuit can be found. In this project many arithmetic units

were designed this way.

Experiments were performed to identify which input combinations occurred frequently, and which

occurred rarely. This information was used with different circuit topologies to find the least used

static data paths. Other simplifications can be made at the conceptual level. For example in adder

circuits carries are unlikely to propagate through many bits, but they could be generated from any

of the input bits. In this case the adder can be divided into smaller sections that allow carries to

propagate only a short distance. The approach is discussed in Section 3.2.1.6.

3.1.1.1 Logic function approximation

A systematic method of functional approximation was developed, anticipating that smaller func-

tions or control blocks would often lie on the critical path, or that most larger structures would be

implemented by approximating the constituent functional blocks.

Logic functions are deterministic, and have a finite set of input and output variables. It is therefore

possible to systematically approximate logic functions with specific correctness targets. A program

called logicApprox was developed to transform an arbitrary logic function f to an approximate

function f ′, for a given correctness target.

logicApprox changes the output of the approximated function for selected input combinations so

that the number ofminterms in the canonical representation ismaximally reduced. Source code for

logicApprox is shown in Section B.2, and an algorithm is presented in Algorithm 3.1 on the facing

page.

54



Methods of approximation

Algorithm3.1 logicApprox---An algorithm to introduce errors to a logic function
up to a maximum error count. The induced errors are intended to simplify the
implementation and reduce circuit delay at the expense of correctness. The
function blocks o f size below finds all of the partitions of all of the possible
input combinations---these are visualised as the groupings on a Kanaugh Map.
The function bits to assert inspects all of bits in a partition and determines how
many bits need to be flipped so that all of the bits in the partition are the same.
Each flipped bit is an inserted error.

bits_asserted ←  {Each asserted bit is an error that has been introduced.}
{Start with large blocks and progressively use smaller and smaller contiguous blocks.}
for i = ⋯ inputs do
{Find the blocks where asserting as few bits as possible will force every bit in the block
to be the same.}
{Try to assert as few ones as possible.}
for all blocki ∈ blocks_of_size(inputs−i) do
(block, assertions)←min_bits_to_assert(blocki , )
if bits_asserted + assertions < max_errors) then
assert_block(block, )
bits_asserted ← bits_asserted + assertions

end if
{Try to assert as few zeroes as possible.}
(block, assertions)←min_bits_to_assert(blocki , )
if bits_asserted + assertions < max_errors) then
assert_block(block, )
bits_asserted ← bits_asserted + assertions

else
goto done

end if
end for

end for

55



Chapter 3: Theory and Applications of Arithmetic Approximation

(a) f (w , x , y, z) = wyz +wx +wy +wyz. (b) f ′(w , x , y, z) = w + yz.

(c) Canonical representation of f . (d) Canonical representation of f ′.

(e) Synthesised logic for f (w , x , y, z). (f) Synthesised logic for f ′(w , x , y, z).
Figure 3.1: An example of logic approximation using a Kanaugh map. An exact
logic function f is shown in 3.1a. The approximated function f ′ is derived by
modifying the function in a limited number of cases, shown in 3.1b. The canonical
implementation with AND, OR and NOT gates is shown in 3.1c. Synthesised
implementations of f and f ′ are shown in 3.1e and 3.1e, respectively.

56



Methods of approximation

An example of using logicApprox on a simple 4 input function is shown in Figure 3.1. In this case a

single error, shown in red, was introduced by asserting f ′ when (w , x , y, z) = (, , , ). Figures 3.1c
and 3.1d show the reduction of logic, when implemented directly from the canonical representa-

tion. However, when the f and f ′ are synthesised with modern synthesis tools, the cells used to

implement the function are often changed, depending on the synthesis constraints, and proper-

ties of the target library. Direct implementations using the TSMC Artisan 0.18 μm process 1.8 V

SAGE-X™ standard cell library both have a critical path delay of 294 ps, so the loss in correctness

does not improve the latency. Figures 3.1e and 3.1f show synthesised versions using the Synopsys

Design Compiler. The critical path delay was reduced to 239 ps and 114 ps respectively for the exact

and approximate functions. The error of /=6.25 results in a 52 reduction in latency in this

case.

An n input binary logic function has n distinct inputs. By specifying the maximum number of

erroneous input cases k, the maximum probability of error is thus k/n , assuming equally likely

inputs. In the example in Figure 3.1 a logical 1 was introduced to reduce the number of minterms.

It is also possible that the output from certain an input combination could be forced to 0 tominimise

the number of minterms. The user can specify the total number of assertions, either 1 or 0, and

optionally force the direction of the changed output, called a positive or negative assertion.

The logicApprox program:

• can automatically decide to make positive or negative assertions to reduce the number of

minterms;

• operates on functions with many inputs;

• will only assert output bits up to the maximum specified if required, so error is not unnec-

essarily introduced;

• includes an arbitrary tie breaker if two or more input combinations result in the same prob-

ability of correctness (i.e., the input is ‘symmetric’); and

• weights each input combination equally

For real data, some input combinations occur much more frequently that others. logicApprox does

not consider input weightings, but it is trivial to modify the algorithm to account for this.

logicApprox does not perform logic minimisation, and so produces verbose output for non-trivial

circuits. Instead, the output of logicApprox is formatted to be read by the program Espresso [Univer-

sity of California, Berkeley, 1994], a logic minimisation tool developed at University of California,

57



Chapter 3: Theory and Applications of Arithmetic Approximation

Berkeley. Espresso implements the ESPRESSO heuristic for logicminimisation. It is not guaranteed

to determine the global minimum, but it will produce a result that is free from redundancy [Bray-

ton et al., 1984]. The minimised function f ′ can then be efficiently represented and easily ported to

hardware description languages for implementation.

Logic function approximation can be used effectively at a fine grained level as shown here, but

does not necessarily extend to larger composite units such as arithmetic units. In large circuits that

are composed of regularly repeated cells, the probability of correctness is strongly influenced by

the probability distribution of the input operands. When compounded thorough many cells, the

probability of error can accumulate, and the assumption of uniform random inputs can become

less valid.

3.1.2 Temporal incompleteness

A circuit is temporally incomplete when its output is sampled before it is guaranteed to be correctly

asserted. In a synchronous system this is called over-clocking. The output is sampled from logic

between two timing elements at a regular interval, determined by the clock signal. The correctness

of the circuit is determined by the sampled value that might or might not need to change in order

to assume the correct value. Hence, the probability of correctness depends on the current correct

value, and the previous value of the circuit. In addition the sampled value might not have assumed

a distinct voltage representing a 1 or 0. This introduces a state called metastability, discussed in

Section 3.1.2.

Temporal incompleteness can also be applied to asynchronous circuits. The evaluation time of an

asynchronous circuit is not known ahead of time. The next functional unit cannot start execution

until a ‘completed’ signal is provided by the prior circuits. The evaluation of the ‘complete’ signals

is often burdensome to the circuit, as it imposes additional area and capacitance for wiring and

logic. Simplifying the completion logic could have the effect of signalling completion earlier than

the output might be correctly asserted, and potentially speeding up the asynchronous circuit by

removing circuit load on the critical path.

Asynchronous circuits were not investigated as part of this research, which was dedicated to mod-

ifying a common RISC processor.

Metastability

Sequential logic components (latches or flip-flops—DFF) have setup and hold times during which

58



Fundamental arithmetic results

the inputs must be stable. If these conditions are met, then the correct output is present at the

timing element output after the appropriate delay for the circuit. If the timing element input is not

guaranteed to be at a valid logic level during the setup and hold time there is a chance that the

circuit will become metastable. This can occur if the driving circuit is still changing the voltage at

the clock edge, or in the presence of noise on the input node.

Metastable behaviour includes latch output voltage being held between logic thresholds, or toggling.

A metastable circuit can hold is output at a voltage between logic levels, or it can cause the output

to oscillate. The feedback mechanisms in timing elements can propagate the metastable state for

in indeterminate time. Typically changes in the voltage levels will eventually force the output back

into a valid state.

The probability of metastability can be reduced by using synchroniser circuits. Synchronisers ef-

fectively work by inserting additional timing elements after a possibly metastable latch, to provide

the output time to settle to the desired logic level. The second latch can operate on the same clock

as the metastable latch, or on a phase-shifted clock. The probability of sampling a metastable input

at the synchroniser decreases exponentially with the amount of buffering time [Weste and Harris,

2004].

Temporally incomplete circuits must consider the effects of metastability when setting the over-

clocked frequency. The acceptability of passing metastable output to later logic stages, and the ad-

ditional latencies due to synchronisation offsetting the gains of over-clocking should be balanced

for the application and technology.

A simple investigation of a temporally incomplete multiplier is shown in Section 5.2.6.1.

3.2 Fundamental arithmetic results

This section summarises observations, properties and theorems presented in the literature that are

relevant to the latency or accuracy of basic digital arithmetic operations.

3.2.1 Addition and subtraction

Addition is conceptually the easiest arithmetic operation to understand and implement. Simple

adders can be implemented serially using very few components but have high latency. Parallel

59



Chapter 3: Theory and Applications of Arithmetic Approximation

adders use more components, but reduce the total calculation time by spreading the work among

parallel data paths. The worst-case latency for addition, even in parallel prefix networks, is de-

pendent on the time required to propagate a carry from the least significant bit (LSB) to the most

significant bit (MSB). The latency of approximate arithmetic units is less than the worst-case la-

tency, introducing a probability that the result is incorrect. In the following sections the expected

carry-length of an addition is shown to be much less than the worst-case carry length, exposing a

method to reduce the latency without significantly reducing the probability of correctness.

3.2.1.1 Average worst-case carry length

Addition is performed by summing digits at each position of significance for the input, and produc-

ing a sum and carry digit for each. Each carry is propagated to the next highest digit and summed

until there are no further digits to sum. The worst-case time is thus the time required to propagate

a carry digit from the least significant digit to the most significant digit. Modern adder circuits use

innovative implementations to operate on several digits at a time, and thus reduce the worst-case

delay. However, the worst-case delay is very unlikely, as only few input combinations will produce

this pathological case.

N digit adder circuits can be constructed of single-digit full-adder(FA) cells, that each only op-

erate on a single digit. Considering a long-hand addition, in each position of significance in the

result, the carry may be generated, propagated, or killed. If there are no carries in the addition,

each bit can be independently added in parallel to form the correct sum. If the operands cause a

carry to be generated in the position of least significance, and propagated though each digit, then

the delay will be the worst-case delay.

The above cases are rare compared to all the possible input combinations. With many input digits,

there can be several cases where a carry is generated, propagate over a few digits, and then killed.

The worst-case carry length is the longest number of digits that a carry is propagated over. Thus,

the delay will be proportional to the average worst-case carry length (AWCCL) of all possible input

combinations.

The AWCCL is much smaller that the worst-case carry length, but it is notoriously difficult to cal-

culate exactly. Even determining the exact number for a large number of digits via simulation is

difficult, due to the enormous number of input combinations. Instead, mathematical approaches

to find the range of the AWCCL have been undertaken. The original upper bound on the AWCCL

was produced by Burks et. al. before the first electronic computer had even been built [Burks et al.,

1946; Goldstine and von Neumann, 1963]!

60



Fundamental arithmetic results

Given the following:

PN (l) ≤min [, N − l + 
l+ ] ,

where PN (l) is the probability of there existing a carry-chain of length l or greater in an N bit

addition, the average worst-case carry length aN is

aNBurks ≤ log (N) . (3.1)

This upper limit was reduced by Briley to [Briley, 1973]

aNBriley ≤ log (N) − 

. (3.2)

Knuth formulated an expression for the average worst-case carry length using rigorous asymptotic

analysis, and gave the result in terms of the word length N , in base b. The base- result is:

aNKnuth = log(N) + γ
ln() + / + log ( /) − δ(N) + O(n−), (3.3)

where

δ(N) = 
ln() ∑k≥R(Γ (−πik

ln 
) exp(πik log(N )))

and γ is the Euler-Mascheroni constant, the limiting difference between the harmonic series and

the natural logarithm:

γ = lim
n→∞

[( n∑
k=


k
) − ln(n)] = ∫

∞


( 
⌊x⌋ −


x
) dx

= . . . .

δ(N) is bounded by


ln() ∑k≥ ∣Γ(
−πik
ln() )∣ = 

ln() ∑k≥(
ln()

k sinh(πk/ ln()))



,

hence

∣δ(N)∣ ⪅ ..

This unbounded summation is impractical for an approximate evaluation; in practice Briley’s upper

bound is sufficient to estimate the AWCCL for N bit addition.

61



Chapter 3: Theory and Applications of Arithmetic Approximation

3.2.1.2 AWCCL in asynchronous designs

A qualitative method of evaluating the average worst-case carry length in N bit dual-rail, ripple

carry addition was presented when it was anticipated that “Future designs of parallel digital com-

puters will be concerned with increased accuracy (precision). . . one basic speed limitation to these

operations is the time required to propagate carries in addition or borrows in subtraction” [Hendrick-

son, 1960]. The authors championed asynchronous designs as a solution. An example dual-rail full

adder cell from [Murakami et al., 1996] is shown in Figure 3.2, and can be daisy chained to from an

N bit ripple carry adder. Each adder cell i for bits ⋯N provides true and complementary outputs

Si , Si , Couti and Couti .

The equations for the adder output bits are:

Ci = (AiBi + (Ai + Bi)Ci−) .O
Ci = (AiBi + (olnAi + Bi)Ci−) .O
Si = (AiBi + AiBi)Ci− + (AiBi + AiBi)Ci−

Si = (AiBi + AiBi)Ci− + (AiBi + AiBi)Ci−

The true and complementary carry signals are gated by an operate signalO to regulate the operation

of the adder unit. Completion of the adder can be detected by the complete signal:

complete = (S + S)(S + S)⋯(SN−SN−) (3.4)

Hendrickson also provides an approximate formula for the average worst-case carry length:

aNHendrickson ≈ log( N/). (3.5)

Garside performed a study of worst-case carry length for the purpose of optimising adders for asyn-

chronous operation [Garside, 1993]. A trace of the synthetic benchmark dhrystonewas captured on

an ARM platform, and the worst-case carry length for address and data calculations was recorded.

It was found that 32 bit data operations had an average carry length of around 18 bits, and address

calculations had an average carry length of about 9 bits. The combined average was less than 13 bits.

This was significantly higher than other empirical evidence.

62



Fundamental arithmetic results

Figure 3.2: An example dual-rail full-adder cell, from [Murakami et al., 1996].

Another study compared the average calculation time of different adders to a ripple carry adder,

including serial adders (conditional sum adder and completion-detection conditional sum adder),

tree adders (carry-lookahead adder), andhybrid adders (carry-skip adder and carry-select adder) [Franklin

and Pan, 1994]. It was found that the average latency of the serial, tree and hybrid adders was 20–

40 faster than the ripple carry adder, and instruction throughput could be increased by up to 15

in an asynchronous DLX design executing randomly generated instructions.

The performance gains from asynchronous parallel additions exploiting the short AWCCL are crit-

icised due to the overhead imposed by the completion circuit required to detect when an adder has

finished calculation. The very wide AND (or NOR) structures required by (.) impose an area cost,

and also a delay cost especially due to logical fan-out [Kinniment, 1996]. An asynchronous paral-

lel adder is shown to increase performance only over simple adder designs such as a conditional

sum adder, and only in limited circumstances where area budgets and regularity limit the choice of

available adders. In particular, where speed is important, asynchronous designs can perform worse

than high-performance adders and consume more power.

A summary of the predicted average worst-case carry length, in bits, is shown in Table 3.1.

3.2.1.3 Empirical studies of AWCCL

A comprehensive study of worst-case carry length was performed by Li [Li, 2002]. The simulator

SimpleScalarwas used to trace the execution of several SPEC CPU2000 benchmarks compiled for the

PISA target. The AWCCL was recorded for every addition or subtraction observed in the simulated

63

a1172507
Text Box
 
                          NOTE:  
   This figure is included on page 63 
 of the print copy of the thesis held in 
   the University of Adelaide Library.



Chapter 3: Theory and Applications of Arithmetic Approximation

Table3.1: Upperboundson theAWCCL, calculatedusingdifferentmathematical
models and expressed in bits.

Adder width (bits)
AWCCLModel

aNBurks aNBriley aNHendrickson

4 2.000 1.500 2.322
8 3.000 2.500 3.322
16 4.000 3.500 4.322
32 5.000 4.500 5.322
64 6.000 5.500 6.322
128 7.000 6.500 7.322

execution of the benchmarks. The addition and subtraction operands were recorded in categories,

derived from the calculations of the program counter (PC), addition and subtraction instructions,

load and store memory targets, branch targets, and the stack pointer.

The overall AWCCL was found to be 1.7 bits, but the results were extremely biased by the inclusion

of the PC address calculation in the results. In each normal clock cycle, the PC is incremented to

form the next PC, but can be set to other values when a jump or branch instruction is executed.

The average worst case carry length for PC adds in all SPEC CPU2000 benchmarks was 0.9 bits. The

results of Li’s experiments are reproduced in Table 3.2.

Register-register instructions source their operands from a register and write their result to a regis-

ter. The PISA ISA is a load-store architecture, so no data operands are sourced or written directly to

memory in a single instruction. Memory operations calculate a memory address for loads or stores

by adding a constant displacement to a base address. Branch instructions calculate a branch target

as a constant displacement added to next PC. Stack operations are register or memory operations

where one operand is the stack pointer (SP). Stack pointer operations manipulate the SP, and stack

memory operations manipulate data on the stack.

Li notices a large proportion of register additions that contain a worst-case zero length carry. Li

attributed this to the add instruction being used to move the contents of one register to another,

such as the assembler example provided below:

1 004002a8 <main+b8> addu $v1[3],$zero[0],$v0[2] # $v1[3]<-$v0[2]

64



Fundamental arithmetic results

Table 3.2: Summary of Average Worst-Case Carry Length for SPEC CINT2000
benchmarks.

Category
Normalised AWCCL Sum

() (bits) (instructions)

PC 53.5 0.976 140,790,091,129
Register 15.6 2.688 41,916,975,483
Memory 22.7 2.583 63,637,439,363
Branch Taken 2.7 2.014 6,637,326,120
Branch Not Taken 1.4 1.755 2,932,744,517
Stack Pointer 1.4 1.482 3,328,690,511
Stack Memory 2.8 1.069 5,326,388,846

Overall 100.0 1.655 264,569,655,969

3.2.1.4 AWCCL for signed arithmetic

[Yuen, 1974] analysed the average carry length of two’s complement numbers for the cases when

both operands are positive, opposite, or both negative. Yuen’s analysis restricts the range of possible

operands to −M to M − . Hence, the upper N − M bits are sign extended. Each of the following

cases is considered:

1. Both addends positive, with probability p.

2. One addend positive, one negative, and the result positive, with probability p( − p).
3. One addend positive, one negative, and the result negative, with probability p( − p).
4. Both addends negative, with probability ( − p).

The AWCCL, aN , for signed twos complement numbers is shown in (.).

aNYuen ≈ −p/ + p. (log(M)) + ( − p)(N − M) (3.6)

Table 3.3 shows the effect of increasing the probability of negative operands on the average carry

length. Operands with a small magnitude and low probability of being positive have the highest

AWCCL, because the long chain of asserted leading sign bits will propagate or generate carries, but

cannot kill them.

65



Chapter 3: Theory and Applications of Arithmetic Approximation

Table 3.3: The AWCCL calculated for signed (two’s complement) 32 bit integers,
where p is the probability that both operands are positive, and themagnitude of
each operand is restricted to the lower M bits.

p ()
M (bits)

4 8 16 20 24 28 32

0 28.000 24.000 16.000 12.000 8.000 4.000 0.000
10 25.350 21.850 14.750 11.182 7.608 4.031 0.450
20 22.700 19.700 13.500 10.364 7.217 4.061 0.900
30 20.050 17.550 12.250 9.547 6.825 4.092 1.350
40 17.400 15.400 11.000 8.729 6.434 4.123 1.800
50 14.750 13.250 9.750 7.911 6.042 4.154 2.250
60 12.100 11.100 8.500 7.093 5.651 4.184 2.700
70 9.450 8.950 7.250 6.275 5.259 4.215 3.150
80 6.800 6.800 6.000 5.458 4.868 4.246 3.600
90 4.150 4.650 4.750 4.640 4.476 4.277 4.050
100 1.500 2.500 3.500 3.822 4.085 4.307 4.500

Figure 3.3: Average worst-case carry length for signed two’s complement
addition, with each operand magnitude constrained to M bits and probability p
that each operand is negative.

66



Fundamental arithmetic results

3.2.1.5 Mathematical analysis of circuit depth and carry length

Ladner and Fischer published a rigorous mathematical approach to parallel prefix computation,

including addition. They considered the size S, depth D of overall circuits, and fan-in f as variables

of circuit elements to predict delay [Ladner and Fischer, 1980]. The circuit size represents the total

number of circuit elements required to construct the circuit, where each circuit element may be

a simple cell such as a full-adder. The size S directly affects the circuit area. The depth of the

circuit D is the length of the longest path in the circuit, and directly affects the circuit latency. Fan-

in f is the number of inputs for each circuit element, and can affect the overall delay and area of a

circuit.

Addition circuits have been proposed with constant fan-in and Ω(logN) depth [Reif, 1993], as

well as near-linear size, constant depth, but having Ω(N) elements of unbounded fan-in, making

them impractical for implementation [Chandra et al., 1985] (recall that f (n) ∈ Ω(n) is bounded
below asymptotically). It has previously been shown that the lower bound on the depth required to

calculate an N bit binary addition with constant fan-in f is Ω(log f N).
Reif extended this analysis to parallel prefix circuits. Anupper boundwas derived for the probability

of correctness given the delay and depth, where the delay is the number of parallel stops required

for evaluation, and depth is the length of the longest path in the circuit. It is shown that [Reif, 1993]:

There are Boolean circuits for addition and subtraction of random N bit binary num-

bers with:

1. constant fan-in f , linear size, and depth O (log((α + ) log(N))), with error
probability at most N−α ; and

2. errorless Boolean circuits with constant fan-in except for a single node, linear

size, depth O(log n), and delay at most O (log((α + ) log(n))), with error
probability at least  − n−α .

3.2.1.6 Carry length versus probability of correctness

The average worst-case carry length measures the number of carry bits that are needed to correctly

calculate 50 of all additions. A more useful result for the design of approximate arithmetic re-

lates the probability of correctness to the worst case carry length. This relationship can be used

to determine both the delay of the adder and the probability of correctness. Using the AWCCL

will result in a correctness of approximately 50. To design for a specific correctness, a more gen-

eral result is needed. This section investigates approximate distributions of maximum carry length

67



Chapter 3: Theory and Applications of Arithmetic Approximation

Figure 3.4: An 8bit approximate Liu and Lu adder, with maximum carry length
of 3 bits (N = , l = ).

vs.c̃orrectness.

An approximate distribution for the maximum carry length is shown in (.), and has been proven

to be a lower bound on correctness [Pippenger, 2002]. It is used in this thesis as a pessimistic

approximation to the performance of an adder with a maximum carry length of l bits.

PPippenger(N , l) = e−N/
l+

(3.7)

An analysis of the probability of correctness in an adder for uniform random inputs is shown in

(.). A corresponding adder was published based on this analysis [Liu and Lu, 2000], where all

carries propagated though any l bits segment were separated. In this thesis the adder is referred to

as Liu and Lu’s adder. An 8 bit adder with 3 bit carry segments is shown in Figure 3.4.

PLiu and Lu(N , l) = ( − 
(l+)

)(N−l−) (3.8)

3.2.1.7 Analysis of reported probability of correctness

Results from the literature providing a simple equation to calculate the probability of correctness

for aN bit Liu and Lu adder with amaximum carry length of l bits do not yield the exact probability

of correctness for uniform random inputs. (.) is merely a lower bound, and (.) is incorrect, as

explained below.

68



Fundamental arithmetic results

In the derivation of (.) it is stated that “if we only consider l previous bits to generate the carry,

the result will be wrong if the carry propagation chain is greater than (l + )” and “. . .moreover, the

previous bit must be in the carry generate condition” [Lu, 2004]. Both statements are incorrect [Kelly

and Phillips, 2005].

In analysis of adder circuits, it is useful to define the result of an N bit addition as the product of

generate gi , propagate pi , and annihilate ai signals for each digit i =  . . . (N-) in the addition

(where i =  for the least significant digit) [Parhami, 2000].

If we consider any l bit segment in an N bit addition, in the Liu and Lu adder a carry will not be

propagated from the l-th bit to any other bit. Hence the result in the (l + )-th bit will be wrong.
Therefore the Liu and Lu adder can only provide correct answers for a carry length less than l bits.

The approximate result will be wrong if any carry propagation chain is greater than or equal to l bits.

Now, consider a very long carry string of length l , (gi pi+ . . . pi+l−). As demonstrated above, the

most significant l bits in the l bit segment will be incorrect, as they will not have a carry propagated

to them. Thus, it is possible that an incorrect result can be produced without requiring that the

previous bit to the most significant l bit segment is a carry generate—it might be a carry propagate.

Also, two or more disjoint carry lengths in N bits can produce a spurious result if l ≤ N/.
The probability of any input being a generate signal is P(gi) = / = /, and for a propagate signal
P(pi) = /, because it can occur in two distinct ways. Hence the probability of each l bit segment

producing an erroneous result is actually /l+. There are also (N− l+) overlapping l bit segments

required to construct the (N , l) bit Liu and Lu adder.
The result in (.) is arrived at by Liu and Lu’s assumption “the probability of (each l bit segment)

being correct is one minus the probability of being wrong . . .we multiply all the probabilities to produce

the final product”. As discussed above, the Liu and Lu adder will produce spurious results if there

exists any carry lengths ≥ l bits in the N bit addition. Hence, there are many probability cross terms

not represented in (.). The probabilities of each l bit segment producing a carry out is fiendishly

difficult to calculate as each l bit segment overlaps with (l − ) to (l − ) other such segments.

3.2.1.8 BackCount algorithm

In order to analyse Liu and Lu’s quoted probability of correctness it is necessary to know the actual

probabilities of success P(N , l) for each word lengthN and carry segment l . Exhaustive calculation

is not feasible for large word lengths, as there are N distinct input combinations for a two operand

N bit adder. Set theory and probabilistic calculation are difficult due to the overlapping nature of

69



Chapter 3: Theory and Applications of Arithmetic Approximation

the l bit segments. For these reasons, a counting algorithm was devised to quickly count all the

patterns of carry segments that would produce an incorrect result in the Liu and Lu adder.

For any N and l the number of carry strings which cause the failure of the Liu-Lu adder out of N

possible inputs is counted. A carry string of length l bits or more will cause the adder to fail. The

algorithm works efficiently if the result for P(N , l + ) is already known, as these combinations can

be discounted when counting the violations in P(N , l). For this reason we refer to the algorithm

as the BackCount algorithm.

Consider a carry string of exactly length l . The string consists of a generate signal gi and (l − )
propagate signals pi+ . . . pi+l−. Furthermore, the next bit, if it exists, must be an annihilate signal

ai+l , or the start of another carry string gi+l . There are two possible ways in which a propagate

signal can occur, but only one way in which a generate or annihilate signal can occur in position

i. For an arbitrary l bit segment there are r input signals (bits) to the left and s input signals to

the right. So, l−̇r+s possible offending combinations are counted. However, from this we must

subtract all combinations containing carry lengths longer than l bits to avoid double counting. This

is achieved by recursively calling the BackCount algorithm on the s and r bits on either side of the

l bit segment being considered, until r and s are too small.

To avoid double counting all the combinations involving multiple carry strings of length l in the

N bit addition, we must consider each case individually. This is the most time consuming part of

the algorithm, as it is computationally equivalent to generating a subset of the partitions of N . The

number of partitions of N increases exponentially, and so the process of countingmany small carry

chains for l ≪ N is very time consuming. However inefficient this may be, it has been verified

to produce correct results for 8 bit addition against exhaustive calculation. The region of interest

is generally l > log(N), the expected-worst-case-carry length (see (.)). The BackCount algo-

rithm is inefficient for l ≤ log(N), but the calculation is reduced greatly from considering all N

input combinations. MATLAB code for the BackCount algorithm is provided in Section B.1. The

algorithm is shown in Algorithm 3.2.

Table 3.4shows the number of incorrect input cases for 8 bit addition with a maximum carry length

of l bits, using the BackCount algorithm compared to (.) and (.).

A simple case exists when l = , and is included to highlight the difference in prediction against

other methods. A zero-length-maximum-carry cannot exist if there are any generate signals. There

are four distinct input combinations per bit and three that are not a generate signal. Hence the

proportion of maximum-zero-length-carries is given below as

70



Fundamental arithmetic results

Algorithm 3.2 backCount---An algorithm that computes the probability of a
k bit carry inN bit addition. It is simpler to exhaustively calculate all the instances
where there are carry chains of length k +  bits and subtract them from all
possible combinations. A divide and conquer approach is used to partition
sections to the left and right of any k + i bit segment being considered. Note
that the segments are asymmetrical, because the carry chain must start with a
generate signal, and can propagate indefinitely or be killed. The implementation
shown in the appendices uses tables to record temporary results from repeated
recursion to reduce the execution time.

total_cnt ← 
for all carr y_chaini ∈ length(k + ⋯ N) do
for all placement j ∈ position_of(carr y_chaini ,N) do

bitsle f t ← left_of(placement j)
bitsright ← right_of(placement j)
cnt j ← combinations_of(backCount(bitsle f t , i − ), backCount(bitsright , i − )) ∗
num_permutations(carr y_chaini)
total_cnt ← total_cnt + cnt j

end for
end for

Table 3.4: Predicted number of errors for an N=bit logically incomplete
approximate adder, with worst case carry length of l bits.

Maximum carry length l (bits) Exact BackCount PLiu and Lu PPippenger

0 58975 58975 65600 64519
1 43248 43248 65536 63520
2 23040 23040 65280 61565
3 10176 10176 64516 57835
4 4096 4096 62511 51040
5 1536 1536 57720 39750
6 512 512 47460 24109
7 128 128 29412 8869
8 0 0 8748 1200

71



Chapter 3: Theory and Applications of Arithmetic Approximation

P(N , ) = N − N

N . (3.9)

3.2.1.9 Comparison of models of probability of correctness

Although the distribution given by (.) and (.) are not exact, they provide a sufficiently close

approximation for word lengths of 32, 64, and 128 bits. The distribution given by (.) approaches

the exact distribution for largeN because the proportion of long carry chains to all the possible input

combinations is smaller for long word lengths. However, Lu’s distribution is optimistic because it

does not consider all the ways in which the adder can fail. For instance, the predicted accuracy of

a 64 bit adder with an 8 bit carry segment, is calculated as PLiu-Lu(, ) = .. Results indicate

that the correct value is P(, ) = ., to 4 decimal places.

Figures 3.5a, 3.5b, and 3.5c show the predicted accuracy of the various methods for calculating the

proportion of correctly speculated results vs. the longest carry chain in the addition. Note that to

achieve the accuracies shownwith a worst-case carry length of l bits will require the designed adder

to use (l + ) bit segments.

3.2.1.10 Synthesis of Liu and Lu’s adder

32 bit Liu and Lu adders with increasing carry lengths were compared to a high performance Sklan-

sky adder. Sklansky adders and other high performance designs are discussed in Section 3.2.2. They

were synthesised using Synopsys Design Compiler and the TSMC Artisan 0.18 μm process 1.8 V

SAGE-X™ standard cell library. Both adders include a CIN and COUT signal. The worst case carry

length of the Liu and Lu adder was synthesised from ⋯ bits.

Table 3.5 shows synthesis results for the adders. A graphical representation is shown in Figure 3.6.

Both designs were synthesised assuming they are driven by and loaded with a unit sized DFF. No

other registers were connected to the design because the adder were assumed to complete in one

clock. The output flip-flop was counted towards the total area, and the output latch setup time

was added to the total latency.

The overall latency of the Liu and Lu adder increased with l bit carry length. The exceptions for

l =  and l =  were due to gate resizing on the critical path, because increasing l added more

capacitive load at each stage. Although the latency of Liu and Lu’s adder was favourable compared

to a ripple carry adder the Sklansky adder was much faster, even when the Liu and Lu adder had a

short maximum carry length. The Liu and Lu adder necessarily had a very high fanout at each cell

input.

72



Fundamental arithmetic results

0 2 4 6 8
0

20

40

60

80

100

Maximum carry length (bits)

P
ro

po
rt

io
n 

of
 c

or
re

ct
 a

dd
iti

on
s 

(%
)

 

 

Liu & Lu
Pippenger
Backcount

(a) 8 bit adder.

0 4 8 12 16
0

20

40

60

80

100

Maximum carry length (bits)

P
ro

po
rt

io
n 

of
 c

or
re

ct
 a

dd
iti

on
s 

(%
)

 

 

Liu & Lu
Pippenger
Backcount

(b) 16 bit adder.

0 4 8 12 16 20 24 28 32
0

20

40

60

80

100

Maximum carry length (bits)

P
ro

po
rt

io
n 

of
 c

or
re

ct
 a

dd
iti

on
s 

(%
)

 

 

Liu & Lu
Pippenger
Backcount

(c) 32 bit adder.

Figure 3.5: Probability of correctness of N bit adders with a maximum carry
length of l bits.

73



Chapter 3: Theory and Applications of Arithmetic Approximation

Table 3.5: Synthesis results of 32 bit Liu and Lu adder with various maximum
carry lengths, compared to a 32 bit Sklansky adder.

Adder
Carry Length Latency Area Power

(bits) (ns) (μm) Dyn. (μW) Leak. (nW)

Liu and Lu

1 2.12 0.014 31.47 19.54
2 2.96 0.032 43.64 29.74
3 4.52 0.066 51.01 31.25
4 4.87 0.067 53.25 34.71
5 4.64 0.076 54.70 40.33
6 5.37 0.092 56.02 43.21
7 6.14 0.107 57.08 45.99
8 6.65 0.122 57.82 48.91
9 6.92 0.136 58.53 51.56
10 7.56 0.149 59.21 54.04
11 8.09 0.162 59.84 56.40
12 8.74 0.174 60.44 58.65
13 9.39 0.186 61.35 60.78
14 10.03 0.197 62.01 62.81
15 10.67 0.208 62.64 64.74
16 11.30 0.218 63.07 66.55
17 11.92 0.227 63.55 68.22
18 12.57 0.236 64.12 69.79
19 13.22 0.244 64.52 71.28
20 13.87 0.251 64.93 72.66
21 14.52 0.258 65.33 73.94
22 15.17 0.265 65.67 75.11
23 15.68 0.271 65.88 76.23
24 16.24 0.276 66.21 77.20
25 15.89 0.280 66.34 78.05
26 16.49 0.284 66.62 78.78
27 17.08 0.288 66.84 79.41
28 17.67 0.291 66.98 79.94
29 18.26 0.293 67.13 80.36
30 18.82 0.295 67.19 80.70
31 19.40 0.296 67.23 80.94
32 19.58 0.314 68.05 84.97

Sklansky — 4.14 0.018 906.91 5.76

74



Fundamental arithmetic results

0 4 8 12 16 20 24 28 32
0

5

10

15

20

Maximum carry length (k bits)

La
te

nc
y 

(n
s)

 

 

Liu & Lu adder
Sklansky

Figure 3.6: Latency of a 32 bit Liu and Lu adders with k carry bits, compared to
a 32 bit Sklansky adder.

The latency of Liu and Lu’s adder was approximately equal to the Sklansky adder for l =  bits,

corresponding to a probability of correctness of less than 20 for 32 bit operands (see Figure 3.5c).

For a desired correctness of over 95, using Liu and Lu’s approximation of the expected correctness

from (.), a carry segment of at least 7 bits is required. As seen in Figure 3.6 and Table 3.5, the

latency of a 7 bit Liu and Lu adder with 7 bit carry segments is 6.14 ns, slower than the 4.14 ns exact

Sklansky adder.

As shown in Figure 4.2, the distribution of operand bit assertions is different for random numbers

compared to operands observed in benchmarks. Hence, the length of the carry segments required

might be different for the same expected correctness. In the case of integer addition, longer carry

segments are required for benchmark programs for a correctness above 90, shown in Figure 5.2.

Because a 95 correctness is required for a net throughput increase inADVS, the length of the carry

segments would need to be grater than 7 bits.

Hence Liu and Lu’s adder does not appear to be feasible for any application of approximate arith-

metic requiring high probability of correctness and low latency. Alternative approximate prefix

adders are proposed in Section 3.2.2, but were not examined further in this project.

75



Chapter 3: Theory and Applications of Arithmetic Approximation

3.2.2 Approximate parallel prefix adders

Parallel prefix adders use a carry recurrence relationship to propagate the carries through each bit

of the sum, and can be implemented with different topologies that trade fan-out, logic depth and

interconnect [Weste and Harris, 2004]. Some parallel prefix adders are:

Sklansky Theprefix carry fan-out is doubled at each stage so that anN bit adder is formed

in log(N) levels. The logic depth is minimal, but fan-out is high in the later

stages.

Kogge-Stone Fan-out is minimised by distributing the carry calculation using many wiring

tracks. This adder suffers from high interconnect area and delay.

Brent-Kung Additional logic levels are used to gradually generate carries, preventing high

fan-out in a single logic level, and reducing interconnect. The initial and later

levels are dedicated to generating many short-length carries, and the middle

stages to a few long-length carries.

Figures 3.7–3.9 show the parallel prefix adder topologies of the designs above, including possible ap-

proximate adders. Each circle represents a prefix cell that calculate the carry propagate and generate

signals. The adder LSB is on the right hand side, and the MSB on the left hand side.

The approximate adder units can be formed by removing prefix cells that sum carries greater than a

threshold length, or that have a high fan-out. If all the prefix cells in one logic level can be removed

the logic depth of the approximate adder unit can be reduced. Each of the exact adder units shown

are asymmetrical, so the probability correctness of each unit can be different. For example, bit 15 in

the approximate Brent-Kung adder will always be correct. This is not the case for the approximate

Sklansky adder. Other approximate designs are possible. Approximate parallel prefix adders were

not simulated or synthesised.

Liu and Lu’s adder provides a l bit carry path for every possible input bit, resulting in a high proba-

bility of correctness with relatively short carry chains. The approximate parallel prefix adders shown

above do not necessarily provide a minimum l bit path for all input bits, so the correctness distri-

bution can be different to Liu and Lu’s adder. Nonetheless, it is possible that the correctness is not

adversely affected for benchmark inputs, because benchmark operands can be of a smaller magni-

tude than the pruned adder cells.

Using the technique above, the approximate Kogge-Stone adder will have the same correctness as

Liu and Lu’s adderwith the sameworst-case carry length, l . However, in the case of theKogge-Stone

76



Fundamental arithmetic results

(a) Exact adder.

(b) Approximate adder.

Figure 3.7: An exact and approximate 16 bit Sklansky adder.

77



Chapter 3: Theory and Applications of Arithmetic Approximation

(a) Exact adder.

(b) Approximate adder..

Figure 3.8: An exact and approximate 16 bit Kogge-Stone adder.

78



Fundamental arithmetic results

(a) Exact adder.

(b) Approximate adder.

Figure 3.9: An exact and approximate 16 bit Brent-Kung adder.

79



Chapter 3: Theory and Applications of Arithmetic Approximation

adder, l is restricted to a power of 2.

3.2.3 Multiplication and Division

There is little research in the literature specifically about the theoretical probability of correctness

of approximate multipliers and dividers operating on general random inputs. However, in Sec-

tions 3.3.2 and 3.3.3 examples of approximate and probabilistic multipliers are provided.

Multiplication and division by constants

Reif characterises multiplier or divider circuits when operating with constant values. For the mul-

tiplication of a uniformly distributed random number x by an integer constant C ≥  [Reif, 1993]:

There are Boolean circuits formultiplication and division of a random ⌈log(C)⌉N bit

binary number by integer y, with

1. constant fan-in, linear size, depth O (log(β log(N))) and error probability at
most N−α ; and

2. errorless circuits with constant fan-in except at a single node, size O(N), depth
O(log(N)), but delay at most O (log(β) log(N)), with probability at least

 − N−α ,

where

b = ⌈log(C)⌉
α > 

C ≥ 

x ≥ 

β = −(α + )
log( − −b) .

Comparatively, the delay of a Wallace multiplier is O (log(N)) [Wallace, 1964]. However this

result cannot be directly applied in a microprocessor data path, because the multiplier and multi-

plicand are variable. This result might assist in a design where a multiplication or division operand

is constant, but cannot be directly used for variable inputs.

80



Applications of approximate arithmetic

3.3 Applications of approximate arithmetic

This section covers the applications of approximate arithmetic and speculation techniques. One

of the most common techniques for speculation of multi-valued results is prediction, rather than

approximation, where a data value is anticipated based on past values. Other approaches to approxi-

mation found in the literature include probabilisticcomputingwhere error is potentially introduced

at the transistor level [Chakrapani et al., 2006]. The following subsections address the prediction

and approximation of data values based on the arithmetic operation.

3.3.1 Addition and subtraction

Integer addition and subtraction are necessary operations for many instructions, including addiu

and sub, but are also used to increment the PC, adjust the stack pointer and calculate a load/store

target, etc. Below is a summary of schemes used for the prediction, approximation or probabilistic

calculation of sumor difference results in synchronous systems, andmethods to reduce the addition

latency in asynchronous systems. Asynchronous systems are of interest because they highlight the

dependence of latency on carry length in addition.

Instead of predicting a load address, it is instead possible to simply predict the load target con-

tents. Load target-prediction and load value-prediction methods have been studied and compared.

Stride-based predictors are often used for prediction of multi-valued load/store targets [Gonzalez

and Gonzalez, 1998; Marcuello et al., 1999]. A stride predictor uses a constant stride-length as an

offset from a base address for accesses to regular data structures.

It was concluded that target-prediction was more accurate than value-prediction when using stride

based predictors, however load value prediction was generally faster due to the required memory

access times. It was also concluded that the hardware cost associated with value prediction is not

negligible, but value prediction might yet be included in for future architectures.

Adders for asynchronous systems have been developed to exploit the fact that common arithmetic

operands do not have a uniform random distribution, and exhibit different carry length distribu-

tions depending on the data (see Table 3.2). For instance, operands for loop counter in programs are

usually small and positive, and address offsets to access the memory stack can produce quite long

carry strings. An asynchronous dynamic Brent-Kung adder [Nowick et al., 1997] was extended with

early termination logic and application specific optimisations to reduce the addition latency [Koes

81



Chapter 3: Theory and Applications of Arithmetic Approximation

et al., 2005].

An adder that reduces the addition latency by approximating the exact result and reducing the

probability of correctness was proposed by Liu and Lu. A modification to a ripple carry adder

restricts the maximum length that a carry can propagate [Liu and Lu, 2000; Lu, 2004], shortening

the critical path compared to a ripple-carry adder. The probability of correctness is dependent on

the maximum carry length l bits, and can be estimated with PLiu and Lu in (.). Each output bit is

calculated in a ripple-carry fashion from the previous l input bits. Hence, the delay is linear, circuit

area (excluding wiring) is geometric, but the probability of correctness can be > % if l > log N

. An example Liu and Lu-adder is shown in Figure 3.4. Alternatively, the least significant carries

could be generated using shorter segments in the lower-order gaps, sparing load on the first carry

segment.

An example of a probabilistic adder is used in a special multimedia processor, to improve the power

efficiency of anMPEG-4 encoder, at the expense of accuracy [Varatkar and Shanbhag, 2006]. Much

of the processing effort forMPEG-4 encoding is concentrated in themotion estimation routine that

performs a sum of absolute differences for a 256 element array of numbers, essentially an addition

operation. In the probabilistic adders timing errors are introduced by voltage overscaling, with the

aim of increasing the power effiency. Errors are corrected using algorithmic noise tolerance (ANT)

in which a decision block selects between output from the approximated block and a processed

subsampled stream. This is shown to be robust to timing errors. This signal processing technique

has also been applied to a general DSP correcting soft errors, because the ANT system is agnostic

to the error source [Hegde and Shanbhag, 1999; Shim and Shanbhag, 2006].

3.3.2 Multiplication

Probabilistic CMOS (PCMOS) is a technology used to implement probabilistic computing; tran-

sistors are not guaranteed to output the correct logic level, but consume much less energy in oper-

ation [Chakrapani et al., 2006]. Probabilistic computing is suited to specific ‘probabilistic applica-

tions’ that can tolerate computational error; in this case the arithmetic error is not corrected.

Arithmetic circuits built in PCMOS use voltage scaling to increase the probability of correctness

in the most significant bits, thus reducing the magnitude of the error. Low performance PCMOS

ripple-carry adders and arraymultiplierswere used in the simulated operation of a FFTwithHSPICE [George

et al., 2006]. The energy-probability relationship of the PCMOS transistors was tuned to yield a 5.6X

power improvement for a radar imaging application compared with a regular CMOS implementa-

82



Applications of approximate arithmetic

tion. Errors in operationmanifest as degraded image quality, mitigated by the low errormagnitude.

Another example of an error-tolerant application is a low density parity check (LDPC) decoder,

that operates iteratively on the coded data and parity bits of a message to decode it. The Belief

Propagation algorithm employed can be implemented with multioperand adders, similar to mul-

tipliers [Phillips et al., 2006]. LDPC decoders using approximate arithmetic reduced the frame

error rate for a given noise level, and converged in fewer iterations than a decoder with exact mul-

tioperand adders [Phillips et al., 2006]. This is discussed in more detail in Chapter 10.

3.3.3 Division

High speed division is generally performed in one of two ways: the quotient is generated by multi-

plication by a reciprocal; or by an iterative algorithm requiring a quotient digit selection [Burgess,

2005]. There are examples in the literature of division units that employ temporary approximation

to hasten the availability of results, although the quotient is corrected before being output.

In some iterative designs this is referred to as ‘internal speculation’. Such designs reduce the latency

of the quotient digit selection stage via speculation of the quotient digit, [Pan et al., 1995; Wong

and Flynn, 1992; Srivastava, 2007]. Using speculative quotient digits can reduce the size of the

lookup table for quotient digit selection, however multiple possible quotient digits are generated.

The calculation of the partial remainder can occur earlier with the ‘predicted’ quotient digits, and

the correct partial remainder is selected later. Reducing the lookup table size is attractive for high

radix division because the size of the lookup table required increases exponentiallywith radix. These

dividers correct any error in the quotient digits before the result is output.

The dividers above employ internal speculation, but may incur a delay penalty to output an exact

result. An example of a general purpose approximate divider that generates inexact quotients was

not found.

Some asynchronous designs improve the average case latency by simplifying the quotient calcula-

tion, possibly generating an error in the quotient, requiring additional cycles to correct [Fenwick,

1995]. Similar designs have been extended to high radix division and square root [Cortadella and

Lang, 1994], and variable latency double precision floating point [Cornetta and Cortadella, 1999].

An example of a divider that could be modified to output an approximate quotient is a reciprocal

multiplier which normalises the operands and inspects the upper bits of the divisor d and dividend

z to lookup an approximation of the reciprocal of d in a table, using interpolation to reduce the

83



Chapter 3: Theory and Applications of Arithmetic Approximation

quantization error introduced [Nakano, 1987].

3.4 Conclusion

This chapter has identified techniques for approximation, and presented observations of arithmetic

phenomena that establish average case correctness for arithmetic operations. Examples from the

literaturewere shownwhere systemperformancewas improved usingprobabilistic adders andmul-

tipliers, or long latency dividers that use internal speculation or anothermethod to output common-

case results faster than normal.

The advantage of logical incompleteness is that the resulting approximate circuit will often be smaller

than the exact circuit from which it was derived, saving power and area. Furthermore, the result is

deterministic, so the effects of approximation are known at design time if the inputs are well char-

acterised. The disadvantages of logical incompleteness include granular control of the correctness;

in circuits with high internal fan-out the output might be critically dependent on many or all of the

logic in the data path. Hence, modifying or removing any part of the circuit might change many

output cases.

The advantage of temporally incomplete circuits are that the average correctness is determined pre-

dominantly by the clock period. Where removing logic from the data path will cause discrete

changes in the critical path delay and the correctness, adjusting the clock period is more like a

continuum when there are many inputs. The disadvantages include additional area required for

synchronisers, and dependence on the previous state of the output registers.

Addition is a frequent, low latency operation. Although the dependencies between the input and

output bits are conceptually easy to understand, the relationships between maximum carry length

and correctness are non-linear. The results in this chapter relating probability of correctness to

maximum carry length are later used to determine probability of correctness to latency. Operations

like multiplication and division are more complex, because more intermediate dependencies exist.

In Chapter 5, basic multipliers and divides are built around adders and subtractors.

84



Chapter 4

��� ���� �	
��
� ���

������	���� �� �

������� ����

����������

“All of the books in the world contain no more information than is broadcast as video in a single large

American city in a single year. Not all bits have equal value.”

Carl Sagan (1934–1996)

This chapter defines the scope of the research project undertaken: to determine the

feasibility of using arithmetic value speculation to improve the throughput of a RISC

processor.



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

Speculation is a well known technique to increase the throughput of processor

pipelines. The predictability of branch outcomes and serially accessed memory

locations can be successfully exploited so that the overall benefit of increased

throughput outweighs the risk of speculative parallel execution. The most likely candidates for

improvement are common or slow instructions. Branch prediction and speculative memory ac-

cessing are mature fields; modern schemes yield diminishing, incremental relative improvements.

Arithmetic instructions are long latency ALU instructions, and are used in few speculative schemes

because the outcome depends on a calculated result that could have many values, making predic-

tion difficult. To realise a net increase in throughput, the execution of arithmetic instructions must

be on the critical path, which is more likely if each arithmetic instruction occurs frequently.

In this chapter the arithmetic components of benchmark programs are analysed to determine the

feasibility of arithmetic data value speculation as a scheme for increasing throughput of a general

purpose RISC processor. A detailed analysis of the execution of benchmark programs shows the

frequency and characteristics of typical arithmetic instructions. Finally, a high level probabilistic

simulation of a processor executing benchmark programs with arithmetic units with a variable

probability of correctness and execution latency shows the effect on system throughput measured

as instruction retirement rate. From this a minimum target for the correctness/delay tradeoff is

established for the design of approximate arithmetic units.

4.1 Program execution

In this section benchmark programs are analysed by recording statistics on executed and retired

instructions.

The benchmarks from the arithmetic, Mediabench, and SPEC suites were executed in sim-profile,

the in-order SimpleScalar simulator, and the number of occurrences of each instruction type was

recorded. Figure 4.1a shows the relative proportion of the different types of instruction. A list of in-

struction opcodes is shown in Appendix F. Instructions are grouped on the fundamental operation

type, so that immediate and register instructions are counted together, and the single and dou-

ble precision floating point operations are counted together. The extended segments represent the

average proportion of integer and floating point arithmetic instructions, excluding all addition in-

86



Integer arithmetic

 

 

Adds
Other Int
Logic
FP Arith
FP Other
Loads
Stores
Jumps
Branches
Others

(a) Average proportion of instruction
types for all benchmarks.

 

 

Subs
Mults
Divs
FP Adds
FP Divs
FP Subs

(b) Integer and floating point arithmetic
operations, excluding integer add oper-
ations.

Figure 4.1: Average relative proportions of each executed instruction type.

structions (add, addiu, etc). The relative frequency of each instruction type is shown numerically

in Table 4.1.

Load and store operations account for / of the total instructions executed. Almost / of all in-
structions are single cycle iALU instructions, including add and logic operations. A further / of
all operations are control operations, including a large proportion of branch instructions, and some

jump instructions. Multi-cycle arithmetic operations account for less that 6 of the instructions

executed.

The relative proportions of the non-add arithmetic instructions is shown in Figure 4.1b. The most

frequently occurring of these instructions are integer subtractions. Integer multiplication and di-

vision operations are represented roughly in the same quantity, but both consist of less than 1 of

all instructions executed. The most common floating point arithmetic instructions are divisions

(div.s/div.d). The most uncommon instructions are floating point multiplications and square-

roots.

4.2 Integer arithmetic

In this section, statistics and properties of integer arithmetic operations and traced operands from

benchmark programs are presented, including a summary of the types of integer instructions in

the PISA architecture, a comparison of signed and unsigned integer arithmetic, a comparison of

87



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

Table 4.1: Average proportions of benchmark instructions executed in an
in-order SimpleScalar simulator.

Type Proportion ()

Adds 31.1675
Branches 19.1535
Logic 14.7082
Loads 13.4723
Stores 11.2455
FP Other 3.2929
Jumps 2.0363
Subs 1.4123
Others 1.2089
FP Divs 0.9714
Mults 0.7193
Divs 0.4845
FP Subs 0.0650
FP Adds 0.0622
FP Mults 0.0002
FP SQRT 0.0000

88



Integer arithmetic

the magnitudes of integer arithmetic operands, an analysis of the distribution of operands for each

instruction, and a summary of the number of repeated operands in benchmark programs.

4.2.1 Types of integer arithmetic

Modern hardware typically provides the four fundamental arithmetic operations, addition, sub-

traction, multiplication and division. Occasionally other hardware units such as square, square-

root and fused multiply add are available. The integer addition and subtraction unit in the ALU is

often not necessarily dedicated to addition operations, but may also compute branch, jump, load

and store targets.

Arithmetic instructions are also available with an operand supplied in an immediate field, sparing

the use of a register ormemory location for operand storage. Immediate fields are typically one byte

wide, hence they have different carry distribution arise from immediate instructions compared to

32 bit and 64 bit register instructions. Multiplication and division hardware are usually provided in

signed and unsigned variants, and may be combined at the expense of throughput for a saving in

circuit area.

4.2.2 Signed and unsigned arithmetic

The PISA architecture defines signed and unsigned versions of each integer arithmetic instruction,

but the compiler supplied with SimpleScalar does not use all of them. Tables C.1–C.3 in Chap-

ter 2 show that signed integer add, addi and sub instructions are not used by the compiler in the

arithmetic, Mediabench and SPEC benchmarks. The gcc compiler does use signed and unsigned

multiplication and division instructions, however signed instructions aremuchmore common. Ta-

ble 4.2 shows the ratio of signed to unsignedmultiplication and division operations in benchmarks.

4.2.3 Operandmagnitude

The structure ofmost programs is systematic; various runs of programs differ according to the input

that they receive [Sodani and Sohi, 1998]. Most programs spend most if their execution time in

a few blocks of code. Some of the executed arithmetic instructions are determined by the control

flow of the program (loop variables, etc.) and others from the data flow. Neither the data or control

is random, hence the operands observed in program execution are not random.

89



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

Table 4.2: Ratio of signed to unsigned retired multiplication and division
instructions in benchmarks.

Set Benchmark mult/multu div/divu

Arithmetic

calc pi — 90.1
livermore — 0.0
dhrystone — 476.2
helloworld — —
linpack — 0.0
matrix mult — —
whetstone — 0.0

Mediabench

ADPCM — —
EPIC 511.8 113.1
G.721 — —
ghostscript 8845.9 0.0
JPEG — —
Mesa — —
mpeg2play — —
RASTA 0.5 0.3

SPEC

164.gzip — 0.0
168.wupwise 820345.7 3914.7
171.swim 0.5 0.0
172.mgrid 2342.1 0.0
173.applu 120.4 0.1
175.vpr 41.4 1.3
gcc 4.1 0.1
177.mesa — 0.4
179.art — 0.0
181.mcf 195.5 0.0
183.equake 663.7 0.0
188.ammp 3432.2 0.0
197.parser — 174.7
200.sixtrack — —
253.perlbmk — —
255.vortex 7.1 0.0
256.bzip22 — 1.0
300.twolf — —
301.apsi 3287.7 33.7

90



Integer arithmetic

Table 4.3: Proportion of unsigned integer arithmetic operands that are zero.

Type Zero () Positive ()

add 23.99 76.01
sub 18.67 81.33
mult 1.80 98.20
div 8.66 91.34

Table 4.4: Proportion of signed integer arithmetic operands that are negative
or zero.

Type Negative () Zero () Positive ()

add — — —
sub — — —
mult 7.52 33.64 58.84
div 17.30 2.16 80.54

Figures 4.2–4.4 show the distribution of integer operands and their result fields. The distributions

were formed by averaging the observed asserted bits for arithmetic instruction operands in each

benchmark.

Integer addition and subtraction operands in Figure 4.2 show that the higher order bits are asserted

less than the lower order bits, except for bit 29. This outlier is not as obvious when each benchmark

distribution is printed individually; it is an artifact of averaging. The result field distributions retain

a similar shape to the operands, but are taller than for the input operands. There is also little differ-

ence in the distribution of asserted bits for the opA and opB operands. There are no obvious trends

to exploit from examining the input operands, such as a stronger bias towards less significant bits.

The signed and unsigned intMult and uintMult operands in Figure 4.3 are on average almost

twice as likely contain asserted bits in the least significant bits than the most significant bits. As a

result, the 64 bit product of the 32 bit operands ismore ‘spread’, but retains the same basic shape. The

signed opB operand contains characteristic comb-like peaks, formed by averaging many repeated

operands in the few benchmarks that contain unsigned multiplications.

Thedistribution of division operations is shown in Figure 4.4. The PISA architecture does not specify

that theopB operandmust be a 16 bit operand, howevermany of benchmarks containuintDiv opB

91



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)
(a
)
ui

nt
A

dd
op

A

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(b
)
ui

nt
A

dd
op

B

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(c
)
ui

nt
A

dd
re

s

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(d
)
ui

nt
Su

b
op

A

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)
(e
)
ui

nt
Su

b
op

B

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(f
)
ui

nt
Su

b
re

s

F
ig
u
re

4
.2
:

A
ve
ra
ge

di
st
rib

ut
io
n
of

in
pu

ta
nd

ou
tp
ut

bi
ts
fo
ru

ns
ig
ne

d
in
te
ge

ra
dd

iti
on

an
d
su
bt
ra
ct
io
n
op

er
at
io
ns
.T
he

co
m
pi
le
r

di
d
no

tg
en

er
at
e
si
gn

ed
ad

di
tio

n
or

su
bt
ra
ct
io
n
in
st
ru
ct
io
ns
.

92



Integer arithmetic

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(a
)
in

tM
ul

to
pA

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(b
)
in

tM
ul

to
pB

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(c
)

in
tM

ul
t
re
su
lt

up
-

pe
r

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(d
)

in
tM

ul
t

re
su
lt

lo
w
er

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(e
)
ui

nt
M

ul
to

pA

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(f
)
ui

nt
M

ul
to

pB

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)
(g
)
ui

nt
M

ul
tr
es
ul
tu

p-
pe

r

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(h
)

ui
nt

M
ul

t
re
su
lt

lo
w
er

F
ig
u
re

4
.3
:

A
ve
ra
ge

di
st
rib

ut
io
n
of

in
te
ge

ro
pe

ra
nd

s
fo
rs
ig
ne

d
an

d
un

si
gn

ed
m
ul
tip

lic
at
io
n.

93



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(a
)
in

tD
iv

op
A

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(b
)
in

tD
iv

op
B

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(c
)

in
tD

iv
re
m
ai
nd

er
re

s

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(d
)
in

tD
iv

qu
ot
ie
nt

re
s

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(e
)
ui

nt
D

iv
op

A

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(f
)
ui

nt
D

iv
op

B

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(g
)
ui

nt
D

iv
re
m
ai
nd

er
re

s

M
S

B
23

15
7

LS
B

0102030405060

B
it 

po
si

tio
n

Number of times asserted (%)

(h
)

ui
nt

D
iv

qu
ot
ie
nt

re
s

F
ig
u
re

4
.4
:

A
ve
ra
ge

di
st
rib

ut
io
n
of

in
pu

ta
nd

ou
tp
ut

in
te
ge

ro
pe

ra
nd

s
fo
rs
ig
ne

d
an

d
un

si
gn

ed
di
vi
si
on

.

94



Floating point arithmetic

operands that all fit into a 16 bit field. The only exception is ghostscript.

The relative shapes of the quotient and opA distributions are similar, implying that many of the opB

operands are small in magnitude, otherwise the upper bits in the quotient would be asserted less

frequently. The distribution of the signed and unsigned quotient and remainder fields are similar,

except that the signed distributions have a longer upper tail due to the sign bits, and the signed

result distributions maintain the jagged shape of the uintDiv opB operand distribution.

The distributions of the signed multiplication and division operands are similar to the unsigned

multiplication and division operands because a small proportion of the total operands (< %) are
signed (see Table 4.4), and hence the upper sign bits are not strongly biased.

4.3 Floating point arithmetic

This section presents an analysis of floating point instructions traces from benchmark programs,

including a summary of the types of floating point instructions, a comparison of signed and un-

signed operands, a comparison of themagnitudes of floating point operands, and a summary of the

number of repeated operands in benchmark programs.

4.3.1 Types of floating point arithmetic

The floating point operations available in the PISA architecture are standard IEEE-754 32 and 64 bit

varieties. The PISA architecture implements the minimal set of features to be compliant with the

standard, with the addition of a floating point square root (fpSqrt) instruction. This calculation

is performed on hardware shared with the fpDiv instructions. The study of the fpSqrt operation

is out of the scope of this thesis.

The IEEE-754 standard defines four rounding modes for the result of arithmetic operations, but

unless otherwise noted the ‘round to nearest even’ (Banker’s rounding) is used throughout this

thesis.

All floating point operations are performedon a separated floating point coprocessor, with 32 single-

precision floating point registers. Double-precision operands are stored in adjacent registers, reduc-

ing the overall storage. The fpALU performs conversions between integer and floating point num-

bers, compares floating point numbers for conditional instructions, calculates the absolute value of

95



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

Table 4.5: Single precision floating point operand values.

Type NaN +denorm −denorm +Inf −Inf -0 +0 Negative Positive

add 0.00 0.00 0.00 0.00 0.00 0.00 5.40 22.57 72.03
sub 0.00 0.00 0.00 0.00 0.00 0.00 12.93 9.36 77.71
mult 0.00 0.00 0.00 0.00 0.00 0.00 4.27 23.13 72.60
div 0.00 0.00 0.00 0.00 0.00 0.00 0.71 7.80 91.49

a floating point number, and performs floating point addition and subtraction.

4.3.2 Signed and unsigned arithmetic

The IEEE-754 floating point standard defines the number format, including a dedicated sign bit, so

all regular numbers are signed. The sign bit is also applied to  and∞, so there are representations

of +, −, +∞ and −∞. The sign bit is ignored for representations that are not-a-number (NaN).

Figure 4.5 shows a scatter plot of addition, subtraction, multiplication and division operands traced

from benchmark programs. The y-axis shows the unbiased 32 bit floating point exponent, and the

x-axis shows the normalised significand. IEEE-754 exponents are biased and represented as ≥ , but

each exponent shown is unbiased. The exponent e is valid in the range − ≤ x ≤ , but few

observed exponents are outside of the range − ≤ x ≤ . IEEE-754 floating point significands are

normalised, and so the maximum value is < . The signed significands shown indicate the polarity

of the sign bit.

The plots are more dense on the right-hand side, indicating that positive numbers occur more fre-

quently than negative numbers. The range of negative exponents is greater than positive exponents,

indicating the use of small fractional numbers, but the occurrence of numbers greater than unity is

higher due to the density of numbers with an exponent ≥ .

4.3.3 Operandmagnitude

Average bit assertion histograms for single precision floating point operands from benchmark pro-

grams are shown in figures 4.6–4.7, highlighting the sign, exponent and significand fields. For each

operation, the exponent bits were asserted on averagemore frequently than the significand bits, and

96



Floating point arithmetic

−2 −1 0 1 2
−128

−96

−64

−32

0

32

64

96

128

Normalised significand

U
nb

ia
se

d 
ex

po
ne

nt

(a) add.s

−2 −1 0 1 2
−128

−96

−64

−32

0

32

64

96

128

Normalised significand

U
nb

ia
se

d 
ex

po
ne

nt

(b) sub.s

−2 −1 0 1 2
−128

−96

−64

−32

0

32

64

96

128

Normalised significand

U
nb

ia
se

d 
ex

po
ne

nt

(c)mul.s

−2 −1 0 1 2
−128

−96

−64

−32

0

32

64

96

128

Normalised significand

U
nb

ia
se

d 
ex

po
ne

nt

(d) div.s

Figure4.5: Scatterplotof 32 bit floatingpointoperands inbenchmarkprograms.

Table 4.6: Double precision floating point operand values.

Type NaN +denorm −denorm +Inf −Inf -0 +0 Negative Positive

add 0.00 0.00 0.00 0.00 0.00 0.00 25.94 36.98 37.08
sub 0.00 0.00 0.00 0.00 0.00 0.00 39.13 28.98 31.89
mult 0.00 0.00 0.00 0.00 0.00 0.00 40.41 25.24 34.35
div 0.00 0.00 0.00 0.00 0.00 0.00 78.09 12.37 9.54

97



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

the significand bits are asserted nearly uniformly.

4.4 Performance limits

This section presents an initial study of arithmetic data value speculation in a RISC processor

pipeline to establish limits of performance, delay and accuracy targets for approximate arithmetic

units. The study uses the default SimpleScalar configuration described in Section 2.2.2, with the

addition of a mechanism to issue dependent instructions of arithmetic operations after the approx-

imate latency.

Two schemes are employed when an erroneous approximation is detected; they are listed below in

increasing order of complexity:

arithmetic speculation All instructions younger than the erroneous arithmetic instruction are

flushed from the pipeline, and PC is set to the address of the next instruction

after the erroneous operation. In the next cycle the front end re-fetches the next

youngest instruction.

no front end resteering All instructions younger than an arithmetic instruction are marked as

speculative in the decode stage, and remain speculative until the approximate

instruction is marked as completed and correct. If the approximate instruction

is incorrect, the issue pointer is set to the first arithmetic-speculative instruc-

tion and the front end ceases fetching. From the next cycle the younger specu-

lative operations are reissued for each younger operation in the RUU. Fetching

is re-enabled in the front end at the previous PC, unless updated by a reissued

jump/branch operation.

The C source code for sim-outorder, the out-of-order superscalar simulator for PISA, was modified

to determine the correctness of each integer and floating point operation based on a fixed proba-

bility, using random numbers. The latency of the exact arithmetic units were maintained at their

default values, but approximate arithmetic units were assigned a smaller cycle latency. Each bench-

mark was run with various settings for probability of correctness and approximate arithmetic unit

latency, and the average IPC gain was recorded.

98



Performance limits

(a
)
fp

A
dd

op
A

(b
)
fp

A
dd

op
B

(c
)
fp

A
dd

re
s

(d
)
fp

Su
b

op
A

(e
)
fp

Su
b

op
B

(f
)
fp

Su
b

re
s

F
ig
u
re

4
.6
:

Bi
ta

ss
er
tio

n
di
st
rib

ut
io
n
of

32
bi
tf
lo
at
in
g
po

in
ta

dd
iti
on

an
d
su
bt
ra
ct
io
n
op

er
an

ds
fr
om

be
nc

hm
ar
k
pr
og

ra
m
s.

99



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

(a
)
fp

M
ul

to
pA

(b
)
fp

M
ul

to
pB

(c
)
fp

M
ul

tr
es

(d
)
fp

D
iv

op
A

(e
)
fp

D
iv

op
B

(f
)
fp

D
iv

re
s

F
ig
u
re

4
.7
:

Bi
ta

ss
er
tio

n
di
st
rib

ut
io
n
of

32
bi
tf
lo
at
in
g
po

in
tm

ul
tip

lic
at
io
n
an

d
di
vi
si
on

op
er
an

ds
fr
om

be
nc

hm
ar
k
pr
og

ra
m
s.

100



Performance limits

Table 4.7: Simulated cycle latencies for approximate arithmetic units in
sim-outorder, when executing the arithmetic andMediabench benchmarks.

Arithmetic Integer Floating point
Latency () mult div add.s mul.s div.s sqrt.s

10 1 2 1 1 1 2
20 1 4 1 1 2 4
30 1 6 1 1 3 7
40 1 8 1 1 4 9
50 1 10 1 2 6 12
60 1 12 1 2 7 14
70 2 14 1 2 8 16
80 2 16 1 3 9 19
90 2 18 1 3 10 21
100 3 20 2 4 12 24

4.4.1 Simulation parameters

The simulations presented in this chapter have used a discrete scale for the simulated correctness

and latency of the approximate arithmetic units. Probability of correctness is defined as a percent-

age, and the outcome of each simulated calculation is determined by comparison with a random

number. Correctness was selected in small granular intervals from 50 to 100. Arithmetic la-

tency was also specified in the simulations, at coarser intervals. Most arithmetic operations only

require a few cycles each for the exact calculation, so in practice a significant reduction in latency

is required to reduce the approximate arithmetic latency by one cycle.

For the purposes of simulation, Table 4.7 and Table 4.8 show the conversion from arithmetic latency

expressed as a percentage to an integer number of machine cycles. The longer SPEC benchmarks

were simulated at fewer operating points to reduce the number of simulations.

4.4.2 Throughput upper bound

Using the simulator options in SimpleScalar it is possible to determine the upper bound of perfor-

mance gain due to arithmetic speedup. In Tables 4.9–4.11, the effects on execution time of setting

all long latency operations to a single cycle is shown. This is the maximum performance increase

101



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

Table 4.8: Simulated cycle latencies for approximate arithmetic units in
sim-outorder, when executing the SPEC benchmarks.

Arithmetic Integer Floating point
Latency () mult div add.s mul.s div.s sqrt.s

20 1 4 1 1 2 4
40 1 8 1 1 4 9
60 1 12 1 2 7 14
80 2 16 1 3 9 19
100 3 20 2 4 12 24

Table 4.9: Maximum throughput increase of arithmetic benchmarks with
ADVS when each approximate arithmetic unit operates in a single cycle. The
throughput increase is shown as a percentage.

Benchmark -O0 -O1 -O2 -O3
-O3 -O3

-finline -funroll

dhrystone 0.42 0.80 0.82 0.82 0.82 0.82
whetstone 12.50 30.95 31.70 31.70 31.70 32.13
calc pi 7.14 0.22 0.23 0.23 0.23 3.03
matrix mult 11.90 0.41 0.10 0.10 0.10 0.22
linpack 6.29 12.67 13.42 13.42 5.77 4.48

Average () 9.79 5.98 4.94 4.94 4.12 3.91

due to arithmetic speculation possible for each benchmark.

Figure 4.8 shows the increase in throughput when all arithmetic operations are approximated cor-

rectly in single cycle. The approximate results are checked with normal arithmetic units at full

latency. Tables C.1–C.3 and C.9–C.15 show the number of occurrences of the integer and floating

point operations. The maximal speed up possible is the product of the number of occurrences of

each operation and the number of cycles saved. Comparing the number of cycles saved to this

number shows the proportion of operations that lie on the critical path for each benchmark. The

remaining proportion of cycles represents the lost gains due to structural and data hazards.

Figures 4.9 and 4.10 show a slice of the delay-correctness profile of Figure 4.8. Figure 4.9 shows

the maximum possible IPC gain if each approximate arithmetic unit produces an output in a single

102



Performance limits

Table 4.10: Maximum throughput increase of Mediabench benchmarks with
ADVS when each approximate arithmetic unit operates in a single cycle. The
performance increase is shown as a percentage relative to the baseline.

Benchmark -O0 -O1 -O2 -O3
-O3 -O3

-finline -funroll

ADPCM encode 0.00 0.00 0.00 0.00 0.00 0.00
ADPCM decode 0.00 0.00 0.00 0.00 0.00 0.00
Mesa texgen 4.57 7.30 5.75 5.73 5.73 5.37
Mesamipmap 5.87 14.50 20.60 15.47 15.47 20.58
Mesa demo 1.99 3.35 3.21 2.92 3.01 3.13
EPIC encode 8.36 17.28 18.48 18.47 18.47 19.82
EPIC decode 5.57 3.91 5.48 4.97 5.49 4.52
G.721 encode 0.60 1.56 1.05 0.63 0.63 0.40
G.721 decode 0.58 0.87 0.59 0.45 0.43 0.51
RASTA 4.91 7.17 6.93 7.05 7.05 6.96
JPEG encode 0.03 0.50 0.42 0.41 0.41 0.45
JPEG decode 0.34 0.39 0.43 0.42 0.42 0.36
ghostscript 8.91 9.59 7.99 9.95 9.95 8.89
mpeg2play encode 0.92 1.84 1.85 1.85 1.85 1.27
mpeg2play decode 3.83 9.16 7.34 7.36 7.36 3.28

Average () 2.74 4.56 4.73 4.48 4.51 3.99

103



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

Table 4.11: Maximum throughput increase of SPEC benchmarks with ADVS
when each approximate arithmetic unit operates in a single cycle. Performance
gain is shown as a percentage relative to the baseline.

Benchmark -O0 -O1 -O2 -O3
-O3 -O3

-finline -funroll

172.mgrid 19.30 16.49 7.53 7.53 7.53 7.53
175.vpr 0.86 1.11 1.75 1.25 1.25 1.25
177.mesa 4.43 6.66 7.83 6.38 6.38 6.38
197.parser 0.30 0.83 0.85 0.77 0.78 0.78
173.applu 3.23 10.76 8.53 8.53 8.53 8.53
200.sixtrack 0.00 0.00 0.00 0.00 0.00 0.00
188.ammp 3.92 6.61 4.17 4.21 4.21 4.21
164.gzip 0.01 0.01 0.01 0.00 0.00 0.00
171.swim 4.67 11.07 9.35 9.35 9.35 9.35
179.art 1.39 0.90 1.51 2.74 2.74 2.74
300.twolf 4.79 5.02 6.21 6.24 6.24 6.24
301.apsi 8.77 11.73 8.96 8.83 8.83 8.83
168.wupwise 4.29 5.88 6.16 6.16 6.16 6.16
256.bzip2 0.00 0.00 0.00 0.00 0.00 0.00
gcc 0.07 0.13 0.12 0.13 0.14 0.14
183.equake 7.28 5.53 7.02 7.24 7.24 7.24

Average () 3.30 4.32 3.65 3.61 3.62 3.61

104



Performance limits

(a) Arithmetic benchmarks.

(b)Mediabench benchmarks.

(c) SPEC benchmarks.

Figure 4.8: Average IPC gain for benchmark programs running in an out-
of-order RISC pipeline, with arithmetic data value speculation (correctness vs.
latency).

105



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

machine cycle. Figure 4.10 shows the maximum possible IPC gain if each approximate arithmetic

unit operates with 100 correctness.

4.4.2.1 Use of hardware resources

ADVS requires additional hardware to calculate approximate and exact results, and perform the

speculation. In this section simulations are performed to determine if simply providing more par-

allel exact units can result in increased throughput. The advantage of more exact units is that the

additional design effort is lower, and there is no performance loss due to speculation. Conversely,

ADVS introduces a possible throughput penalty if approximations are too frequently incorrect.

In these simulations the approximate unit from the ADVSmodel were substituted for an extra exact

unit, but no additional ports were introduced to the register file.

The simulations were conducted with the same parameters as in Section 4.4.2, and approximate

instruction latencies increasing in 10 increments. In the previous simulations the number of

approximate arithmetic units was such that no stalls would be caused by the unavailability of an

exact unit to check the result of an approximate unit. The number required is a function of the

latency and repeat rate of the approximate and exact units. In this model, all of the approximate

units were substituted for exact units. This is often only one additional unit, because the units are

mostly pipelined and can issue in back to back cycles.

All of the benchmarks in the arithmetic,Mediabench and SPEC sets were executed, and the average

throughput gain was calculated compared to the default configuration. A negligible throughput

gain (< .%) was observed over all of the benchmark sets. Despite the increased available band-

width, it was very rare that two of the same operation would be ready to issue in the same cycle.

In order for a significant throughput gain to be observed, a higher density of identical, indepen-

dent arithmetic operations was required. Dependent younger operations do not benefit from the

additional parallel hardware.

Increasing the number of arithmetic units did not significantly increase throughput because most

arithmetic operations do not occur very frequently. It is therefore unlikely that two independent

instructions will be ready for issue at the same time, causing a stall due to unavailable resources.

Because of the long latency of the arithmetic operations, it is better to allocate similar hardware

resources to reducing the average latency through speculation.

106



Performance limits

50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

Correctness (%)

IP
C

 (
%

)

 

 

O0
O1
O2
O3
O3 inline
O3 unroll

(a) Arithmetic benchmarks.

50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

Correctness (%)

IP
C

 (
%

)

 

 

O0
O1
O2
O3
O3 inline
O3 unroll

(b)Mediabench benchmarks.

50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

Correctness (%)

IP
C

 (
%

)

 

 

O0
O1
O2
O3
O3 inline
O3 unroll

(c) SPEC benchmarks.

Figure 4.9: Maximum possible throughput gain using arithmetic data value
speculation. Each approximate arithmetic unit has a latency of 1 cycle.

107



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

20 40 60 80 100
0

2

4

6

8

10

12

Latency (%)

IP
C

 (
%

)

 

 

O0
O1
O2
O3
O3 inline
O3 unroll

(a) Arithmetic benchmarks.

20 40 60 80 100
0

2

4

6

8

10

12

Latency (%)

IP
C

 (
%

)

 

 

O0
O1
O2
O3
O3 inline
O3 unroll

(b)Mediabench benchmarks.

20 40 60 80 100
0

2

4

6

8

10

12

Latency (%)

IP
C

 (
%

)

 

 

O0
O1
O2
O3
O3 inline
O3 unroll

(c) SPEC benchmarks.

Figure4.10: Maximumpossible IPCgainusingarithmeticdatavaluespeculation.
Each approximate arithmetic unit has 100% correctness.

108



Performance limits

Table4.12: Averagepercentage reduction inexecutioncyclesof thebenchmarks
running in sim-outorder without ADVS.

Benchmark set -O1 -O2 -O3
-O3 -O3

-finline -funroll

arithmetic 54.14 56.35 56.59 57.71 59.29
Mediabench 42.22 44.06 44.04 43.94 44.04
SPEC 53.98 55.92 56.60 56.60 56.60

4.4.3 Compiler optimisation effects

Source code compilers typically come with many options to direct the compilation and linking of

computer programs. The SimpleScalar tool set uses a modified version of gcc to compile C pro-

grams.

gcc has many options that can be enabled in addition to four optimisation levels (-O0⋯ -O3). Each

optimisation level introduces additional strategies to attempt to improve performance over lower

optimisation levels, balanced against increases in the binary size.

Table 4.12 shows the average reduction in execution time, measured in machine cycles, for the

benchmarks executed at different compiler optimisation levels in the out-of-order simulator, sim-outorder,

without ADVS enhancements. Performance is measured relative to a benchmark binary compiled

without any compiler optimisations, optimisation level zero (-O0).

Each benchmark exhibits a large performance gain when level one optimisation (-O1) is enabled,

and incremental performance improvements for level two (-O2), level three (-O3), and level three

optimisation with inlining (-O3 -funroll-loops) and loop unrolling (-O3 -finline-functions). Code

inlining and loop unrolling do not guarantee a performance improvement when enabled—both

optimisations have positive and negative impacts on average when applied to different benchmark

data sets. A detailed description of gcc’s compiler optimisation levels is provided in Appendix A.

Increasing the optimisation level, particularly for optimisations such as inlining and loop unrolling

can increase the binary size. Table 2.5 shows the effect of optimisation level on binary size.

Table 4.12 shows that increasing the compiler optimisation level is detrimental to the relative perfor-

mance gain in the ADVS system, however savings to number of cycles (in absolute terms), increase

with optimisation level. Figure 4.11 shows the number of cycles required to execute the 172.mgrid

benchmark from the SPEC set with ADVS enabled, at different optimisation levels.

109



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

Figure 4.11: Number of execution cycles for SPEC 172.mgrid at different optimi-
sation levels. All of the optimised benchmarks except ’-O0’ are superimposed.

Optimised binaries, with optimisation level at -O1 or greater require significantly less execution

time than unoptimised binaries performing the same tasks. Increasing the optimisation level above

-O1 yields incremental performance improvements in a regular pipeline, but in an ADVS enabled

pipeline, the returns are diminishing for increased optimisation level. In terms of executed cycles,

there is little benefit for increasing the optimisation level above -O1 using gcc version 2.6.3.

4.4.4 Delay-correctness lower bound

Figure 4.12 shows the feasible delay-correctness region for approximate hardware used in the arith-

metic speculation scheme. The region was constructed by linearly interpolating the delay vs. cor-

rectness plots shown in Figure 4.8 to intersect the baseline throughput. Figure 4.13 shows the feasible

delay-correctness region when using the basic ‘arithmetic speculation’ flushing scheme, where all

younger operations are flushed.

The throughput is much more sensitive to the probability of correctness than the latency of the

approximate hardware—feasible approximate designs to be used in ADVS will require a high prob-

ability of correctness to avoid being detrimental to performance. Additionally, the feasibility region

is smaller with greater compiler optimisation; as the code density increases so does the exposure to

110



Performance limits

(a
)
Ar
ith

m
et
ic
be

nc
hm

ar
ks
.

(b
)
M
ed
ia
be
nc
h
be

nc
hm

ar
ks
.

(c
)
SP
EC

be
nc

hm
ar
ks
.

F
ig
u
re

4
.1
2
:

D
el
ay
-c
or
re
ct
ne

ss
fe
as
ib
ili
ty

re
gi
on

us
in
g
th
e
ba

si
c
ar
ith

m
et
ic
flu

sh
in
g
sc
he

m
e.

111



Chapter 4: Can ADVS Improve the Performance of a Generic RISC Processor?

(a
)
Ar
ith

m
et
ic
be

nc
hm

ar
ks
.

(b
)
M
ed
ia
be
nc
h
be

nc
hm

ar
ks
.

(c
)
SP
EC

be
nc

hm
ar
ks
.

F
ig
u
re

4
.1
3
:

D
el
ay
-c
or
re
ct
ne

ss
fe
as
ib
ili
ty

re
gi
on

us
in
g
th
e
no

-r
es
te
er
in
g
flu

sh
in
g
sc
he

m
e.

112



Conclusion

an incorrect approximation flush, because long memory access times due to jumps and branches

are masked.

4.5 Conclusion

This chapter has presented a study of benchmark programs including an analysis of the frequency

of occurrence of eachmachine instruction, and summaries of the arithmetic hardware and instruc-

tions available in the PISA architecture.

Arithmetic operands were traced from the simulated execution of the benchmarks, and used to

profile typical operands. It was found that most arithmetic operands in signed arithmetic are pos-

itive, and that most floating point operands are used to represent positive fractional numbers less

than one.

Finally, the benchmarks were simulated in an ADVS enabled pipeline for a range of correctness and

approximate unit latencies, and the average improvement in IPCwas shown. Two different flushing

schemes were employed when an approximated arithmetic result is detected to be incorrect. By

reissuing flushed instructions from the front end, avoiding a resteer of the fetch unit, a consistent

favourable difference in IPC is obtained.

Measuring the average IPC gain with a minimal single-cycle latency for approximate arithmetic

units yields themaximumpossible increase in throughputwith respect to probability of correctness.

Similarly, the maximum increase in throughput was shown for the case of perfect approximation,

with 100 correctness.

Can ADVS improve the performance of a generic RISC processor? Yes, it can shown that the be-

haviour of typical applications is understood, and the characteristics of typical program data can

be exploited to minimise the probability of pipeline flushes. This chapter showed that the delay-

correctness break-even point requires a high probability of correctness of the arithmetic units to

make ADVS feasible. In general, a probability of correctness of over 95 is required for an approx-

imate arithmetic unit that operates with a latency 80 of an exact arithmetic unit.

This chapter has shown that ADVS is feasible, assuming probabilistic outcomes for the correctness

of the approximate arithmetic units. In later chapters approximate arithmetic units are developed

and modelled so that the data dependence is captured.

113





Chapter 5

����������	 
��������
�

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

Alan Turing (1912–1954)

This chapter presents the results of preliminary experiments inwhichbasic arithmetic units

are made approximating through simple modifications that shorten the critical path by

selectively removing circuit elements. It is difficult to yield a high probability of correctness

by omitting logic because of the many dependencies that intermediate results have on

input operands.



Chapter 5: Preliminary Experiments

Circuit optimisations for arithmetic units are well understood, and techniques such

as exploiting parallelism and recoding have been applied so that incremental re-

ductions in latency are extremely difficult, and often costly. Arithmetic approxi-

mation can be used to reduce the latency of the fastest arithmetic circuits, without maintaining the

functional correctness of the circuit. A good approximate circuit:

• has a lower latency than the exact circuit from which it was derived; and

• P, the probability of correctness of the circuit, is high. In this thesis, the average probability

of correctness is often referred to as the correctness of the circuit.

The appropriate value of P is subjective; it is up to the designer to balance the correctness/delay

trade-off for a particular application. The target correctness for feasibility in an ADVS enabled sys-

tem was shown to be approximately 95 in Chapter 4.

The experiments in this chapter demonstrate the difficulty in achieving a high correctness with

simple modifications to basic arithmetic circuits. Basic arithmetic circuits are conceptually easier

to understand, so approximating them can give insights, that are valuable for attempting to approx-

imate faster, more complex circuits. In Chapter 6 and Chapter 7 approximate integer multipliers

and dividers are presented, capable of 90 correctness for benchmark inputs.

5.1 Validation of average worst-case carry length

In this section some results from the literature are verified by simulation, including the empirical

results for AWCCL in adders (see Section 3.2). The simulations are performed using SimpleScalar

with Mediabench and SPEC benchmarks. Other simulations are conducted to determine typical

properties of commonly executed arithmetic instructions.

64 bit addition and subtraction operands were traced from the SPEC CPU95 benchmarks and used

to determine P for Liu and Lu’s adder and the AWCCL [Kelly and Phillips, 2005]. Figure 5.1 shows

the correctness of an 64 bit adder for signed addition (add, addi, addiu), subtraction (sub and

subi) and addressing calculations for load and store operations.

116



Validation of average worst-case carry length

0 8 16 24 32 40 48 56 64
0

20

40

60

80

100

Worst−case carry length (l bits)

C
or

re
ct

 s
um

s 
(%

)

 

 

theoretical
vortex
compress
gcc
m88k
lisp
perl
ijpeg

(a) Signed addition.

0 8 16 24 32 40 48 56 64
0

20

40

60

80

100

Worst−case carry length (l bits)

C
or

re
ct

 s
um

s 
(%

)

 

 

theoretical
vortex
compress
gcc
m88k
lisp
perl
ijpeg

(b) Signed subtraction.

0 8 16 24 32 40 48 56 64
0

20

40

60

80

100

Worst−case carry length (l bits)

C
or

re
ct

 s
um

s 
(%

)

 

 

theoretical
vortex
compress
gcc
m88k
lisp
perl
ijpeg

(c)Memory addressing additions.

Figure 5.1: Proportions of correct simulated SPEC CPU95 additions with a
maximum carry length of l bits.

117



Chapter 5: Preliminary Experiments

The theoretical probability of correctness shown in the graphs in Figure 5.1 was calculated with the

BackCount algorithm, assuming uniform random inputs. The correctness of Liu and Lu’s adder for

add instructions was higher than expected when the worst case carry length l was small. However,

some benchmarks repeat many operations with identical operands. In some benchmarks the carry

length l must be very high to achieve an average correctness greater than 90. This is becausemost

benchmarks repeat many operations, and some benchmarks repeat additions with a long AWCCL.

When an adder is used to perform an unsigned subtraction on two binary inputs, the subtrahend is

inverted, and the carry-in bitCIN is set to one. If both inputs are zero, then one input operandwould

consist of N ones. Due to the CIN bit, the carry chain for the addition (subtraction) would prop-

agate the entire length of the input. Likewise, subtraction operations involving small subtrahends

produce large carry chains.

For subtraction operations, the Liu and Lu adder performs much less well than the theoretical cor-

rectness. It is possible to approximate subtraction results by performing the full operation on l bits

out of N , and then sign-extending the result. This has the effect of reducing the calculation time for

additions which result in very long carry chains. However, by sign extending past l bits, the range

of possible accurate results is reduced, as the bits of greater significance will be ignored.

Subtraction operations formed less than 2.5  of all integer arithmetic operations in the SPEC INT

benchmarks. This is an important design consideration for the implementation of approximate

arithmetic units. If in practice subtraction operations were common and not easily approximated,

it would be best not to use them in a speculative execution scheme.

Figure 5.2 shows the average correctness of unsigned addition operations from the standard bench-

marks. For amaximum carry length of 8 bits ormore, all benchmark average over 90 correctness.

5.2 Simple modifications to basic arithmetic circuits

In this section the result of simple experiments with basic multipliers and dividers are presented.

Each arithmetic unit is modified to yield an arithmetic result faster, and the effect on P is shown.

It is established that simple omissions of logic to reduce the critical path delay have a significant

adverse effect on the correctness. The simple arithmetic units used are representative of the complex

relationships and dependencies between the input and outputs of arithmetic operations.

In multipliers, the multioperand addition of partial products can generate many carries over the

118



Simplemodifications to basic arithmetic circuits

0 8 16 24 32
0

20

40

60

80

100

C
or

re
ct

 m
ul

tip
lic

at
io

ns
 (

%
)

Maximum carry length, ( l bits)

 

 

arithmetic
mediabench
spec
random

Figure 5.2: Proportion of correct sums in Liu and Lu with a worst-case carry
length of l bits. The results were aggregated over each benchmark set used in
this thesis.

entire circuit that all contribute to the correctness and latency. The overall delay of a multiplier can

be considered as the sum of the delay of partial product generation, partial product addition, and

final carry propagate adder (CPA). The partial product addition can occur in a carry save adder

(CSA) like in a tree multiplier, or using regular full adders.

In dividers, the necessity of calculating the partial remainder (or part thereof) imposes a similar

problem.

This section presents analyses of basic arithmetic circuits, and investigates simple modifications

and their affects on correctness with benchmark inputs.

5.2.1 Carry propagation in arraymultipliers

Figure 5.3 shows a simple array multiplier where one partial product is generated per row. The

partial products are then cumulatively summed until the final product result is output. The worst

case delay is determined by a carry rippling through the each row in series.

Let us consider carry propagation through × bit array multipliers. Figure 5.4 shows the proba-

bility that each full-adder asserts its COUT bit. Each full-adder in an array multiplier outputs

the cumulative sum of partial products, generated from the AND of input operand bits. Uniform

random input bits have a 50 chance of being asserted, hence the AND-ed partial product bits have

119



Chapter 5: Preliminary Experiments

Figure 5.3: The first stage of partial product accumulation in an arraymultiplier.
Each dot represents a bit and each row is a partial product. The multiplier
calculates the sum of the partial products by adding the partial product bits in
columns, and carries overflow into the group below. The rows cannot be added
independently because they require the carry from the row above, hence they
are shown to overlap.

a 25 change of being asserted. Each full-adder outputs a COUT with roughly 25 probability

(see Figure 5.4a). The probability of assertion of most full-adders is similar for signed operands,

but the sign bit in Figure 5.4b affects the probability of assertion of the leading bits of all the partial

products. This is discussed in more detail in Chapter 6.

The operand distribution of benchmark operands is different to uniform randomnumbers, somany

of the full-adders of lower significance in Figure 5.4c for SPEC operands are asserted the most

frequently, however the average is less than 25. As carry outputs occur nearly uniformly on aver-

age, and have a non-negligible probability of assertion, preventing any particular carry from prop-

agating is likely render the output product incorrect.

It is difficult to calculate exact probability of a carries propagating through a long subsection of

the critical path. However, severing the critical path to reduce delay will also affect many paths

required for correct results, so the probability of correctness would diminish significantly. Hence

logical incompleteness in an array multiplier is unlikely to achieve high correctness.

5.2.2 Treemultipliers without a CPA

Tree multipliers, such asWallace and Dadda multipliers, are fast because they sum partial products

column-wise in a carry-save adder tree, so columns can be summed independently. In the final

stage, the saved sum and carry bits of the adder trees form two input operands to a carry-propagate

adder. The worst case delay of the CPA is determined by the propagation of the carry through the

120



Simplemodifications to basic arithmetic circuits

(a) Unsigned random operands.

(b) Signed random operands.

(c) Signed SPEC operands.

Figure 5.4: Observed average assertion, as a percentage, forCOUT bits in 32×32 bit
array multipliers.

121



Chapter 5: Preliminary Experiments

Table 5.1: Proportion of correctmultiplications in a 32 bitWallace treemultiplier
without a CPA.

Benchmark Unsigned () Signed ()

arithmetic 0.00 0.00
Mediabench 14.83 0.00
SPEC 8.15 0.04
random 0.55 0.00

entire operand width.

Trivial multiplications such as multiplication by zero, one or powers of two might not generate a

stored carry, and hence will not require the final CPA. If the CPA can be abandoned or shortened,

a significant delay saving can be made.

The number of input bits to each exact multioperand CSA tree, and the final CPA are roughly the

same, and both the CSA tree and the CPA can operate at best inO(log(N)) time [Parhami, 2000].

Figure 5.5 shows an 8×8 bit Wallace multiplier, constructed with full-adders. The partial prod-

ucts in the first level are normally reduced in a tree structure until they form two input rows to the

final CPA. In this case, the CPA is discarded. The lower product bits in blue are determined before

the CPA stage. The upper product bits in green are the output sum bits of the final full-adder

cells in the tree, and the COUT bits in orange are discarded. The output product is the concatenation

of the upper sum bits and lower product bits.

Table 5.1 shows the average correctness of unsigned multiplications calculated in a 32 bit Wallace

tree multiplier without a CPA. The least significant bits that can be exactly calculated without re-

quiring the CPA are used, and the upper bits of the product were taken from the A operand to the

CPA. The B operand bits were discarded. The SPEC and Mediabench benchmarks yielded higher

average multiplier correctness, PM , than the arithmetic and random operands. In both cases a sin-

gle benchmark containing a high proportion of trivial operations, such a multiply by zero or one,

biased the results. Most benchmarks yield few multiplications with many correct operations.

122



Simplemodifications to basic arithmetic circuits

Figure 5.5: An 8×8 bit Wallace tree multiplier, with no final carry propagate
adder. Lower product bits generated before the last level in the tree are exact.
Counters in the final level of the tree generate sum and carry bits, however the
carry bits are discarded.

123



Chapter 5: Preliminary Experiments

5.2.3 Arraymultiplication with an l bit CPA

Thefinal CPA in an array or tree multiplier is a two operand addition. Instead of removing the CPA

entirely, a small gain to delaymight bemade by restricting the length of themaximum carry length.

The carry length can be restricted by using an l bit ripple carry adder, or by using an N bit Liu and

Lu adder with l bit maximum carry length. Figure 5.6b shows an array multiplier with a short l bit

ripple carry adder. The bits of the product more significant than the l bits from the CPA are taken

to be the sum output of the final row in the array multiplier.

Figure 5.7 shows PM of a 32 bit arraymultiplier, where the final CPAadder is a l bit ripple carry adder.

The upper 32-l bits are discarded. There are no unsigned integer multiplications in the arithmetic

benchmarks.

The product is correct when the l bit ripple carry adder is long enough to capture the MSB of the

partial products. Uniform randomnumbers are likely to have asserted bits in the upper operands, so

many bits in theCPAare required for high correctness. Benchmark operands are typically smaller in

magnitude, so only a short ripple carry CPA is needed to correctly calculate the product. Figure 5.7

shows that the longest carry lengths are mostly greater than 27 bits.

Figure 5.8 shows the effect on PM of using Liu and Lu’s adder with l bit carry segment for the 32 bit

CPA in a 32 bit array multiplier.

A 32 bit multiplier multiplies two 32 bit numbers to form a 64 bit product. An array of 32 rows of

32 bit partial products is generated from the input operands. The logic depth for the least significant

32 bits of the product is shorter than the upper 32 bits, so they are determined exactly. The upper 32

bits are summed in CPA to remove the redundancy of the carry-save form of the upper 32 bits.

Benchmark operands are typically less than 16 bits wide, so the result usually fits within the lower

32 bits of the 64 bit product. Correctness is high because no bits in the upper 32 bits are discarded.

Random inputs are typically large in magnitude, so the products require the correct calculation of

the upper 32 bits in the CPA. Compared with the ripple carry CPA in Figure 5.7, the Liu and Lu

CPA adder will correctly add the upper product bits, provided the maximum carry length is less

than l bits. Correctness is much higher when the maximum carry length is allowed to be any carry

chains of length l bits, instead of just the lower product carry chains.

124



Simplemodifications to basic arithmetic circuits

�

�
� �

��� �����������������������������������������

�
�

��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
� ��������������������������

A[15] A[14]
A[13]

A[12]
A[11]

A[10]
A[9]

A[8] A[7]
A[6]

A[5] A[4] A[3] A[2] A[1] A[0]

X[15] X[14] X[13] X[12] X[11] X[10] X[9] X[8] X[7] X[6] X[5] X[4] X[3] X[2] X[1] X[0]

P[30] P[29] P[28]
P[26] P[25]

P[21]

P[15] P[14] P[13] P[12] P[11] P[10] P[9] P[8] P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]

P[16]
P[23] P[22] P[20] P[18]

P[19]
P[17]P[24]P[31]

P[27]

std_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladderstd_fulladder

inv inv

inv

inv

invinv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv

inv inv

inv

inv

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2

cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

C_out

cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2 cell_full_adder_with_AND2

cell_full_adder_with_AND2 cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2cell_full_adder_with_AND2

P[0:31]

X[0:15]

A[0:15]A[0:15]

X[0:15]

P[0:31]

(a) An array multiplier with a ripple carry adder for the carry propagate adder.

(b) An unsigned 16×16 bit array multiplier, with an bit CPA.

Figure 5.6: Unsigned 16×16 bit array multiplier with modified CPA adders.

125



Chapter 5: Preliminary Experiments

0 8 16 24 32
0

20

40

60

80

100

C
or

re
ct

 m
ul

tip
lic

at
io

ns
 (

%
)

Ripple carry CPA, maximum carry length (bits)

 

 

mediabench
spec
random

Figure 5.7: Correctness of an unsigned array multiplier using a l bit ripple
carry adder as the CPA. The lower l bits of the product can be calculated without
affecting the critical path, but the upper  − l bits of the partial product carries
are discarded.

0 8 16 24 32
0

20

40

60

80

100

C
or

re
ct

 m
ul

tip
lic

at
io

ns
 (

%
)

Liu & Lu adder CPA, maximum carry length (bits)

 

 

mediabench
spec
random

Figure 5.8: Proportion of correct multiplications when using a l bit Liu and Lu
adder as a CPA in an unsigned arraymultiplier. The upper − l bits are discarded.

126



Simplemodifications to basic arithmetic circuits

5.2.4 Restoring division with t cycles

Restoring division is a very simple division method. In each division round a full subtraction of

the shifted partial remainder is performed to determine the quotient digit. If the trial difference is

negative, the partial remainder must be restored to it’s previous positive value. Restoring division

operates only on unsigned operands.

One radix r quotient digit is calculated per round in restoring dividers; usually one division round

occurs per clock cycle so that the partial remainder can be latched between rounds. The sign of the

final remainder is defined be the same as the sign of the dividend, and themagnitude of the remain-

der must be smaller than the magnitude of the divisor. The partial remainder is also maintained as

a positive number so that it is guaranteed to have the correct sign when the algorithm terminates.

Integer division is guaranteed to produce a quotient that has a magnitude less than or equal to the

magnitude of the dividend if the dividend is non-zero. Restricting the number of division rounds

can reduce the latency of the division operation from the uncommon worst case. Figure 5.9 shows

the proportion of correct quotient calculations with a maximum number of division rounds, when

a restoring divider is used. Themost significant quotient bits are calculated first, and the remainder

is ignored.

Few benchmark quotients can be correctly calculated without all of the 16 division rounds, because

the LSB is not calculated until the final round. Some unsigned division quotients are correctly cal-

culated with fewer than 16 rounds because the dividend is zero. A common case in signed bench-

mark division occurred when the product was a power of two—the lower bits are zero, hence the

approximation is correct.

5.2.5 Non-restoring division with t cycles

Non-restoring division is similar to restoring division, but the requirement to maintain a positive

partial remainder is removed. Additional bits are required to store the sign of the non-restored

partial remainder, allowing operation on signed two’s complement operands.

The simulations of Section 5.2.4 were repeated with a non-restoring divider. Figure 5.10 shows PD

of correctly calculating a correct 16 bit quotient in 16 cycles by radix 2 division of a 32 bit dividend

by a 16 bit divisor. The lower 16 bits of the divisor d of operands traced from the benchmarks were

used in the simulation.

127



Chapter 5: Preliminary Experiments

0 8 16
0

20

40

60

80

100
C

or
re

ct
 d

iv
is

io
n 

qu
ot

ie
nt

s 
(%

)

Maximum division rounds,  t

 

 

arithmetic
mediabench
spec
random

Figure 5.9: Proportion of correct quotients for a restoring divider operating in
t division rounds.

0 8 16
0

20

40

60

80

100

C
or

re
ct

 d
iv

is
io

n 
qu

ot
ie

nt
s 

(%
)

Maximum division rounds,  t

 

 

arithmetic
mediabench
spec
random

Figure 5.10: Proportion of correct quotients for a non-restoring divider
operating in t division rounds.

128



Simplemodifications to basic arithmetic circuits

Thesimulated PD for SPEC benchmarks in Figure 5.10 is notmonotonically increasing because some

quotients are correctly represented with zero division rounds. In the case where the dividend z

is greater than the divisor d, the quotient q = z/d is zero. The quotient is initially zero, so the

quotient is correct after zero division rounds. However, after one or more division rounds, the

partial remainder that is eventually output as the quotient, might be temporarily incorrect at the

end of each round, because it is not restored. In this case the partial remainder is not correctly

represented as zero until the final restoring step after all division rounds. This pathological case is

repeated many times in the SPEC benchmarks.

The correctness of the non-restoring approximating divider is less than the restoring divider for

the same number of division cycles because of the cases where the partial remainder would equal

the quotient. In restoring division the result would be corrected in the same cycle, but another

clock is required for non-restoring division. However, the minimum clock period is shorter for a

non-restoring divider.

5.2.6 Floating point rounding

Rounding modes are a part of the IEEE-754 standard, and necessary for standard compliance. Af-

ter any floating point operation, the possible non-representable significant bits in the significand

are rounded (possibly changing the exponent) by one of four rounding modes. The four defined

rounding direction modes are:

Nearest (even) The infinitely precise result is rounded to the nearest value, or if both values are

equally near, to the value with the least significant bit zero. This is sometimes

called ‘Banker’s rounding’, and is the default rounding mode.

Positive infinity Therepresentable bits are adjusted towards+∞. This is sometimes called ‘round-

ing up’.

Negative infinity The representable bits are adjusted towards −∞. This is sometimes called

‘rounding down’.

Zero The representable bits are adjusted towards zero. This is achieved by truncating

the infinitely precise significand.

Round to nearest requires that some additional bits of the significand are calculated. The exact

representation of a recurring binary division quotient is infinitely long. The first few bits longer

129



Chapter 5: Preliminary Experiments

than the floating point significand and the sign bit are used to determine the rounding direction.

Rounding to ±∞ also requires the sign bit and additional significand bits to determine if the sig-

nificand should be adjusted by one unit is least precision (ULP). Round to zero does not require an

adjustment to the significand because it is implemented by a truncation.

The default rounding mode is round to nearest, and can be changed by software, although this is

rarely done. If it can be assumed that round towards zero is sufficient, then hardware to implement

significand rounding and adjustment of the exponent can be removed from the critical path.

A simulation was performed where the rounding mode was fixed to one of three rounding modes.

The rounded result was counted as correct if it matched the result by using round to nearest. All

operations were repeated with rounding modes to +∞, to −∞ and to zero. Table 5.2 shows the

proportion of results for each rounding scheme that are identical to the ‘round to nearest’ result.

The correctness when using any rounding mode in the place of ‘round to nearest‘ is high. The

correctness of using ‘+∞’ and ‘−∞’ are both >%, showing that rounding is not always required
for benchmark operations. In most cases the correctness of single precision results was within 15

of double precision results for each approximated rounding scheme.

From an implementation standpoint, using ‘round to zero’ (truncate) is attractive because the addi-

tional rounding bits can simply be discarded. The high correctness of the ‘round to zero’ rounding

shows that most floating point results are positive. A high degree of variation in correctness when

using round to zero exists, between Pmin = .% and Pmax = .%, so rounding cannot be

discarded for general purpose applications.

5.2.6.1 Temporally incomplete multiplication

An alternative method of approximation is temporal incompleteness as discussed in Section 3.1.2,

where a logic circuit is overclocked. An approximate unsigned multiplier was simulated to deter-

mine the correctness profile of a circuit with many interconnected logic paths.

The 16×16 bit multiplier was created as a schematic in Electric [Static Free Software, 2005] using

full-adder cells. Timing characteristicwere derived fromhandplaced layouts of thefull-adder

cells in a 0.3μmMOCMOS process forMOSIS [MOSIS Integrated Circuit Fabrication Service, 2009].

Theprobability of correctness of the circuit was determined by the simulation of themultiplier using

IRSIM [MultiGiG, Inc., 2006] with timing information extracted from the full-adder cells. The

number of correct multiplications in a set of 100,000 uniform random 16 bit numbers was counted

for circuits with a clock period of 1 to 40 ns in 1 ns increments. The correctness of the temporally

130



Simplemodifications to basic arithmetic circuits

Table 5.2: Average number of floating point results that are identical to the
result calculated using the ‘round to nearest’ rounding mode.

Benchmarks Operation to +∞ () to −∞ () to zero () Average ()

Arithmetic

fpAdd 60.951 65.647 65.243 63.947
fpSub 86.814 91.105 90.699 89.539
fpMult 60.731 48.683 48.541 52.651
fpDiv 74.571 64.518 65.767 68.286
dblAdd 61.565 64.726 65.012 63.768
dblSub 70.194 84.103 83.191 79.163
dblMult 59.678 59.276 59.226 59.393
dblDiv 48.899 56.621 56.452 53.991
Average 65.425 66.835 66.766

Mediabench

fpAdd 77.650 76.301 76.347 76.766
fpSub 94.340 94.371 94.306 94.339
fpMult 67.442 66.746 66.631 66.940
fpDiv 71.134 66.859 66.882 68.292
dblAdd 87.404 88.711 88.759 88.291
dblSub 98.058 98.127 98.005 98.063
dblMult 79.095 79.016 79.173 79.095
dblDiv 69.862 71.295 71.274 70.810
Average 80.623 80.178 80.172

SPEC

fpAdd 94.146 81.524 81.528 85.733
fpSub 99.620 99.636 99.815 99.690
fpMult 80.202 80.148 80.148 80.166
fpDiv 95.476 95.345 95.305 95.375
dblAdd 77.456 78.404 77.836 77.899
dblSub 83.446 86.028 83.970 84.482
dblMult 71.456 70.521 70.926 70.967
dblDiv 72.709 68.140 68.133 69.661
Average 84.314 82.468 82.208

131



Chapter 5: Preliminary Experiments

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

clock period (ns)

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
ne

ss
 (

%
)

Figure 5.11: Correctness of a temporally incomplete 16×16 bit array multiplier.
The critical path delay is shown as an orange dashed line.

incomplete multiplier is shown in Figure 5.11.

The overclocked multiplier maintains a 95 correctness at 26 ns, 8.4 ns (24.4) faster than the

critical path delay of the circuit, but the correctness of the circuit decreases rapidly below this point.

Small changes in the sampling period could make large changes to the expected correctness at this

point.

Temporally incomplete circuits were not pursued further in the course of the thesis. The simulation

of the temporally incomplete multiplier lead to the conclusions that:

• Fast arithmetic such as the type used in high performance arithmetic circuits are likely to be

pipelined. Partitioning long latency circuits into sections with timing elements introduces

sources of metastability at each overclocked latch, and reduces the proportion of cycle time

available for execution by setup time for synchronisation latches.

• The use of synchronisers to mitigate metastability requires additional clock signals, with a

carefully controlled phase and period to control the overall circuit latency and probability of

metastability.

• Calculating the probability of metastability occurring depends on many factors, including

the process technology, layout, electrical properties of the interconnect, clock jitter, data in-

puts, and noise.

A sensible implementation of ADVS requires that the probability of correctness is well characterised

132



Conclusion

for the approximate circuits used. Metastability introduces indeterminism, and an additional level

of complexity in system design. Temporal incompleteness was abandoned to focus on deterministic

logically incomplete circuits. The possibility of maintainingmultiple clocks for several approximate

arithmetic units in an ADVS-enabled systemwas undesirable. Techniques for local clock generation

exist, but are outside the scope of this thesis.

5.3 Conclusion

The preliminary experiments in this chapter investigated simple techniques to reduce the latency

of arithmetic operations, at the expense of correctness. Arithmetic operations output result words

from a functional mapping between the input and output bits, where many dependencies exist

between the input and output. It is difficult tomodify high performance arithmetic units to sacrifice

correctness for a proportionally higher gain to latency, especially for a target correctness of over

95, as required for ADVS.

133



���� ��

����������	 ����
�	���



Chapter 6

���������	
 ��	


�

���	������	���

“What? You search? You would multiply yourself by ten, by a hundred? You seek followers? Seek

zeros!”

Friedrich Nietzsche (1844–1900)

This chapter presents designs for unsigned approximate integer multipliers, which are

extended to accommodate signed operands. The new approximate multipliers are based

onmodern high performance treemultipliers built from counter units. A family of logically

incomplete counters are used as the fundamental unit to construct a family of multipliers,

which have a reduced latency and probability of correctness due to the approximate

counters. The corresponding latency and correctness trade-off is investigated, and

compared to a Wallace multiplier constructed from full-adders cells.



Chapter 6: Approximate Integer Multiplication

Binary integer multiplication is essentially a multioperand addition problem. In-

teger multiplication operations are used to compute array indexes, or for fixed

point arithmetic in processors that lack a floating point unit (FPU), for statistics

and other numerical programs, and for data processing applications.

Multiplication is performed by generating partial products from the multiplier and multiplicand

operands. The partial products are then summed to form the final product. A simple, high la-

tency implementation can sum partial products in series. The worst-case delay for a multiplier is

determined by the delay of the carries that arise in partial product accumulation. Deferring the

accumulation of carries using carry-save methods gives rise to complex, low latency designs. Tree

multipliers such as Wallace and Dadda multipliers [Wallace, 1964; Dadda, 1965] divide the multi-

operand addition into parallel additions, and accumulate the stored carries in the final phase. Fur-

ther reductions in latency are achieved by operating at higher radices, so that each digit operation

accounts for a greater proportion of the original operand width.

This chapter introduces amodification to binary treemultipliers to produce an approximate product

result with a high probability of correctness. Similar to Liu and Lu’s approach to addition, the data

path is shortened so that the worst-case delay is reduced, but certain input combinations yield an

incorrect result. Like the Liu and Lu adder, themethod of approximation is parameterisable, so that

a delay-correctness profile is established.

Few other examples of approximate multipliers exist in the literature. George et. al. describe amod-

ified array multiplier constructed in PCMOS for a ‘probabilistic computing’ application where the

occasional error is tolerated. The error is not corrected and is therefore desired to be small; the

PCMOS multiplier described is used in non-critical applications. An example is provided of a PC-

MOS array multiplier used to perform an FFT for radar image processing, where errors manifest as

a subjective degradation in the image quality [George et al., 2006].

Another example of an error-tolerant application is the density parity check (LDPC) decoder de-

scribed in Chapter 10 Approximate Adders in LDPC). Multioperand adders, being similar to multi-

pliers, can be made approximating using the techniques described in this chapter.

In the following sections the design for a family of unsigned approximate multipliers is presented,

and is later extended to signed approximate multipliers. Section 6.1 discusses counter cells used

in arithmetic circuits, and introduces approximate counters; Section 6.2 shows how approximate

counters can be used to construct unsigned approximatemultipliers, and the probability of correct-

138



Multipliers

ness is determined for operation on uniform random inputs; in Section 6.3 the unsigned approxi-

matemultipliers are simulated operating onbenchmark data to derive the probability of correctness;

an extension is presented in Section 6.4 to enable operation on signed operands, and the probability

of correctness is determined for signed approximate multipliers.

Synthesis results for signed and unsigned approximate multipliers are presented in Section 6.5, and

the synthesis delay is used to determine the delay-correctness trade-off. Finally, twopotential signed

and unsigned multipliers are highlighted as candidates for ADVS and discussed in Section 6.6. A

brief summary is provided in Section 6.7.

6.1 Counters

Counters are common arithmetic units used in multioperand addition and multiplication. An

(n;m) counter takes n input bits and computes their m bit sum. Common counters are the (; )
counter (full-adder—FA) and the (; ) counter (half-adder—HA).

For this work I have introduced the idea of exact and approximate counters. A counter is called

exact if the sum of its n input bits can be correctly represented inm bits;m≥⌈log(n)⌉. A counter is

called approximate if m<⌈log(n)⌉. Approximate counters are faster than exact counters, but their

output is not correct for all input combinations. The output sum is truncated to m output bits; the

upper sum bits are discarded because they are the least likely to be asserted. Table 6.1 shows the

probability of (n;m) counters producing a correct sum.

6.2 Multipliers

The remainder of this section discusses multiplier design, and modifications that were made to

produce approximate outputs. The multipliers in this chapter use a Wallace tree structure, where

counters sum the partial products in parallel in stored carry form [Parhami, 2000].

139



Chapter 6: Approximate Integer Multiplication

Table 6.1: Probability of correctness (%) for a counter with n input bits and m
output bits. The input bits are assumed be asserted with equal probability.

m
1 2 3 4 5

n

2 75.00 100.00
3 50.00 100.00
4 31.25 93.75 100.00
5 18.75 81.25 100.00
6 10.94 65.62 100.00
7 6.25 50.00 100.00
8 3.52 36.33 99.61 100.00
9 1.95 25.39 98.05 100.00
10 1.07 17.19 94.53 100.00
11 0.59 11.33 88.67 100.00
12 0.32 7.30 80.62 100.00
13 0.17 4.61 70.95 100.00
14 0.09 2.87 60.47 100.00
15 0.05 1.76 50.00 100.00
16 0.03 1.06 40.18 100.00∗ 100.00

∗Result rounded to 100.00.

140



Multipliers

(a) Exact (; )multiplier. (b) Approximate (; )multiplier.

Figure 6.1: Exact and approximate unsigned 8×8 bit tree multipliers.

6.2.1 Multiplier topology

Partial products were generated from the input operands. They are represented here in standard

dot notation (Figure 6.1a) where each dot represents a logical AND of input bits from the multipli-

cand andmultiplier [Parhami, 2000]. Each dot was allocated to a column, representing its numeric

significance.

Partial products of the same significance (in the same column) were grouped and form inputs to

(n;m) counters. This was repeated until there were one or zero remaining partial products for each

level of significance. Each counter’s m output bits were distributed to the appropriate column and

formed the partial products for the next level.

The construction of an 8×8 bit tree multiplier is shown in Figure 6.1a. 61 (; ) counters are used in

141



Chapter 6: Approximate Integer Multiplication

4 levels. This arrangement requires an 11 bit CPA, shown as a dashed line. This multiplier is exact:

its probability of correctness is 100.

An approximate (; ) 8×8 bit multiplier is shown in Figure 6.1b. This tree multiplier is constructed

with approximate (; ) counters instead of exact (; ) counters. In this case only 31 (; ) counters
are needed in 2 levels, requiring a 13 bit CPA.The multiplier product will be incorrect when one or

more approximate counters discard an asserted sum bit. Simulation of all input combinations to

the (; ) 8×8 bit unsigned multiplier showed the probability of correctness is 93.55 .

6.2.2 Allocation schemes

Fast multipliers employ a tree structure to quickly sum partial products in parallel. Two strategies

can be used where either the length of the final CPA can be minimised in a Wallace tree, or by

using as few FAs and HAs as possible, called a Dadda tree. Both strategies (earliest-possible and

just-in-time) yield the same product in exact multipliers. The approximate multipliers described

here trade probability of correctness for delay by allocating partial products on the critical path to

approximate counters. In approximate multipliers, the allocation scheme affects both the delay and

the correctness.

For the approximate multipliers described below, the longest column of partial products is aggres-

sively allocated the minimum number of counters possible, and no other column can use more

counters. The partial products in shorter columns can be allocated less aggressively; the lower ‘in-

put density’ results in fewer opportunities for the approximate counters to overflow.

Three schemes are outlined below to allocate partial products to counters. Each scheme affects

the overall delay and probability of correctness of an approximate multiplier. Designs used in the

project used one scheme to uniformly allocate a single type of counter. Nonetheless, some counters

may be substituted by design or synthesis optimisation for other elements like HAs or FAs without

affecting the probability of correctness.

If longest column of partial products contains W bits, every bit in the column is allocated to one

of ⌈W/n⌉ counters, so that the minimum number of (n;m) counters are used. The bits in the

remaining columns are allocated to counters by one of the following allocation schemes:

greedy In this scheme the partial products are distributed evenly to as many counters

as possible. Up to ⌈W/n⌉ can be used in each column.

sparse This scheme uses fewer counters, but as many counters as requiredmay be used

142



Multipliers

per column (up to the maximum ⌈W/n⌉ counters) to minimise the probability

that any one counter overflows. Counters are first allocated up to m −  bits,

and remaining bits are then distributed evenly in the column.

minimal This scheme uses the minimum number of counters possible. A column with Z

bits only requires ⌈Z/n⌉ counters, but the packing density increases the proba-
bility that any one counter will overflow.

Consider, for example, an approximate multiplier constructed from (; ) counters. The longest

column contains 12 bits, so no column may have more than ⌈/n⌉ = ⌈/⌉ =  counters to satisfy

the delay constraint. Let us now consider the 3 schemes to allocate the bits in another column

containing 5 bits (see Figure 6.2).

Using the greedy scheme, the 5 column bits are allocated as evenly as possible to the maximum 3

counters. Each counter is therefore allocated ⌊/⌋ =  or ⌈/⌉ =  bits (see Figure 6.2a). The greedy

scheme produces 3 sum bits and 2 carry bits.

A (; ) counter is guaranteed correct with up to m −  =  −  =  input bits. Using the sparse

scheme, 3 bits are allocated to the first counter, and the remaining  −  =  bits are allocated to

another counter (see Figure 6.2b). For this case, the sparse scheme produces 2 sum bits and 2 carry

bits.

Usingminimal allocation, 4 bits are allocated to the first counter, and the remaining bit is allocated

to another counter (see Figure 6.2c). In practise, a counter is not required to sum a single bit. The

minimal scheme produces 2 sum bits and 1 carry bit.

For the example above the greedy scheme produced the greatest number of partial products. An

approximate multiplier constructed with the greedy scheme has the highest probability of correct-

ness because each counter has the fewest number of input bits, and is therefore the least likely to

discard sum bits. The minimal scheme generated an approximate multiplier with the least correct-

ness; fewer counters were used, but they were all the most likely to discard sum bits. Simulation of

(n;m) 32 bit multipliers showed the sparse scheme generally generatedmultipliers with correctness

in between the greedy andminimal schemes.

The greedy and sparse schemes producedmore bits in each column than theminimal scheme. When

either was applied to all columns in a multiplier, the greater number of output bits from the addi-

tional counters caused more levels in the tree to be required. Further simulations showed that, in

general, only the minimal scheme generated approximate multipliers with the same or fewer tree

levels than an identically sized exact multiplier. For the remainder of this chapter, only theminimal

143



Chapter 6: Approximate Integer Multiplication

(a) greedy (b) sparse (c)minimal

Figure 6.2: Partial product allocation for approximate integer multiplication
schemes using (; ) counters.

Figure 6.3: Correlated partial products allocated to (; ) counters.

allocation scheme is used, such as in Figure 6.1b.

6.2.3 Uniform random inputs

The probability of correctness of the approximate multipliers, PM , is difficult to calculate. They

generate partial products by AND-ing bits of the multiplicand with bits of the multiplier, therefore

partial products in adjacent columns are not independent. Common modern multipliers typically

have operands of size 32 or 64 bits. Automated generation of tree multipliers showed that 32×32 bit
multipliers require in the order of 1,000 FAs. The large number of counters in each multiplier, and

the complex relationship between the input and sum bits make calculating many cross-correlations

necessary to exactly calculate PM . A simpler, simulation-based approach was employed to deter-

mine PM .

The correctness of the multipliers was influenced by the assignment of partial products to counters,

and could be maximised by selectively grouping probabilistically weighted partial products in each

144



Unsignedmultiplier results

column. The output bits of a counter have different probabilities of being asserted—the least sig-

nificant bits have a higher probability of being asserted than the most significant bits. Hence, the

allocation of bits in each column affects PM .

Partial product bits all have different probabilities of being asserted. Selectively allocating individual

partial product bits to specific counters to maximise PM is difficult because increasing the proba-

bility of correctness of one counter in a column, PC , invariably reduces the correctness of another.

Simulation showed that the effect on overall PM by redistributing partial product bits in every col-

umn was marginal. In the remainder of this chapter, partial products are assigned to counters in

the order that they appeared in a column.

Table 6.2 shows the simulated correctness of multiplying 100,000 unsigned 32 bit uniform random

number pairs with all feasible (n;m) approximate multipliers, n∈( . . . ). An (n;m) multiplier

is constructed entirely from (n;m) counters, and a counter is considered feasible if m<n, and the
sum of n input bits was representable in m bits or less, m≤⌊log(n)⌋ + .

Table 6.2 shows the correctness of (n;m)multipliers with random inputs. Interestingly, the correct-

ness of the entire multiplier PM(n; ) can be greater than the correctness of an individual counter
PC(n; ) (see Table 6.1 on page 140). This is because random input bits to a (n;m) counter are as-
serted with probability /. However, input operands to a multiplier are AND-ed to form the partial

products; the assertion probability of most bits in the first level is /.
The overall delay of the multiplier is a complex function of the number of input bits, the size of

the counters used and the allocation scheme used. Using counters with a high degree of truncation

yields a fast but inaccurate multiplier. Using approximate counters with a low degree of truncation

has a greater delay, but also greater probability of correctness.

6.3 Unsignedmultiplier results

In this section the correctness of (n;m) 32×32 bit multipliers is reported for multipliers operating

on data from benchmark programs. The measured probability of correctness is compared with the

observed probability of correctness for uniform random inputs.

Benchmark data was traced from the benchmarks listed in Sections 2.3.1—2.3.3. The total data set

consisted of over 1 million unsigned multiplications and over 10 million signed integer multiplica-

tions.

145



Chapter 6: Approximate Integer Multiplication

Table 6.2: Measured probability of correctness PM (%) for multiplication of
uniform random numbers by unsigned (n;m) 32×32 bit multipliers. An (n;m)
multiplier is constructed from counters with n input bits and m output bits.

m
1 2 3 4 5

n

1 2 3 4 5
2 0.00
3 0.00 100.00
4 0.00 3.10 100.00
5 0.00 0.91 100.00
6 0.00 0.50 100.00
7 0.00 0.25 100.00
8 0.00 0.06 99.87 100.00
9 0.00 0.06 98.08 100.00
10 0.00 0.07 94.30 100.00
11 0.00 0.07 94.12 100.00
12 0.00 0.08 91.49 100.00
13 0.00 0.08 87.72 100.00
14 0.00 0.09 82.74 100.00
15 0.00 0.09 77.21 100.00
16 0.00 0.08 71.66 100.00∗ 100.00

∗Result rounded to 100.00.

146



Unsignedmultiplier results

0 4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Operand magnitude 2i

|o
pe

ra
nd

s|
 <

 2
i

 

 

unsigned random
signed random
unsigned benchmark
signed benchmark

Figure 6.4: Cumulative distribution function of the absolute magnitude of
signed and unsigned multiplication operands in benchmark programs.

6.3.1 Benchmark data inputs

Arithmetic data in real programs was observed to be significantly different from random data. Fig-

ure 6.4 shows a cumulative distribution plot (CDF) of the absolute magnitude of multiplication

operands in benchmark programs. The benchmarks measured contained a significant proportion

of signed multiplications where at least one operand had a value of one or zero. The average ab-

solute magnitude of multiplication operands was much lower than uniform random numbers (see

Figure 6.4). Operands with small magnitude had long strings of identical leading bits, affecting

the probability that the multiplier produced an incorrect output. In the benchmark programs only

1.8  of unsigned integer operands were zero, and 98.2 were positive.

Unsigned (n;m) 32×32 bit multipliers were simulated operating on benchmark data. Each product

was recorded as correct or incorrect, and correctness of each multiplier was calculated. The results

are shown in Table 6.3.

The approximatemultipliers showed a higher correctness for benchmark data compared to random

data due to the distribution of operands: benchmark operandsweremuch smaller inmagnitude and

contained a higher proportion of zeroes. In general, Table 6.5 shows that the higher the degree of

truncation in the counter’sm sum bits, the lower overall PM of the multiplier. Two exceptions were

the (; ) and (; )multipliers, when compared to the (; )multiplier. It is possible that in later

levels in the tree, accumulated carries and sums in a particular column were susceptible to a few

pathological cases, where a smaller counter was allocated more asserted bits, and hence more likely

to truncate the sum output.

147



Chapter 6: Approximate Integer Multiplication

Table 6.3: Measured correctness (%) of unsigned (n;m) 32×32 bit multipliers
operating on benchmark data. An (n;m) multiplier is constructed of counters
with n input bits and m output bits.

m
1 2 3 4 5

n

2 33.23
3 32.84 100.00
4 32.93 93.87 100.00
5 33.04 92.96 100.00
6 32.76 85.14 100.00
7 32.76 86.48 100.00
8 32.76 86.43 100.00 100.00
9 32.76 85.59 100.00 100.00
10 32.76 86.46 99.91 100.00
11 32.76 85.56 99.94 100.00
12 32.76 85.56 100.00 100.00
13 32.76 84.32 100.00 100.00
14 32.76 84.33 99.71 100.00
15 32.76 84.35 98.86 100.00
16 32.83 84.32 99.06 100.00∗ 100.00

∗Result rounded to 100.00.

148



Unsignedmultiplier results

MSB 55 47 39 31 23 15 7 LSB
0

2

4

6

8

Product bit position

O
cc

ur
re

nc
e 

of
 e

rr
or

 (
%

)

 

 

random
benchmark

Figure 6.5: Bit error histograms for a (4; 2) unsigned 32×32 bit multiplier.

In Section 6.5, the multipliers were synthesised to determine their delay. Combining these results,

a multiplier suitable for ADVS was selected based on the delay vs. correctness trade off.

6.3.2 Multiplier error

The approximate multipliers presented were designed to increase the speed of multiplication at the

expense of the probability of correctness. In ADVS, the correctness is more important than the

magnitude of error, but a relative error analysis is provided for completeness.

An error occurs in approximate unsigned multiplication when a counter discards a sum bit. As

each partial product is accumulated in the final approximate product, erroneous products are less

than or equal to exact products. The relative error e is therefore bounded  ≤ e ≤  for approximate

unsigned multiplication.

6.3.2.1 Absolute error

The probability of absolute error was inferred by analysing the bit-error positions in the approxi-

mated product. Figure 6.5 shows a histogram of the occurrence of errors in each product bit of an

unsigned (; ) 32×32 bit multiplier when operating on random and benchmark data. As the aver-

age magnitude of the benchmark operands was much lower than the random data, the bit errors

were more apparent in the lower bits. The correctness peak for benchmark data near bits 15–18 was

due to the large number of repeated operands in the 255.vortex and RASTA benchmarks.

149



Chapter 6: Approximate Integer Multiplication

0
0

1

2

3

4

5

6

7

8

9

10

2 4 6 8 10 12 14 16 18 20 ⋅⋅⋅ 100

Percentage error in the approximated product; x

P
ro

po
rt

io
n 

of
 p

ro
du

ct
s 

w
ith

 e
rr

or
 <

 x
 (

%
)

 

 

0

20

40

60

80

100

C
um

ul
at

iv
e 

(%
)

random
benchmark

↑ random: 90.7%

↑ benchmark: 99.8%

↑ random: 90.7%

↑ benchmark: 99.8%

Figure 6.6: Relative error histogram of an unsigned (4; 2) 32×32 bit multiplier.
Relative error is measured in 1% bins up to 20%. The left y-axis displays the scale
for the histograms, and the right y-axis displays the cumulative line plot.

6.3.2.2 Relative error

The error relative to the exact product was determined by simulated multiplication of random and

benchmark data for a (; ) 32×32 bit multiplier (see Figure 6.6). As shown, 90.7  of all multiplica-

tions of random inputs yielded an error ≤1  of the magnitude of the exact product; for benchmark

data 99.8 of all multiplications yield an error of ≤1 .

6.4 Signed approximatemultiplication

This section discusses amodification to approximatemultipliers that enables them to handle signed

twos complement operands, and an analysis of the impact on correctness and delay for random and

benchmark inputs.

6.4.1 Baugh-Wooley signedmultiplication

Unsignedmultipliers can bemodified to handle signed operands using theBaugh-Wooleymethod [Baugh

andWooley, 1973]. Figure 6.7 shows the changes applied to the partial products of a signed 8×8 bit

150



Signed approximatemultiplication

Figure 6.7: Partial products using dot notation for a signed 8×8 bit Baugh-
Wooley multiplier.

multiplier. The negative weight of the twos complement sign bits is handled by inverting the sign

bit and borrowing from the column of next greatest significance, rather than subtracting each bit

in the full partial product. After the complement/borrowing is applied to all bits generated with a

sign bit, most of the borrows cancel, but a few logical ‘1’ bits (shown as 1) are required for balanc-

ing. Partial products are shown as dots (●) in the column representing their numeric significance.

Complemented bits are represented with a bar above them (●).
In Section 6.2.3 it was noted that the effective probability for each bit in the unsigned partial prod-

ucts (●) was /. The complemented bits in the Baugh-Wooley scheme effectively increase the prob-

ability of assertion of some bits (●) in the first tree level to /, reducing the overall PM .

However, in the benchmark programs 33.6 of signed operands were zero and only 7.6 were

negative, so it can be expected that few approximate errors should occur due to counter truncation

or Baugh-Wooley complementation.

The example 8×8 bit tree multiplier in Figure 6.1 is repeated for a signed 8×8 bit (; ) approximate

multiplier, and compared to a signed exact (; )multiplier in Figure 6.8. In the case of the approx-

imate multiplier in Figure 6.8b, the additional logical 1 bit bits do not affect the number of counters

or levels required, but could for other N×N (n;m) signed multipliers.

Simulation of all input combinations to the (; ) 8×8 bit signed multiplier in Figure 6.8b showed

the correctness had decreased to 71.52  from 93.55  for the unsigned (; ) 8×8 bit multiplier in

Figure 6.1b.

The probability of correctness PM of feasible approximate signed 32×32 (n;m)multipliers was de-

termined by simulation of random (see Table 6.4) and benchmark data (see Table 6.5). In both

cases the correctness of the signed multiplier was less than the unsigned multiplier, due to the as-

sertion probability of the initial partial products. Again, the correctness of the benchmark data set

151



Chapter 6: Approximate Integer Multiplication

(a) Exact (; )multiplier. (b) Approximate (; )multiplier.

Figure 6.8: Exact and approximate signed 8×8 bit tree multipliers.

152



Signed approximatemultiplication

Table 6.4: Measured correctness (%) of signed 32×32 bitmultipliers constructed
from counters with n input bits andm output bits, operating on uniform random
inputs.

m
1 2 3 4 5

n

2 0.00
3 0.00 100.00
4 0.00 0.84 100.00
5 0.00 0.13 100.00
6 0.00 0.05 100.00
7 0.00 0.02 100.00
8 0.00 0.00 99.74 100.00
9 0.00 0.00 96.81 100.00
10 0.00 0.00 89.98 100.00
11 0.00 0.00 90.13 100.00
12 0.00 0.00 86.55 100.00
13 0.00 0.00 81.17 100.00
14 0.00 0.00 74.56 100.00
15 0.00 0.00 67.64 100.00
16 0.00 0.00 57.98 100.00∗ 100.00

∗Result rounded to 100.00.

was much higher than for random data, because of the absolute magnitude of the operands (see

Figure 6.4).

6.4.2 Signed approximatemultiplication error

In approximate signed multiplication, a counter that discards one of the more significant bits of the

product could change the sign and magnitude of the product. In twos complement representation,

identical leading bits reveal the sign of the operand, and the remaining lower order bits determine

the magnitude. If a counter discards a bit that affects the accumulation of the leading sign bits, the

sign or magnitude or both, could change. The error of signed approximate multiplier described

here is therefore unbounded.

153



Chapter 6: Approximate Integer Multiplication

Table 6.5: Probability of correctness (%) for signed 32×32 bit multipliers
constructed from counters with n input bits and m output bits, operating on
benchmark data.

m
1 2 3 4 5

n

2 0.00
3 0.00 100.00
4 0.00 88.80 100.00
5 0.00 87.97 100.00
6 0.00 87.38 100.00
7 0.00 87.05 100.00
8 0.00 86.31 98.53 100.00
9 0.00 85.97 98.38 100.00
10 0.00 85.28 98.04 100.00
11 0.00 85.43 98.14 100.00
12 0.00 85.36 97.98 100.00
13 0.00 85.35 97.97 100.00
14 0.00 85.28 97.84 100.00
15 0.00 84.95 97.08 100.00
16 0.00 85.38 96.58 98.54 100.00

154



Signed approximatemultiplication

0
0

1

2

3

4

5

6

7

8

9

10

2 4 6 8 10 12 14 16 18 20 ⋅⋅⋅ ≥100
Percentage error in the approximated product; x

P
ro

po
rt

io
n 

of
 p

ro
du

ct
s 

w
ith

 e
rr

or
 <

 x
 (

%
)

 

 

0

20

40

60

80

100

C
um

ul
at

iv
e 

(%
)

random
benchmark

↑ random: 71.0%

↑ benchmark: 96.7%

Figure 6.9: Relative error histogram for (; ) 32×32 bit multipliers. Relative
error was measured in 1% bins up to 20%, and a final bin for error >100% of the
exact product. The left y-axis displays the scale for the histograms, and the right
y-axis displays the cumulative line plot.

6.4.2.1 Signed approximate absolute error

The bit-error distributions of signed multipliers show the proportion of bit errors was roughly pro-

portional to the number of counters in each column. Thedistribution is slightly skewed to the upper

bits, where the input partial products were complemented. There were proportionally more bit er-

rors in product bits 59–63. This was attributed to the sudden increase in operands with magnitude

near  and  (see Figure 6.4).

6.4.2.2 Signedmultiplier relative error

The error relative to the exact signed product was also determined by simulation for the case of

a (; ) approximate signed multiplier (see Figure 6.9). The Baugh-Wooley scheme changed the

initial assertion probabilities of the partial products, reducing the number of operands that yielded

a relative error ≤1 . An unsigned (; )multiplier produced an error of ≤1  for 90.7  of random

multiplications, but the signed version attained only 70.1 . The decrease was less for benchmark

data, from 99.8 to 96.7 , because the average magnitude of signed benchmark operands was less

than the unsigned benchmark operands, and few signed operands were negative.

Although the error was unbounded, only 3.2  of random data multiplications and 1.3  of bench-

mark data multiplications yielded errors greater than 100 product magnitude, because there were

few errors that occurred in the leading sign bits of the exact product. When the exact product was

positive and the leading sign bits of the product were zero, the partial products in that column

155



Chapter 6: Approximate Integer Multiplication

MSB 55 47 39 31 23 15 7 LSB
0

1

2

3

4

Product bit position

O
cc

ur
re

nc
e 

of
 e

rr
or

 (
%

)

 

 

random
benchmark

Figure 6.10: Bit error histograms for a (4; 2) signed 32×32 bit multiplier.

were zero, and therefore all counters were correct. When the exact product was negative and the

leading sign bits of the product were one, accumulated partial products typically generated carries

that rippled through the leading ones in the most significant bits until they overflowed and were

discarded. Hence, multiple counter failures were required to cause one of the leading sign bits of

the approximate product to be incorrect.

6.5 Synthesis

Table 6.7 shows the delay, area and power of signed (n;m) 32×32 bit multipliers synthesised with

Synopsys Design Compiler, using the TSMC Artisan 0.18 μm process 1.8 V SAGE-X™ standard cell

library. Delay was measured as the time a signal took to propagate along the critical path from the

assertion of the operands until all product bits were asserted. Area was the total combinatorial and

interconnect area, and power was measured as the sum of the synthesised dynamic and leakage

power of the multipliers.

Figure 6.12 shows the delay versus correctness of signed (n;m) 32×32 bit multipliers. Some interest-

ing labelled cases are discussed below. The dashed line indicates linear trade-off with respect to the

exact (; ) (full-adder) multiplier. Figure 6.12a shows all (n;m)multipliers, and the shaded region

of interest is shown in Figure 6.12b. Multipliers in this region have a high probability of correctness.

Multiplier area was determined by the number of logic cells used in each design, corresponding to

the degree of truncation of the counters used. As m increased, each counter outputted more bits,

156



Synthesis

0 2 4 6 8 10
0

20

40

60

80

100

Delay (ns)

C
or

re
ct

ne
ss

 (
%

)

 

 

16:3

4:2
9:2 4:3

2:1

zoomed region
exact multiplier
approx multiplier: random
approx multiplier: benchmark

(a) Full range

4 4.5 5 5.5 6
70

75

80

85

90

95

100

16:3

15:3

12:3

11:3

14:3

4:2 5:2

9:2

13:2

3:2

13:37:2

7:3

Delay (ns)

C
or

re
ct

ne
ss

 (
%

)

(b) Zoomed region

Figure 6.11: Full scatter plot and zoomed view of unsigned (n;m) 32×32 bit
multipliers, showing multiplier delay vs. correctness.

157



Chapter 6: Approximate Integer Multiplication

0 2 4 6 8 10
0

20

40

60

80

100

Delay (ns)

C
or

re
ct

ne
ss

 (
%

)

 

 

15:3
14:3

4:2

16:3

zoomed region
exact multiplier
approx multiplier: random
approx multiplier: benchmark

(a) Full range

4 4.5 5 5.5 6
65

70

75

80

85

90

95

100

15:3

12:3

11:3

14:3

4:2

13:2

3:2

13:3

8:2

7:2

7:3

12:2

Delay (ns)

C
or

re
ct

ne
ss

 (
%

)

(b) Zoomed region

Figure 6.12: Full scatter plot and zoomed view of signed (n;m) 32×32 bit
multipliers, showing multiplier delay vs. correctness.

158



Synthesis

Table 6.6: Synthesis results for unsigned (n;m) 32×32 bit multipliers.

m
1 2 3 4 5

n

(ns) 3.190
2 (μm) 0.579

(W) 0.211

(ns) 3.010 5.780
3 (μm) 0.534 1.586

(W) 0.188 0.515

(ns) 3.050 5.160 9.080
4 (μm) 0.585 1.259 2.320

(W) 0.214 0.399 0.558

(ns) 3.020 5.360 7.230
5 (μm) 0.537 1.182 1.768

(W) 0.191 0.399 0.537

(ns) 1.940 4.660 6.280
6 (μm) 0.479 1.221 1.699

(W) 0.165 0.388 0.466

(ns) 1.900 4.780 5.830
7 (μm) 0.483 1.147 1.515

(W) 0.165 0.371 0.490

(ns) 1.910 4.760 6.540 6.990
8 (μm) 0.480 1.112 1.597 1.814

(W) 0.165 0.358 0.469 0.503

(ns) 1.880 4.410 6.170 6.320
9 (μm) 0.482 1.117 1.570 1.760

(W) 0.165 0.352 0.441 0.475

(ns) 1.900 4.520 6.070 6.610
10 (μm) 0.477 1.123 1.551 1.704

(W) 0.164 0.360 0.450 0.510

(ns) 1.910 4.790 5.760 6.520
11 (μm) 0.480 1.080 1.517 1.720

(W) 0.164 0.334 0.450 0.490

(ns) 2.050 4.570 5.450 6.080
12 (μm) 0.472 1.136 1.539 1.767

(W) 0.163 0.349 0.458 0.486

(ns) 1.870 4.480 5.310 6.280
13 (μm) 0.484 1.115 1.515 1.688

(W) 0.165 0.352 0.449 0.492

(ns) 1.980 4.810 5.460 6.360
14 (μm) 0.484 1.071 1.504 1.731

(W) 0.166 0.340 0.446 0.488

(ns) 1.910 4.600 5.490 6.310
15 (μm) 0.475 1.113 1.481 1.743

(W) 0.163 0.349 0.433 0.478

(ns) 3.210 4.500 5.320 6.420 6.030
16 (μm) 0.584 1.127 1.500 1.711 1.169

(W) 0.211 0.351 0.438 0.484 0.360

159



Chapter 6: Approximate Integer Multiplication

Table 6.7: Synthesis results for signed (n;m) 32×32 bit multipliers.

m
1 2 3 4 5

n

(ns) 3.090
2 (μm) 0.586

(W) 0.214

(ns) 3.020 5.820
3 (μm) 0.527 1.553

(W) 0.185 0.516

(ns) 3.290 5.130 9.290
4 (μm) 0.580 1.275 2.279

(W) 0.208 0.408 0.547

(ns) 3.070 5.380 7.510
5 (μm) 0.542 1.210 1.785

(W) 0.191 0.406 0.545

(ns) 2.040 4.830 6.230
6 (μm) 0.477 1.215 1.733

(W) 0.164 0.379 0.485

(ns) 2.100 5.070 5.950
7 (μm) 0.479 1.143 1.527

(W) 0.164 0.375 0.494

(ns) 1.920 4.610 6.410 6.870
8 (μm) 0.475 1.123 1.609 1.835

(W) 0.163 0.358 0.481 0.519

(ns) 1.890 4.610 6.150 6.290
9 (μm) 0.490 1.134 1.583 1.798

(W) 0.166 0.353 0.447 0.496

(ns) 1.960 4.620 6.020 6.600
10 (μm) 0.489 1.102 1.528 1.711

(W) 0.167 0.362 0.441 0.515

(ns) 1.910 4.550 5.440 6.390
11 (μm) 0.487 1.115 1.530 1.783

(W) 0.165 0.348 0.454 0.516

(ns) 1.970 4.470 5.470 6.310
12 (μm) 0.485 1.115 1.552 1.745

(W) 0.166 0.350 0.468 0.487

(ns) 1.960 4.660 5.280 6.240
13 (μm) 0.486 1.121 1.508 1.700

(W) 0.165 0.354 0.449 0.504

(ns) 1.910 4.620 5.620 6.520
14 (μm) 0.483 1.119 1.488 1.732

(W) 0.165 0.348 0.444 0.490

(ns) 2.010 4.590 5.410 6.430
15 (μm) 0.477 1.118 1.486 1.712

(W) 0.163 0.352 0.435 0.474

(ns) 3.150 4.570 5.370 6.640 6.050
16 (μm) 0.585 1.098 1.483 1.697 1.183

(W) 0.212 0.342 0.431 0.481 0.369

160



Approximate integer multipliers for ADVS

so more counters were required, and the area increased rapidly. As n increased, the logic required

for each counter increased, however fewer counters were used so the area decreased slowly.

The trends in power were similar to area. The behaviour of each multiplier was similar in terms

of logic switching activity, so power consumption was closely related to the logic and interconnect

area.

Many factors affected the delay of themultiplier circuits. Delay was comprised of delay of the coun-

ters, the number of levels in the tree, interconnect delay and delay through the CPA.Asm increased,

the additional counters that were required dominated, and delay increased. As n increased, the de-

lay of each counter increased, but fewer counters were required in the tree. Therefore, the number

of levels in the tree decreased, which reduced delay, but also increased the width of the CPA re-

quired. Small changes to the width of the CPA had a marginal effect on CPA delay when the CPA

was a fast parallel prefix adder.

PM was calculated from operation on random and benchmark data. As discussed in Section 6.3.1,

the multipliers tended to have a higher correctness when they operated on benchmark data due to

the distribution of input operands (see Figure 6.12b). The increased PM is shown by a dotted vertical

line in Figure 6.11b and Figure 6.12b, showing the change in correctness of the same multiplier

operating on random (×) and benchmark (●) data.
Many of the multipliers shown in Figure 6.12b exhibited a better than linear trade-off of PM for

delay, compared to the signed (; ) multiplier. Multipliers such as the unsigned (; ) and (; ),
and the signed (; ) and (; ) multipliers yielded a small reduction in delay and a small penalty

to PM . Another cluster, including the unsigned (; ), (; ), (; ), and signed (; ), (; ) and
(; )multipliers are slightly faster again, with further degraded probability of correctness.

PM was highly data dependent for multiplier constructed of counters with a high degree of trunca-

tion, such as the (; ).

6.6 Approximate integer multipliers for ADVS

Two interesting signed and unsigned approximating multipliers potentially suitable for ADVS are

discussed below, and compared to an exact Wallace (; ) signed tree multiplier. Multipliers based

on counters that truncate two or more bits were excluded, due to their measured correctness being

highly data dependent.

161



Chapter 6: Approximate Integer Multiplication

The selected unsigned 32×32 multipliers were the (; ) and (; ). The (; ) unsigned multiplier

was 10.7  faster than the equivalent exact (; ), while PM decreased 6.13  for benchmarked mul-

tiplications. The approximate (; ) was 17.3  faster and incorrect in 13.52  of benchmark multi-

plications. Both multipliers yielded an area saving in excess of 35 , and power savings (combined

dynamic and leakage) in excess of 20, compared to the (; ) exact multiplier.

The selected approximate signed multipliers were the signed (; ) and (; ). The signed (; )
multiplier has small delay gain and small penalty to correctness, and the (; )has a larger delay gain
and larger penalty. The signed (; )was 11.8  faster than the exact (; ), with 11.2  probability of

error for benchmarkedmultiplications. The signed (; )multiplier was 20.8 faster, and incorrect

in only 13.7  of benchmark multiplications. Both multipliers yielded an area saving in excess of

17 , and again power savings (combined dynamic and leakage) are in excess of 20.

An in-depth study of the errors generated by the approximate (; ) unsigned and signed 32×32 bit
multipliers was shown in Sections 6.3.2 and 6.4.2 respectively.

6.7 Conclusion

This chapter introduced the concept of approximate counters, which yielded the truncated sum of

n input bits in m output bits. Designs for a family of signed and unsigned approximate multipli-

ers using approximate counters were given, with signed multipliers based on the Baugh-Wooley

method. An analysis of operands from benchmark programs was performed, showing that the ex-

pected operand magnitude was much lower than random numbers. Furthermore, multiplication

with such operands increased the expected probability of correctness for approximate multipliers.

The distribution of product bit errors and distribution of themagnitude of relative errors was shown

for a signed and unsigned (; ) 32×32 bit multiplier.

Theprobability of correctness anddelay trade-off for approximatemultipliers dependon the operand

distribution of the target application, the degree of truncation of the counters used, the allocation

of partial products, and the technology process in which the multiplier was fabricated. This chapter

has demonstrated the feasibility of constructing approximatemultipliers that can operate faster than

exact multipliers with small probability of error, and small relative error when they occur. Selected

candidate multipliers are simulated in an ADVS-enabled system in Chapter 11 ADVS Simulation.

162



Chapter 7

���������	
 ��	


�

��������

“You’ve got many refinements. I don’t think you need to worry about your failure at long division. I

mean, after all, you got through short division, and short division is all that a lady ought to be called

on to cope with.”

Tennessee Williams (1911–1983)

This chapter presents designs for approximate integer dividers. The well known iterative

division algorithm is modified so that an approximation to the exact quotient converges

in each round. A variable number of quotient digits are calculated per iteration, at the

expense of correctness (due to loss of precision), and a variable number of division rounds.

It is demonstrated that the new division algorithm is sufficient to calculate the integer

(but not necessarily fractional) component of the quotient for operands typically observed

in benchmark programs, with a lower latency than a similar variable latency radix-4 SRT

divider.



Chapter 7: Approximate Integer Division

Division is a time consuming and infrequent arithmetic operation. This chapter

presents an algorithm for approximate division of unsigned integers, and three

designs of approximating dividers based on this algorithm. The dividers produce

an approximate quotient, but not a remainder, and implemented with simple, fast operations. The

unsigned approximate dividers are then modified to operate on signed inputs.

This chapter is organised as follows: Section 7.1 defines an algorithm for the exact division of two

unsigned binary operands, and modifications made to the exact algorithm to produce an approx-

imate quotient; Section 7.2 presents three implementations of the unsigned approximate division

algorithm; in Section 7.3 the probability of correctness of each implementation is measured using

random inputs and benchmarks; the unsigned approximate hardware developed ismodified to han-

dle signed inputs in Section 7.4; and results of synthesis of the approximating dividers are presented

in Section 7.5. A brief summary is provided in Section 7.7.

7.1 Division algorithms

In this section an algorithm to compute the exact quotient q = z/d is presented. Section 7.1.2 con-

tains simplifications that are progressively applied tomake the algorithmmore efficient in hardware,

at the cost of occasionally producing an erroneous result. The error in the approximate quotient is

bounded, however the important result in this chapter is the probability of correctness, and not the

magnitude of the error.

The latency, correctness and hardware cost for the approximating dividers are compared against a

baseline divider in Section 7.5.

To produce an approximating algorithm, a natural approach is to use an algorithm that converges

towards an exact result, but terminates before an exact result is guaranteed. This approach is used

initially, and later further approximations are introduced by simplifying complex steps in the algo-

rithm.

164



Division algorithms

7.1.1 Exact division algorithm

The exact division algorithm divides the quotient q by the divisor d by first dividing by a nearby

binary power d̃, and then iteratively correcting the result. Division by a power of two can be im-

plemented as a fast shift operation. Alternative approximate divisors are possible; dH is the power

of two greater than d, and dL is the power of two less than or equal to d. Take

d̃ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dH if (dH − d) < (d − dL)
dL otherwise

(7.1)

and consider an algorithm in which
z
d
= qi + ri

d

is true at each round, and in which the qi terms converge towards the exact quotient q = z/d.
To find q divide z by d̃. As d̃ is a binary power, this division can be performed with a binary shift

to the right. Thus

z
d

= q + r
d

= z
d̃
+ r

d
(7.2)

for some value of ri . The error e in the quotient approximation q is

e = r
d

= z
d
− z

d̃
= z

d
− z

d̃

= −z(d − d̃)
d .d̃

= −z(d − d̃) /d̃
d

= −z(d − d̃) /d̃
d

(7.3)

To generate q, a refined approximation of the quotient, undertake the division e = r/d by dividing

165



Chapter 7: Approximate Integer Division

by d̃. From (.):

z
d

= z
d̃
+ ( r

d
)

= z
d̃
+ ( r

d̃
+ r

d
)

= q + r
d

(7.4)

Similar to the first round find

e = r
d

= z
d
− r

d̃

= − r(d − d̃)
d × d̃

Thus the following iteration is observed:

q = 

r = z

e = z/d
qi+ = qi + ri

d̃
(7.5)

ri+ = −ri(d − d̃)
d̃

(7.6)

ei = ri
d

An error bound for ei follows:

∣ei ∣ = ∣ ri
d
∣

= ∣ 
d
× ri−(d − d̃)

d̃
× . . . × r∣

=
&&&&&&&&&&&&
z
d
× (d − d̃

d̃
)

i&&&&&&&&&&&&
≤ q × ( 


)i

(7.7)

Note that ∣ri+∣ < ∣ri ∣, provided ∣d − d̃∣ < ∣d∣. This is guaranteed as d̃ is the nearest binary power to

d. Hence the remainders, ri , tend to zero and the quotients, qi , converge on the exact quotient z/d.
Observe that many rounds could be required to obtain the exact quotient.

166



Division algorithms

7.1.2 Approximating division algorithm

The following subsections show how the exact division algorithm from the previous section can be

simplified to make the hardware implementation more efficient by introducing a bounded error to

the quotient. The sources of error are: limiting the number of fractional bits to store qi ; limiting

the number of rounds to perform the calculation of qi ; and approximating the multiplication of

ri × (d − d̃). These error sources are discussed in detail below.

7.1.2.1 Fractional bits

According to (.), the first round quotient, q, is found by dividing by the approximate divisor d̃.

This can be implemented by shifting z by D̃ bits to the right. Thus, q contains both integer and

fractional bits. In subsequent rounds the quotient qi is refined by adding ri/d̃, a right shift of ri by

D̃ bits. For practical purposes, a finite number of fractional bits is stored. Limiting the number of

fractional bits in qi to f introduces a quantisation error. As examined in Section 7.3.1.1 and 7.3.1.2,

the choice of f affects the correctness of the divider, as well as its physical characteristics, including

delay.

7.1.2.2 Fixed number of rounds

The calculation of the exact quotient by successive right shifts can require many rounds. In each

round the quotient is adjusted by a diminishing factor, but only the integer part of the quotient is

retained. An upper limit can be set on the number of rounds, t. This fixes the circuit delay, but can

cause an error by terminating the algorithm before the integer part of the approximate quotient has

converged.

7.1.2.3 Approximatemultiplication

In (.), each round required a multiplication ri × (d − d̃). A full n-by-n multiplication in each

round was expensive in circuit delay and area. Furthermore the full precision of the multiplication

was not be needed, as the lower bits of the product were right shifted by D̃, and only affected the

fractional bits of qi and ri .

Multiplication is typically performed using a sum of shifted partial products [Ercegovac and Lang,

2003]. Each partial product is the product of themultiplicand and a digit of themultiplier. A simple,

fast method of approximation is to sum only the most significant few partial products.

In the following sections the multiplicand is denoted m = d − d̃; note that this is constant for a

particular division. The most significant non-zero partial product was used to approximate the

167



Chapter 7: Approximate Integer Division

binary product ri × m, and denoted p. The next most significant partial product was also used,

denoted p. Observe that p will be equal to a left shift of the multiplicand, or zero if the next most

significant bit of the multiplier is zero. In the approximating division algorithm the term (ri ×m) is
approximated as p + p. When this approximation is used, the approximating division algorithm

can no longer be guaranteed to converge on the exact quotient.

7.2 Hardware design

In this section designs for implementations of the approximating algorithm described above are

presented. The divider is considered in three distinct stages: initialisation, division and finally ac-

cumulation.

7.2.1 Initialisation stage

The initialisation stage computed constant values used in the subsequent division stage. This in-

cluded the right shift amount D̃ and the multiplicand m = d − d̃ used throughout the division.

7.2.1.1 Initial shift amount

The initial approximation qo was the right shift of z by D̃. The terms dU and dL in (.) depended on

the most significant non-zero bit in d. This was found using a leading zeroes detector (LZD) circuit.

The output, LZD(d) was a hot-one encoded bit vector showing the most significant non-zero bit.

dL was found by binary encoding the output of the LZD. The output of the LZD was also used to

indicate division by zero.

Selection of d̃ as either dU or dL in (.) depended on the bit to the right of the most significant bit

in d. To inspect this, the output of the LZD was shifted right one bit and AND-ed with d. When the

result was zero d̃ = dL was selected; otherwise d̃ = dU = dL + .

D̃ was thus the initial shift amount to implement the division by d̃ in the initial calculation of q.

This is called the initialShamnt.

168



Hardware design

7.2.1.2 Constant multiplicand

The multiplicand m = d − d̃ required for (.) was simple to calculate when d̃ = dL. In this case it

was sufficient to mask out the most significant bit of d using the output of the LZD:

m = d − d̃ = d AND NOT(LZD (d))
When d̃ = dU , m must be determined by the subtraction:

m = d − d̃ = −((LZD(d) ≪ ) − d)
The selection of dH or dL thus changed the sign of ri , and had to be accounted for in the divider

implementation.

7.2.1.3 Terms for approximatemultiplication

Asdiscussed in Section 7.1.2.3Approximatemultiplication, themultiplication to find ri×m (see (.))

was approximated using the most significant non-zero partial product in the binary multiplication,

p, and the next most significant partial product, p.

The value of p was found by shifting ri left. The shift amount was determined by the position of

the most significant non-zero bit of m, and is constant for a division. The value of p was either 

or p ≫ , depending on the next most significant bit in m. The most-significant non-zero bit and

its less significant neighbour were determined with a LZD and mask of m, as was performed on d

in Section 7.2.1.3.

7.2.1.4 Constant round shift amount

Throughout the exact division algorithm of Section 7.1.1 Exact division algorithm, the divisor d̃ = d̃

remained constant as given in (.) and 7.6. Likewise, p and p were calculated using the constant

multiplicand (see Section 7.2.1.3). Hence, ri+ in (.) was calculated by a constant left shift for the

multiplication by m, and a constant right shift for the division by d̃. Taking the difference in the

shift amounts yielded a constant right shift, as ∣ri+∣ < ∣ri ∣. The constant right shift was called the

roundShamnt.

169



Chapter 7: Approximate Integer Division

7.2.2 Division stage

The outputs of the division stage were latched and iterated upon in the next division round. The

division stage operated for a fixed number of clock cycles, as indicated in Section 7.1.2.2. In each

clock cycle qi and ri were calculated using (.) and (.). The division operation shown in (.)

was implemented a right shift by roundShamnt.

ri+ ← ri ≫ roundShamnt

qi+ ← qi + ri+

To increase the speed of the addition of the partial remainder, carry-save adders (CSA) were used.

The intermediate result qi+ was produced in carry save form, qsi+ and qci+ , such that qi+ = qsi+ +
qci+ . Similarly ri+ was stored in this redundant format as rci and rsi .

7.2.3 Accumulation stage

The final accumulation stage summed the carry and sum terms of qi in a carry-propagate adder to

produce a result in non-redundant form.

7.2.4 Implementation notes

The exact division algorithm was carefully factored to fix many of the terms in each round as a

constant, and to reduce the latency of the repeated division stage. Constant terms were factored

out, but the synthesised initialisation stage was expensive in terms of area and delay. However, the

division stage where the division iteration was performed had a small area and has low latency.

As the division stage had a lower latency than the initialisation and accumulation stages, the divi-

sion stage iteration was unrolled to reduce number of clock cycles required to achieve t iterations.

Other arrangements of timing elements are possible to balance the total number of cycles and cycles

latency.

More familiar division algorithms such as SRT achieve speedup through use of higher radices than

base 2. Unlike SRT, the divider presented here cannot benefit from higher radices. High radix

170



Hardware design

dividers generatemultiple quotient bits per round by inspecting the residual and divisor with higher

precision. There is no comparable operation in the approximating divider.

Pipelining registers for the approximating dividers were inserted between each stage. As discussed

above, additional pipelining registers were inserted in the initialisation stage, requiring two initial-

isation cycles.

7.2.5 Variations

In this section, variants of the divider architecture are proposed to shorten the critical path and

hence reduce the minimum clock period, at the expense of correctness.

Direct Implementation (DI) Divider: An implementation based on a direct implementation

of the description above is shown in Figure 7.1a. This design contains two terms

in the multiplication approximation, p + p.

Single Multiplication Term (SMT) Divider: A further approximation to the numerator mul-

tiplication (see section 7.1.2.3) was made by discarding p. In the initialisation

stage a right shift was no longer required. In the division stage the CSA tree was

simplified to a simple CSA, and the rci latch was removed. Changes are shown

in Figure 7.1b.

Greatest Binary Power (GBP) Divider: The delay of the initialisation stage was reduced by

not handling both of the d̃ = dH and d̃ = dL cases. Instead, dL term was gen-

erated from the output of the first LZD. Calculating the dH term requires a full

propagation subtraction, as discussed in Section 7.2.1.2. Fixing d̃ = dL removed

the need for the subtractor. The resulting latency was reduced to latency of the

SHIFT and AND in the calculation of dL.

Forcing the approximate divisor to dL forced the error term ei to be positive. The correction to

the quotient qi in each round was thus negated from the previous round—hence the approximate

quotient converged like a dampened oscillation. The roundShamnt also altered, causing slower

convergence. The GBP divider is shown in Figure 7.1c.

The GBP incorporated all the simplifications of the SMT divider.

A graphical representation of the convergence of the quotient for a sample division is shown in

Figure 7.2. The exact quotient convergence was calculated using the GNU Multi-Precision library

171



Chapter 7: Approximate Integer Division

(a
)
D
ire

ct
Im

pl
em

en
ta
tio

n
(D
I)
D
iv
id
er
.C
on

-
tr
ol
el
em

en
ts
su
ch

as
m
ul
tip

le
xo

rs
,t
im

in
g

el
em

en
ts
an

d
cl
oc
k
si
gn

al
sa

nd
la
tc
he

sa
re

no
ts
ho

w
n.

(b
)S
in
gl
eM

ul
tip

lic
at
io
n
Te
rm

(S
M
T)
D
iv
id
er
.

La
te
nc

y
in

th
e
in
iti
al
is
at
io
n
st
ag

e
w
as

re
-

du
ce
d
by

in
cl
ud

in
g
on

ly
on

e
te
rm

in
th
e

ap
pr
ox

im
at
io
n
of

r i
×m

.L
og

ic
re
m
ov

ed
by

th
is
si
m
pl
ifi
ca
tio

n
is
sh
ow

n
by

th
e
do

tt
ed

ou
tli
ne

.

(c
)
G
re
at
es
tB

in
ar
y
Po

w
er
(G
BP

)D
iv
id
er
.A

n
n
bi
t
su
bt
ra
ct
io
n
w
as

re
m
ov

ed
fr
om

th
e

cr
iti
ca
lp

at
h
by

fix
in
g

d̃
=d

L
.
Re

du
nd

an
t

lo
gi
c
th
at

w
as

re
m
ov

ed
is
sh
ow

n
by

th
e

do
tt
ed

ou
tli
ne

.

F
ig
u
re

7
.1
:

D
es
ig
ns

fo
ra

pp
ro
xi
m
at
in
g
un

si
gn

ed
in
te
ge

rd
iv
id
er
s.

172



Probability of correctness

1 2 3 4 5 6
40

45

50

55

60

65

70

75

80

Division rounds, t

Q
uo

tie
nt

 v
al

ue

 

 
q

exact
 = Z / d

Exact r
i
 * m

DI divider
SMT divider

Figure 7.2: Convergence for the division of z/d; z=0x26EA316F and d=0xBA3F7F.
The DI divider used twomultiplication terms, but the SMT divider used only one.

(GMP) to prevent quantisation error [Free Software Foundation, Inc. , 2008]. In this example, the

DI divider with 2 multiplication terms successfully converged, but the SMT divider with 1 multipli-

cation term did not. Other observable effects include quantisation error, and loss of precision due

to the lack of a p term.

7.3 Probability of correctness

In this section the correctness of each approximating divider was measured as the proportion of

correct quotients calculated for a set of divisions, given a number of division rounds t and fractional

bits f maintained. A comparison was made with a variable latency SRT divider, by investigating

the number of SRT division rounds required to achieve the same correctness as the approximating

dividers.

7.3.1 Approximating dividers

Operation of the approximating dividers was simulated by a program written in C, and used to

profile the correctness of the approximating dividers operating on randomnumbers andbenchmark

data.

173



Chapter 7: Approximate Integer Division

7.3.1.1 Random input probability of correctness

A set of 10 million random numbers was generated using the GNU srandom() function, however,

uniform randomnumbers do notmimic typical divisions observed in program execution very well.

When d > z, which was often for uniform random numbers, the quotient was correctly set to

zero, and the approximating dividers did not require any cycles in the division stage, inflating the

correctness of the dividers. To mitigate this effect and handicap the approximating dividers, the

uniform random numbers were biased such that d < z by

d ← dbiased = duniform mod (z + )

Biased random numbers were used to test the effect on correctness of using one or two multipli-

cation terms in the approximate division. Figure 7.3a shows the correctness of the DI divider (2

multiplication terms), and Figure 7.3b shows the correctness of the SMT divider (1 multiplication

term) respectively. Peak probability of correctness of 83 occurred with f=8 and t=3 in the DI

divider for random inputs. The difference in correctness of the dividers is shown in Figure 7.3c. The

maximumdifference in correctness when using a singlemultiplication term in the SMTdivider was

6.24, when f=8 and t=3.

7.3.1.2 Benchmark probability of correctness

Tables C.1, C.2 andC.3 on pages 319–321 show the occurrence of division instructions in each bench-

mark. Tables C.1, C.2 and C.3 show that on average the number of unsigned division operations

for arithmetic, Mediabench and SPEC benchmarks ranged from 0.05 to 0.6 of all instructions

retired. A division by zero did not occur in any benchmark, but on average 6.9 of unsigned divi-

dends were zero.

Figure 7.4 shows average correctness for arithmetic, Mediabench, SPEC and random data. A peak

probability of correctness of 99.4 occurred for f=2 and t=7 in the Mediabench data. All bench-

marks achieved amaximumcorrectness of at least 75 , except the 253.perlbmk, 181.mcf and 197.parser

integer benchmarks in the SPEC CINT2000 set, which exhibited a peak correctness of under 43.

The correctness profiles of the average arithmetic,Mediabench, and SPEC benchmarks were similar

in shape, but had different peak and average values. In later synthesis results and simulations, the

dividers with f=2 and t=7 were used as the approximate dividers in the processor pipeline.

The correctness profile of the approximating dividers with benchmark inputs differed to uniform

174



Probability of correctness

(a) Probability of correctness of the unsigned DI divider for biased random inputs.

(b) Probability of correctness of the unsigned SMT divider for biased random inputs.

(c) Difference in probability of correctness for DI and SMT divider, for uniform random inputs.

Figure 7.3: Correctness of DI and SMT dividers for biased random inputs.

175



Chapter 7: Approximate Integer Division

(a) Arithmetic benchmarks. (b)Mediabench benchmarks.

(c) SPEC benchmarks. (d) random data.

Figure 7.4: Average probability of correctness for approximating dividers
operating on benchmark data. The average maximum difference in correctness
of the DI, SMT and GBP dividers was within 0.3%.

random input profiles in their dependence on the division rounds t rather than the number of frac-

tional bits f . An unusual peak for f=2 is apparent in the Mediabench output, and is attributed to

quantisation error and the distribution of input operands. The average correctness for the Medi-

abench benchmarks of the DI divider and SMT divider were negligibly different. The maximum

difference in average correctness did not exceed 0.01 . The average correctness of the further sim-

plified GBP divider was within 0.3  of the other approximating dividers. Hence, the best design is

the unsigned GBP divider, as it has the least overhead in the initialisation stage.

The approximate DI, SMT and GBP dividers are synthesised in Section 7.5, to investigate the delay,

area and power of the approximate arithmetic units. Despite a peak average correctness of 99.3  for

arithmetic benchmarks, and 97.8 for Mediabench, the average correctness quoted is only 89.5 ,

due to the low correctness obtained in SPEC benchmarks.

176



Probability of correctness

1/
2

9/
16

10/
16

11/
16

3/
4

13/
16

14/
16

15/
16

−4 + 13/
8

−4 + 17/
8

−4 + 21/
8

−4 + 25/
8

−4 + 29/
8

1/
8

5/
8

9/
8

13/
8

17/
8

21/
8

 p, shifted partial remainder

 d
, d

iv
is

or

 

 2×d
max

2×d
min

1×d
max

1×d
min

0×d
max

0×d
min

−1×d
max

−1×d
min

−2×d
max

−2×d
min

Figure 7.5: P-D diagram showing the selection intervals for the quotient digit
selection stage of the baseline SRT divider. The quotient digit is selected based
on the divisor and shifted partial remainder in each division round. The range of
each possible quotient digit are colour coded.

7.3.2 Baseline SRT divider

A 32/32 bit variable latency radix-4 SRT divider was selected as a baseline, because SRT is widely

implemented and radix-4 designs do not suffer the exponential area increase of higher radix de-

signs [Harris et al., 1997; Oberman and Flynn, 1997]. The baseline SRT divider was written in syn-

thesisable VHDL. Like the approximating dividers, it did not output a remainder, saving a carry

propagate adder. The divider stored the residual in redundant carry-save format, and generated

the quotient digit combinatorially. The baseline divider operated in 3 stages, like the approximate

divider.

A P-D diagram of the quotient digit selector used in the baseline SRT divider is shown in Figure 7.5.

The P-D diagram shows the possible minimum and maximum values for each quotient digit, so

that the partial remainder result is in the range [− 
 ,


).

In the initialisation stage, SRT operands could not be pre-normalised (shifted) to avoid overflow.

Thepre-normalisation shift amountswere used to calculate the number of division rounds required,

and the number of bits to shift the quotient to the correct numeric significance. The initialisation

stage was initially set a latency of 1 cycle.

In the division stage the residual was saved in stored carry form to reduce latency. The leading bits

177



Chapter 7: Approximate Integer Division

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Latency (cycles)

U
ns

ig
ne

d 
di

vi
si

on
s 

(%
)

 

 

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e 

un
si

gn
ed

 d
iv

is
io

ns
 (

%
)

biased random
benchmark

Figure 7.6: Histogram of the number of cycles required by the baseline radix-4
SRT divider in the division stage. The distribution bars are shown on the left
y-axis, and the cumulative line plot on the right y-axis.

of the residual and divisor were inspected to determine the quotient digits combinatorially, from

the redundant digit set [−, ]. An on-the-fly quotient conversion was employed to convert the

redundant digits to non-redundant binary [Ercegovac and Lang, 2003]. The selected quotient digit

was used to generate the appropriate multiple of the divisor and subtract it from the residual, for

the next division round.

In the final stage, the quotient was shifted to the required significance, and possibly decremented if

the residual (remainder) was negative. The final stage required 1 cycle.

Pipelining registers for the baseline SRT divider were inserted in between each stage. The delay of

the quotient digit selection could be further reduced by using a fast lookup table.

In the worst case, a 32/32 bit radix-4 divider required up to 16 division cycles, because one radix-

4 quotient digit was generated per division round. The baseline SRT divider could generate an

approximate result by limiting the number of division cycles. Figure 7.6 shows the number of cycles

required by the SRT divider in the division stage.

For biased random inputs, 0.0 of divisions were correctly calculated with 0 division cycles. No

exact quotient result was 0 because d < z, and at least one division round was required to calculate

a non-zero quotient. With 3 division cycles the SRT divider could correctly calculate 99.5  all

random input divisions. The average number of division cycles required was small because both z

and d were likely to be very large in magnitude.

The average operand distribution for benchmark operands was significantly different from random

178



Signed approximate integer division

inputs. For benchmark inputs, 0 division cycles were required to correctly calculate 41.8  of divi-

sions, but 8 cycles were required to correctly calculate 89.9 of divisions. In Section 7.5 the 8 cycle

SRT divider is used to compare against synthesised approximate dividers in terms of latency, delay,

area and power.

In Section 7.3.1.2 Benchmark probability of correctness, the GBP divider was determined to require 7

division cycles to correctly calculate 99.4 of allMediabench divisions. For the radix-4 SRT divider

to have similar probability of correctness to the GBP divider, 7 division cycles, 1 pre-normalisation

cycle and 1 post-shift cycle were required, for a total latency of 9 cycles.

7.4 Signed approximate integer division

This section discusses how a modification to the approximate dividers proposed was retrofitted

allow the divider to operate on signed operands. It was desirable that a modification impose a

low delay and area overhead, sacrifice little or no correctness, and work in the DI, SMT and GBP

dividers.

The initialisation stage set theworst-case delay for the unsigned approximate divider—itwas already

long and complex. Much of the calculation effort was spent inspecting the divisor d using two LZD

units, which assume that the divisor is unsigned (or positive). To handle negative signed operands,

a leading ones detector (LOD) could have been used, but nearly all of the logic in the initialisation

stage would have needed to be duplicated, and neither would the outputs have been amenable to

the encoders that determine the shift amounts. Additionally, each shifter would have needed to be

replaced with a conditional arithmetic shifter, to preserve the sign bits.

A simpler solution was to negate z and d when they were negative before operation in the initial-

isation stage. The quotient was conditionally negated after the accumulation stage, as determined

by the initial sign bits of z and d. The number N− is not representable N bit twos complement, so

the approximate divider was wrong for the case when d = − × N−.

The simplest method of negating a signed number was to complement the number, and add 1 to the

LSB. It was trivial to negate the quotient, because complementation is simple, and the final accu-

mulation stage already employed a full propagate adder. In the initialisation stage z could be easily

negated because the data path for z was much shorter than the data path for d, which also involves

a full propagate adder/subtractor. Both z and q were negated with a conditional inverter/adder.

179



Chapter 7: Approximate Integer Division

Table 7.1: An example demonstrating the approximation of −d. A twos
complement number can be negated by inverting and incrementing. Each
column shows a separate example.

Operation +ve d
−ve d −ve d −ve d
(exact) (approx.) (approx.)

d 01100101 11010000 11010000 11111000

invert 00101111 00101111 00000111

increment 00110000 00110000 00001000

initialShamnt 6 5 5 2
roundShamnt 5 4 3 1

It was more difficult to negate d, because extra hardware on the data path added to the total delay.

Also, the negation couldn’t be incorporated into the existing adder/subtractor for m; the negation

had to be performed before the first LZD so the initialShamnt could be encoded (see Figure 7.1b). It

was undesirable from a delay perspective to introduce another full propagate adder at the d input.

Instead, the divisor d was complemented (if negative), but not incremented.

If the most significant bit of the negated d was incorrect, then the initialShamnt was incorrect. If

the next most significant bit was incorrect, then the roundShamnt was incorrect. Table 7.1 shows

an example of approximating the negation of d.

The baseline unsigned radix-4 SRT divider could handle signed inputs with simple modifications.

Because the unsigned baseline divider selected quotient digits from the set [−, ], the adder for
the partial remainder was widened to operate on signed digits. The additional bits were used to

store the extended sign bits for the divisor and shifted partial remainder. Additional logic was

required for the signed SRT divider to inspect the input operands and perform the post-division

shift. The signed and unsigned baseline exact integer dividers had similar delay, area, and power

characteristics due to the small differences.

The baseline radix-4 SRT divider was set to operate on signed operands from the benchmark data

set, and the number of division cycles was recorded. Figure 7.8 shows that the average number

of division round cycles required for a target correctness of ≥90 reduced to 7 cycles for signed

benchmark operands. Thus, the total division latency for the signed SRT divider was 1 initialisation

cycle, 7 division cycles and 1 accumulation cycle—a total of 9 cycles. The SRTdivider attained 94.2 

correctness with 7 division cycles.

180



Signed approximate integer division

(a) Arithmetic benchmarks. (b)Mediabench benchmarks.

(c) SPEC benchmarks. (d) random data.

Figure7.7: Averageprobability of correctness for signedapproximatingdividers
operating on benchmark data. The maximum difference in correctness of the
SMT divider compared to the DI divider was as much as 22% less, and the GBP
was as much as 21% less for SPEC benchmarks.

Table 7.2 shows the peak average correctness when the approximating dividers operated on each

data set, and the overall average of all benchmarks. The number of fractional bits f and number

of division rounds t for the divider with the peak correctness is shown. The correctness profiles

of the signed dividers in Figure 7.7 are much flatter than the unsigned profiles. It was determined

that only 4 signed division rounds was required to maximise the peak average correctness over all

benchmarks.

The correctness penalty was determined by simulation of benchmark data. Table 7.3 shows the

average difference in correctness the negation of d in the initialisation stage was approximated. The

dividers were compared when d was properly negated, and approximated by just complementing.

The signed DI divider suffers the greatest correctness penalty in all benchmarks compared to the

unsigned dividers. While the correctness of the signed SMT dividers were negligibly affected, the

GBP dividers improved very slightly, due to a much repeated pathological case in the 253.perlbmk

and 181.mcf benchmarks in the SPEC suite.

181



Chapter 7: Approximate Integer Division

Table 7.2: Peak probability of correctness for signed and unsigned DI dividers
for benchmark and random data.

Benchmark
unsigned signed signed

exact −d approx. −d

f t PD () f t PD () f t PD ()

random 8 3 92.06 4 4 37.59 9 4 92.07

Arithmetic 2 6 99.38 9 8 50.67 9 8 50.67
Mediabench 2 9 97.80 9 1 78.81 9 1 80.70
SPEC 3 10 70.72 9 13 84.66 9 13 88.33

Benchmark average 2 7 89.52 9 4 74.96 9 4 76.74

Table 7.3: Difference in correctness for signed dividers approximating −d in the
initialisation stage. A signed divider approximating −d is compared to a signed
divider that calculates −d exactly.

Benchmark DI SMT GBP

random -54.47 0.00 0.00

Arithmetic 0.00 0.00 0.00
Mediabench -5.65 0.00 0.00
SPEC -13.90 0.00 4.25

Benchmark average -7.80 0.00 2.03

182



Signed approximate integer division

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Latency (cycles)

U
ns

ig
ne

d 
di

vi
si

on
s 

(%
)

 

 

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e 

un
si

gn
ed

 d
iv

is
io

ns
 (

%
)

biased random
benchmark

Figure 7.8: Histogram of the number of cycles required by the baseline
radix-4 SRT divider in the division stage, when operating on signed inputs. The
distribution bars are measured on the left y-axis, and the cumulative line plot on
the right y-axis.

In Section 7.3.1.2 Benchmark probability of correctness a comparison was made between the peak

average correctness of the unsigned DI, SMT and GBP dividers when operating on sets of bench-

mark data. Table 7.4 shows the difference in correctness for signed and unsigned SMT and GBP di-

viders, compared to the DI divider. The SMT and GBP divider suffer a small correctness reduction

compared to the DI divider for unsigned random inputs, and negligible difference for benchmark

inputs.

The differences in correctness for signed dividers are quoted from dividers that calculated the exact

value of −d in the initialisation stage. A further correctness penalty must be added from Table 7.3

when −d is approximated. The difference in correctness for the signed SMT and GBP dividers

compared to the signed DI divider for signed inputs was much greater than for unsigned inputs.

The correctness profiles of the signed divider in Figure 7.7 were different to the profiles of the un-

signed divider in Figure 7.4. The number of division rounds and fractional bits in the signed divider

do not have a strong individual effect on the correctness, which remained at a near-constant level.

As seen in Table 4.4, most of the signed benchmark division operands were positive, so the divider

did not suffer errors from negating the leading sign bits of z when negative. Figure 4.4 showed that

the magnitude of the mostly positive signed benchmark divisors were likely to be lower than the

magnitude of unsigned benchmark divisors. The fewest number of division rounds were required

when the difference in the magnitudes of the divisor and dividend are very small (e.g. z/), or very
large (e.g. z/z). The most division rounds are required when d ≈ z/.

183



Chapter 7: Approximate Integer Division

Table 7.4: Maximum difference in peak average correctness for the SMT and
GBP dividers compared to the DI divider.

Benchmark
unsigned signed

SMT () GBP () SMT () GBP ()

random -2.46 -3.58 -20.76 -19.08

Arithmetic 0.00 0.00 0.08 0.15
Mediabench 0.00 -0.39 -11.26 -8.48
SPEC 0.03 0.27 -22.20 -21.51

Benchmark average 0.01 -0.07 -11.76 -10.56

The sources of error were limiting f , limiting the number of rounds t and approximating the mul-

tiplication of ri ×(d − d̃). The probability of correctness of the signed divider was much lower than

the approximate unsigned divider. This is because the same operands were frequently repeated,

and because of the effect of complementation. Operations that included a negative divisor would

need to be complemented before and after the operation. After the approximate division, a result

would be calculated with fractional bits. In the unsigned case, the fractional bits would be trun-

cated, yielding the integer quotient. In the signed case, the result may need to be complemented by

inversion and incrementing. Frequently, the loss of precision in the fractional bits caused the least

significant integer bits to be incremented when it shouldn’t, or not incremented when it should. It

was observed that the average error in the signed integer quotient was small.

7.5 Synthesis

Each approximating divider design and SRT baseline was synthesised from a VHDL description

with the TSMC Artisan 0.18 μm process 1.8 V SAGE-X™ standard cell library, under typical con-

ditions. The synthesiser used was Synopsys Design Compiler. Each approximating divider was

synthesised with f and t from Table 7.2 corresponding to the peak average probability of correct-

ness across all benchmark applications. Table 7.5 shows the results from synthesis. The unsigned

and signed exact SRT dividers required 1 pre-normalisation cycle, 8 or 9 division cycles for ⪆ 

correctness, and 1 post-shift and quotient adjustment cycle. The approximate dividers required 2

initialisation cycles, 7 or 4 division cycles and 1 accumulation cycle.

184



Synthesis

T
a
b
le

7
.5
:

Re
su
lts

fr
om

sy
nt
he

si
s
of

32
/3
2
bi
td

iv
id
er
s.
Ea
ch

de
si
gn

w
as

op
tim

is
ed

fo
rd

el
ay
.T
he

m
in
im

um
ac
hi
ev
ed

cl
oc
k
pe

rio
d

is
sh
ow

n
fo
rt
yp

ic
al
op

er
at
in
g
co
nd

iti
on

s
an

d
w
ire

lo
ad

.D
yn

am
ic
an

d
le
ak
ag

e
po

w
er

co
ns
um

pt
io
n
es
tim

at
es

fr
om

sy
nt
he

si
s
ar
e

al
so

sh
ow

n. Ty
pe

D
es
ig
n

C
lo
ck

f
t

C
or
re
ct
ne

ss
C
yc
le
s

La
te
nc

y
A
re
a

Po
w
er

(n
s)

(
)

(n
s)

(
)

(μ
m

 )
D
yn

.(
m
W
)

Le
ak
.(
nW

)

U
ns
ig
ne

d
Ex

ac
t

SR
T
ra
di
x-
4

4.
45

—
—

—
18

71
.2

0.
71
7

19
.7
8

56
9.
5

Ex
ac
t(
un

de
r-
cy
cl
ed
)

SR
T
ra
di
x-
4

4.
45

—
—

89
.5∗

10
44
.5

10
0

0.
71
7

19
.7
8

56
9.
5

A
pp

ro
xi
m
at
in
g

(u
ns
ig
ne

d)

D
I

3.6
0

2
7

89
.5‡

10
36
.0

80
.9
(-
19
.1)

0.
80
2

10
.7
1

56
3.5

SM
T

3.5
5

2
7

89
.5¶

10
35
.5

79
.8
(-
20
.2
)

0.
67
5

9.
21

48
3.6

G
BP

3.4
5

2
7

89
.5¶

10
34
.5

77
.5
(-
22
.5)

0.
53
9

10
.0
9

40
8.
4

Si
gn

ed
Ex

ac
t

SR
T
ra
di
x-
4

4.
45

—
—

—
18

71
.2

0.
71
7

19
.7
8

56
9.
5

Ex
ac
t(
un

de
r-
cy
cl
ed
)

SR
T
ra
di
x-
4

4.
45

—
—

94
.2
†

9
44
.5

10
0

0.
71
7

19
.7
8

56
9.
5

A
pp

ro
xi
m
at
in
g

(s
ig
ne

d
ex
ac
t−d

)

D
I

4.
75

9
4

75
.0
§

7
33
.3

74
.7
(-
25
.3)

0.
83
9

15
.7
3

53
6.
7

SM
T

4.
29

9
4

63
.2
§

7
30
.0

67
.7
(-
32
.5)

0.
79
9

18
.0
4

59
5.6

G
BP

4.
29

9
4

64
.4
§

7
30
.0

67
.5
(-
32
.5)

0.
64
7

17
.4
5

51
2.
7

A
pp

ro
xi
m
at
in
g

(s
ig
ne

d
ap
pr
ox

−d)
D
I

3.6
2

9
4

76
.7
‡

7
25
.3

56
.9
(-
43
.1)

0.
60
5

18
.50

52
4.
4

SM
T

3.5
6

9
4

63
.2
¶

7
24
.9

56
.0
(-
44
.0
)

0.
49
2

16
.9
8

45
8.
1

G
BP

3.4
9

9
4

62
.4
¶

7
24
.4

54
.9
(-
45
.1)

0.
62
1

21
.8
2

54
4.
2

∗
H
ist
og
ra
m
of
co
rr
ec
tn
es
sf
or

th
e
un

sig
ne
d
SR
T
di
vi
de
ri
n
Fi
gu
re
7.6
.

† H
ist
og
ra
m
of
co
rr
ec
tn
es
sf
or

th
e
sig

ne
d
SR
T
di
vi
de
ri
n
Fi
gu
re
7.8
.

‡ ‘B
en
ch
m
ar
k
av
er
ag
e’
co
rr
ec
tn
es
si
n
Ta
bl
e
7.2
.

§ C
or
re
ct
ne
ss
pe
na
lty

fo
ra
pp
ro
xi
m
at
io
n
of

−d
in
Ta
bl
e
7.3
.

¶ M
ax
im

um
di
ffe
re
nc
e
in
co
rr
ec
tn
es
si
n
Ta
bl
e
7.4
.

185



Chapter 7: Approximate Integer Division

The synthesis results in Table 7.5 show the simplifications of the approximating signed and unsigned

SMT divider and GBP divider do yield a lower minimum clock period, and thus lower latency,

than the DI under typical conditions. As shown in Sections 7.3.1.1 and 7.3.1.2, the approximating

dividers have a high probability of correctness. The hardware cost, as determined by area and power

requirements of each approximating divider, are comparable to the baseline 32 bit SRT divider.

7.6 Approximate integer dividers for ADVS

The dividers in this chapter were designed for use in an ADVS-enabled processor pipeline. In Chap-

ter 4 it was determined that an approximate arithmetic unit should have a correctness of 95 when

operating at approximately 80 of the exact unit, so that the overall system performance gain is

positive.

Several unsigned dividers were synthesised with similar characteristics to the target minimum. In

particular, under typical operating conditions, the unsigned GBP divider offered a 22.5  reduction

in latency compared to the 32 bit radix-4 SRT divider operating with 89.5  probability of correct-

ness, and 51.5  faster than an exact radix-4 SRT divider that always operates in 16 cycles.

Likewise, signed approximate dividers were synthesised under typical conditions, but were found

to have a lower average correctness than the unsigned dividers (see Table 7.2). To handle signed

operands quickly, a further source of error was introduced in the initialisation stage to approximate

the negation of the divisor d when negative. Although this introduced a small correctness penalty

(see Table 7.3), the average benchmark probability of correctness of was significantly lower than the

target 95. One reason for the lower average probability of correctness in the signed dividers is the

number of repeated operations in the benchmarks. Additionally, the number of benchmarks con-

taining signed division operands is less than benchmarks with unsigned divisions (see Tables C.1–

C.3).

The delay-correctness feasibility regions from Chapter 4 provided an indication of the minimum

characteristics required of an arithmetic unit to be used in ADVS. However, the simulations per-

formed assumed default values for the arithmetic latencies of each unit. The delay of the baseline

SRT dividers developed in this chapter will also be incorporated into the ADVS-enabled model in

future chapters. Although under the correctness target, the unsigned approximate GBP divider was

selected to be employed in the system simulation. The peak performance of the signed divider was

much lower, and was excluded from the system. Tables C.5–C.7 show that the average proportion

186



Conclusion

of signed integer divisions is similar to unsigned division, except for the arithmetic benchmarks,

due to the high number of signed divisions in calc pi.

7.7 Conclusion

This chapter has presented three novel approximating divider architectures for unsigned binary

integers. An implementation through synthesis has been presented with 3 variants that represent

different correctness and delay tradeoffs. The dividers were characterised in terms of the number

of division rounds t, number of fractional bits f used to calculate the quotient, and number of

multiplication approximation terms. It was shown through simulation that the unsigned dividers

performed similarly on division operations from benchmark applications.

The unsigned dividers presented in this chapter were suitable for probabilistic computing or spec-

ulation using ADVS, when adjusted to obtain the peak correctness through the selection of f and

t.

Amodification was proposed to handle to signed operands, and despite introducing another source

of error, the additional correctness penalty was shown to be low. However, the correctness of the

signed approximate dividers was too far below the target minimum to be considered for an ADVS-

enabled system.

187



Chapter 8

���������	
 ����	�
�

���
	 ���	��
	��

“It would appear that we have reached the limits of what it is possible to achieve with computer

technology, although one should be careful with such statements, as they tend to sound pretty silly in

5 years.”

John Von Neumann (1903–1957)

In this chapter approximate integer arithmetic units from Chapters 5--7 are adapted for

IEEE floating point units. Investigations of the latency and correctness of the proposed

units are insufficient for use in an ADVS enabled system.



Chapter 8: Approximate Floating Point Arithmetic

Long latency operations present the highest potential benefit in data value specula-

tion schemes. The longer the latency of an operation, the higher the probability

that a dependent operation will be blocked from issue while it is waiting for the

source. Floating point operations are longer latency than integer operations because of the addi-

tional complexity imposed by the IEEE-754 standard, such as handling special values, operand align-

ment, and result rounding. In particular, although floating point division is a low-frequency and

high-latency operation, slow implementations degrade system performance in many applications.

This is further exacerbated in wide issue superscalar processors [Oberman and Flynn, 1997].

This chapter discusses the design of approximate floating point units, and assesses their suitability

for use in an ADVS-enabled system based on their latency and probability of correctness.

8.1 Approximating floating point units

This section briefly discusses the structure of floating point units, and possible modifications to

yield approximate units with a high probability of correctness, and low latency.

IEEE-754 compliant floating point operations can considered in three basic stages under normal con-

ditions. Special cases are ignored in this chapter, normally they can be handled in either hardware

or software or a combination of both. In the first stage, the operands are unpacked to their sign,

exponent and significand fields, and are aligned if necessary. In the second stage, input fields are

operated on to calculate the result field, and in the third stage the data fields are updated if rounding

or overflow occurs. Basic block diagrams of IEEE-754 floating point units are shown in Figure 8.1.

Logic for handling special cases is not shown. The basic designs of the different arithmetic units are

similar—the input operands are first split into sign, exponent and significand fields, and operated

on as independently as possible.

The sign, exponent and significand fields are partly on independent data paths, but later merge so

that rounding and overflow detection can be performed.

Floating point operands are represented in sign-magnitude form, hence calculations for the expo-

nent and significant can use unsigned arithmetic units. This presents an opportunity to substitute

arithmetic components with approximate units that could have a high probability of correctness.

190



Approximating floating point units

(a) Adder/subtractor

(b) Divider (c)Multiplier

Figure 8.1: Block diagrams of IEEE Std. 754 floating point units.

191



Chapter 8: Approximate Floating Point Arithmetic

The sign and exponent fields are handled with simple logic and adders; most of the complexity is

in the significand calculation, rounding, and special case logic.

All floating point results must be rounded using the active rounding mode, which can induce an

additional adjustment to the exponent, depending on the operand values. Floating point addition

also requires an alignment shift after the input operands are unpacked (see Figure 8.1a).

Each stage is considered for approximation:

unpacking/alignment Unpacking is a short operation, and alignment is only required for float-

ing point addition. Alignment is a highly serialised operation, involving in-

specting the exponent bits and variable shifting the significand. Alignment

shifts are common, and difficult to approximate because the shift amount is

encoded to save interconnect. Logical incompleteness introduces a high prob-

ability of error.

field operation The data operations (sign, exponent, and significand) are integer operations,

simple logic, or selections, at the appropriate bit width. The exponent and sig-

nificand are both unsigned fields. The integer operations can be approximated

using the same methods applied to regular integer arithmetic instructions.

adjustment/rounding The exponent overflow adjustment and significant rounding can both be

performed by adding or subtracting a small constant offset. This logic can be

simplified from the general case of adding and subtracting a variable. It can be

omitted entirely, if all cases are generated, and then selected when the desired

outcome is known. Furthermore, removing the rounding step entirely is not

feasible; the effect is the same as forcing the rounding mode to zero—shown

in Table 5.2 to have an average correctness of approximately 80, less than re-

quired for ADVS.

The most feasible method of approximation reduces the latency of the integer operation in the

significand calculation. The significand is the widest field and hencemore likely to be on the critical

path. Simultaneously approximating the exponent is therefore not likely to shorten the critical path,

but would introduce more sources of error in the calculation.

In this chapter approximate integer arithmetic units developed in previous chapters are modified

for use in IEEE-754 floating point units.

192



Approximating floating point units

8.1.1 Approximation techniques

Themain components in floating point calculations are discussed below, with an emphasis on their

overall contribution to the critical path delay, and their potential for approximation with a high

probability of correctness.

8.1.1.1 Exponent addition and subtraction

The addition or subtraction of the exponents is performed in parallel with the significand calcula-

tion. In the first exponent calculation, both of the exponent fields could be anywhere within the

full representable range, but later adjustments only increment or decrement the exponent with a

small correction, usually ±. The exponent operation is a lower latency operation than the sig-

nificand operation because the exponent is narrower, and addition and subtraction are simpler to

implement that other significand operations. The exponent latency is not on the critical path, hence

approximating the exponent is pointless.

8.1.1.2 Significand operations

The significands are the widest fields in floating point numbers, and the significand results are re-

quired for rounding and exponent adjustment. The operations are therefore unavoidably on the

critical path.

Significand addition

The significands are added in a floating point adder (see Figure 8.1a). Attempting to approximate

the significand adder is worthwhile because it is on the critical path. Liu and Lu’s design can be

implemented, however to be feasible the average worst-case carry length must be very short in

typical floating point operands, so that the probability of correctness is high. Figure 3.6 shows that

as the carry segments increase in length, the fan-in load increases rapidly until the adder latency is

greater than a high performance exact adder.

Significandmultiplication

The multiplication of the significand fields in an IEEE floating point multiplier was on the critical

path, as determined by analysing timing data in synthesis log files. The significand multiplier is

a good candidate for approximation. The most promising approach to designing an approximate

multiplier with a favourable latency/correctness tradeoff is by utilising the approximate compressor

multipliers from Chapter 6 Approximate Integer Multiplication. Section 8.2.2 discusses the correct-

ness of approximate 24 bit significandmultipliers, and Section 8.3 investigates their latency through

193



Chapter 8: Approximate Floating Point Arithmetic

synthesis.

Significand division

The division of the significand field is iterative. If an approximating divider could be made to do

more work in one cycle, the exact divider probably could too, unless the approximate divider is

structurally incomplete. If so, any errors introduced in the division iteration are not likely to be

corrected, and may compound in magnitude. The output will be incorrect if an error occurs in any

iteration.

Like the baseline fpDiv unit, the approximate unsigned integer divider fromChapter 7was adapted

for the approximate fpDiv. The correctness of the dividerwasmeasured for floating point operands

using benchmark data in Section 8.2.3.

8.1.1.3 Normalisation

The normalisation stage includes detecting the significand MSB; shifting the significand; perform-

ing rounding; and possibly performing a full propagate addition of the significand result and two

full propagate additions of the exponent result. The location of the MSB must be detected in case

of denormal inputs, which is a time consuming step. As all of the operations are serialised and af-

fect the both significand and exponent, it was decided not to approximate any of the normalisation

steps. Additionally, the adders are narrower than the 32 bit adders investigated in Section 3.2.1.10.

Due to logarithmic relationship between the AWCCL and the operand width (see (.)), the poten-

tial latency savings are lower for narrower operands.

An alternative for approximating a floating point unit is to omit the rounding and normalisation

stage. This was considered in Section 5.2.6, but the highest average correctness in the SPEC bench-

mark suites was less than 81 for fpMult and less than 75 for fpDiv. The probability of correct-

ness was considerably lower in other benchmark sets.

8.2 Approximate FP unit correctness

Approximate floating point units were constructed by replacing the significand operation with an

approximate unit. This approach was selected because the significand lies on the critical path, the

approximate logic is contained to a single unit, and there are opportunities to vary latency or cor-

rectness as desired. The probability of correctness of the approximate floating point units was de-

194



Approximate FP unit correctness

0 4 8 12 16 20 24
0

20

40

60

80

100

Maxmimum carry length, k bits

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
ne

ss
 (

%
)

 

 

Arithmetic
Mediabench
SPEC

Figure 8.2: Probability of correctness of a Liu and Lu adder used for the
significand field in a floating point adder.

termined by simulating the operation of just the significands with approximate hardware.

Operands were traced from the benchmarks using SimpleScalar. Extracting the significand fields

was straightforward because none of the floating point operands were denormal.

8.2.1 Approximate FP adder correctness

The average correctness of benchmark data was profiled using a Liu and Lu adder with increasing

maximum carry lengths. Figure 4.6 on page 99 shows that the significand bits are asserted less

frequently than in the integer operands in Figure 4.2. Furthermore, when the significand alignment

shift in the fpAdd is large, there are fewer asserted bits and less opportunity for carry propagation.

Figure 8.2 shows the probability of correctness of an approximate 27 bit Liu and Lu adder. The 27

operand bits were comprised of the 23 significand bits, the hidden bit, and the guard, round and

sticky bits used for IEEE-754 rounding.

Compared to adding integer operands (shown in Figure 5.2), there is more of a difference in the

AWCCL between benchmark sets for the floating point data. TheMediabench benchmarks in par-

ticular exhibit a small plateau between bits 6–10, and a rapid increase between bits 10–12Ṫhis charac-

teristic was introduced by a few of the audio decoding applications, where operands were frequently

accumulated resulting in the addition of large and small numbers.

Worst case carry chains of 7 bits are required for 95 correctness. Recall that with a 7 bit carry

195



Chapter 8: Approximate Floating Point Arithmetic

Table 8.1: Probability of correctness (%) of 24 bit significand multipliers
operating on benchmark data, using approximate counters. The counters were
arranged in a tree structure for multioperand addition and have n input bits and
m output bits.

m
1 2 3 4 5

n

2 29.97
3 29.94 100.00
4 29.96 57.44 100.00
5 29.94 51.57 100.00
6 29.94 46.70 100.00
7 29.94 44.76 100.00
8 29.94 43.68 94.01 100.00
9 29.94 43.15 93.37 100.00
10 29.94 43.21 92.60 100.00
11 29.94 42.58 91.83 100.00
12 30.00 42.17 91.32 100.00
13 29.99 42.76 90.63 100.00
14 29.97 42.22 89.61 100.00
15 29.97 41.81 87.68 100.00
16 29.96 41.50 86.35 100.00∗ 100.00

∗Result rounded to 100.00.

chain, a Liu and Lu adder is slower that a Sklansky adder. Hence, using Liu and Lu’s adder for a

high performance approximate floating point adder is infeasible.

8.2.2 Approximate FPmultiplier correctness

The approximate multiplier design in Chapter 6 were adapted for use as a significand multiplier

with narrower operands. The correctness simulations were repeated with benchmark data derived

from floating point operands. Table 8.1 shows the average correctness of (n;m) 24 bit significand
multipliers. Few of themultipliersmeet the required 95 correctness threshold forADVS. However,

the suitability of the multipliers also depends on the circuit latency.

Figure 8.3 shows the average correctness when the number of input bits to each counter is varied,

196



Approximate FP unit correctness

0 4 8 12 16
0

20

40

60

80

100

 n bits

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
ne

ss
 (

%
)

 

 

(n; 1)
(n; 2)
(n; 3)
(n; 4)
(n; 5)

(a) Random inputs.

0 4 8 12 16
0

20

40

60

80

100

 n bits

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
ne

ss
 (

%
)

 

 

(n; 1)
(n; 2)
(n; 3)
(n; 4)
(n; 5)

(b) Benchmark inputs.

Figure 8.3: Approximate counter input bits n vs. correctness of an fpMult
significandmultiplier. The treemultiplier was constructed entirely from one type
of approximate counter.

but the number of output bits is fixed. Only counters where n>m are shown.

Benchmark operands tend to contain repeated operations, and the magnitude of both operands is

usually similar. The probability of correctness of floating point products is sensitive to the density

of ones in the most significant bits of the significand. This is because the result N bit significand is

taken from the upper bits of the N bit product, and the upper bits accumulate more carries than

the lower bits. All broken carry paths are a potential source of error when the maximum carry

length is limited.

Figure 8.3 shows that the correctness of the random data is often higher than the benchmark data

in the same multiplier. This effect is probably exacerbated by repeated pathological cases in the

benchmark data, and a relatively small sample size. There were only 8 benchmarks that contained

fpMult operations, including all of the SPEC CFP2000 benchmarks. Interestingly, the average cor-

rectness for the 177.mesa benchmark in the SPEC benchmarks, and the Mesa benchmark in the

Mediabench set were quite different. Both benchmarks share a similar code base forked from Brian

E. Paul’s clone of the OpenGL library, Mesa version 2.0. The primary difference is the input data

and tasks performed. TheMediabench version primarily performs mipmapped texture generation

and rendering, while the SPEC version maps contour lines onto a 3D surface. This case highlights

the strong dependence of correctness on input data.

197



Chapter 8: Approximate Floating Point Arithmetic

8.2.3 Approximate FP divider correctness

In this section the DI, SMT and GBP dividers from Chapter 7 are resized and adapted for the sim-

ulation of a floating point significand divider.

The significands can be treated as large unsigned integers. The important difference is that the

integer quotient is shifted so that only the upper integer bits are retained, and the fractional bits

are discarded. All of the desired bits in a floating point significand are fractional, so the significand

quotient bits are shifted so that the result contains a fixed number of bits. Thus, the approximate

dividers cannot ‘short cut’ and avoid computation of bits that would otherwise be discarded because

they are now retained. Thehigher precision of the significands compared to typical integer operands

increases the probability that some bits are approximated incorrectly.

Figure 8.4 shows the average error of the incorrectly approximated significands, using dividers with

different numbers of multiplication terms. Recall that in the approximate division algorithm, a

multiplication was required for the term ri × (d − d̃). To reduce the delay of each iteration, it is

necessary to approximate this by including fewer partial products. The figure shows an infeasible

hypothetical divider using an exactmultiplication, and two approximate dividers with 2 and 1 terms

(the approximate DI and SMT dividers respectively).

The hypothetical divider with the exact multiplication term shows that the magnitude of the error

(the difference between the exact result and the approximate result) decreased as the number of

division rounds increased. This is expected because as the number of division rounds increases,

the more iterations that the result has to converge on the exact result. The number of additional

fractional bits in the intermediate results had a small effect of the error.

The correctness of the hypothetical divider with an exact multiplication term (shown as a blue

plane) is erratic. A higher error rate is noticeable when the number of division rounds is an odd

number. This effect was previously illustrated in Figure 7.2 on page 173, where the correction to the

intermediate is added then subtracted alternatively in successive rounds. The chance of this type of

correction is roughly 50, to the effect is apparent in the average.

Approximate dividers require more division rounds to converge when the distance in bits between

the MSB and the next most significant bit is short, or when the magnitude of the operands is large.

The correctness of the quotient bits can oscillate each round when the next most significand bit in

the divisor is asserted. The number of additional bits maintained in the intermediate calculations

(corresponding to ‘fractional’ bits in the integer divider) has minimal effect on the error because er-

rors are more likely to be introduced by the high loss of precision in the approximate multiplication

198



Approximate FP unit correctness

Figure 8.4: The average percentage error in the fpDiv approximate significand
relative to the exact result for benchmark data.

term.

The average error of the DI and SMT dividers was nearly constant despite varying the number

of division rounds and number of maintained fractional bits. This suggests that the correctness

of these dividers is low, and that the number of partial products maintained in the approximated

multiplication term are critical to the correctness of the result. The integer dividers were able to

get away with fewer multiplication terms, because the precision of the integer quotients was low on

average. For floating point numbers, the precision is fixed at the operand width, and the MSB is

guaranteed to be asserted due to the ‘hidden one’.

Many division rounds were required to reduce the average error, compared to the implementation

of the integer divider in Section 7.6, however, the average magnitude of the error does not matter

for application in ADVS.

Figure 8.5 shows the average correctness of the approximated significands for floating point division,

using appropriately sized DI, SMT and GBP dividers (see Section 7.2.5). The average correctness of

the operations in the arithmetic,Mediabench and SPEC benchmark sets were similar, and far lower

than the threshold required for ADVS. The low correctness is due to the high precision required in

the intermediate calculations of the approximated result.

Similar to the results of approximate integer division, the differences in correctness between all

dividers was at most 0.06. The GBP divider is not shown, but the results were similar. The cor-

rectness increased minutely when the number of division rounds was increased. However, due to

199



Chapter 8: Approximate Floating Point Arithmetic

Figure 8.5: Average correct unsigned significand divisions when the ap-
proximate divider uses an exact multiplication term, or an approximation with
1 or 2 partial products. The SMT and DI dividers are very similar and appear
superimposed.

the small number of maintained partial products for the multiplication term, the full precision of

the significands could not be often accurately calculated.

Only the DI divider showed a significant increase in correctness when the number of fractional

bits and division rounds were both high. This increase did not occur in the SMT and GBP dividers,

showing that the additional term in the approximation of ri×m (see Section 7.1.2.3) is important for

correctness. (Recall that the DI divider uses two partial products, and the SMT and GBP dividers

use only one). To increase the average correctness further, more multiplication terms should be

used p + p + p +⋯.

Dividers with higher correctness due to more division rounds and fractional bits also have a longer

latency and do not offer an advantage over exact floating point units. Summing more partial prod-

ucts p⋯pN in the multiplication term further increases the latency. The correctness of the dividers

simulated above was so low that approximate floating point division was also abandoned for this

project.

200



Synthesis

8.3 Synthesis

A set of significandmultipliers were synthesised to extract the circuit delay, so that the delay vs. cor-

rectness profile could be established. The same method as Section 6.5 was followed, and all feasible

tree multipliers using approximate counters up to (; ) were synthesised with the TSMC Artisan

0.18 μmprocess. The approximate multipliers were automatically generated in aWallace tree struc-

ture usingmultgen (see Section B.4). The baseline multiplier was the exact (; )multiplier, using

FAs as each counter cell.

8.3.1 Baseline

Synthesisable VHDLmodels of the exact and approximate floating point multipliers were written to

benchmark the latency, area and power of approximate floating point units. Both share common

components like the prenormalisation logic and exponent rounding. The most significant differ-

ences were the implementations of the significant operations.

The baseline exact significand multiplier component was adapted from the exact (; ) tree mul-

tiplier in Section 6.5, but narrowed for the width of the significands. The VHDL was automatically

generated with a modified version ofmultgen (see Section B.4).

The binary product of an integer multiplication is normally as wide as the concatenation of both

input operands, but this much precision is not required in floating point. The hidden one is in-

serted into the MSB of the significand for regular numbers, hence only the upper bits need to be

maintained. The lower bits can be discarded, except for 3 bits called guard, round and sticky that

are kept for rounding. The guard and round bits are regular bits from the result, but the sticky bit

accumulates any discarded bits of lower significance by an OR operation.

All of the components of the exact and approximate floating point units were described in struc-

tural VHDL, with the exception of the exponent adder. This was written using behavioural VHDL

knowing that the Synopsys Design Compiler synthesiser implements a carry-lookahead adder. The

exact baseline floating point models were kept for a comparison of total system area and power in

Chapter 11.

201



Chapter 8: Approximate Floating Point Arithmetic

8.3.2 Approximate units

It was assumed that the approximate multipliers would occupy their own pipeline stage(s), and so

they were synthesised in isolation for simplicity. The input drive and output capacitance was set to

match a unit sized DFF, with no intermediate pipelining registers. The circuit delay and correctness

of the multipliers is shown in a scatter plot in Figure 8.6.

The delay/correctness characteristic for the floating point significand multipliers was different to

that observed for integer multipliers in Chapter 6. Vertical dashed lines show the drop in cor-

rectness for the same approximate multipliers that operated on benchmark data and random data.

Figure 8.6a shows that the multipliers are clustered into tight groups forming an upward curved

trend in correctness as delay increases. Of all the exact multipliers marked with a (⋆), the (; )
multiplier is the fastest.

The dashed blue line shows linear trade-off of delay for correctness compared to the exact (; )
multiplier. The scatter plot shows that there are no approximate multipliers that have a better than

linear improvement to correctness, and that the only approximate multipliers faster than the exact

(; ) multiplier have an unsatisfactory correctness for ADVS. A cluster near 50, correctness is

much lower than the required target of 95.

It was intended that a set of suitable multipliers would be selected from the candidates above, and

synthesised in floating point units with pipelining registers. This did not eventuate because the

latency of the approximate multipliers was too high compared to the exact multiplier. Although

these multipliers were synthesised in isolation, it is unlikely that full synthesis of the approximate

multipliers would be faster than the (; ) multiplier by at least one clock with variations in drive

strength, capacitive load, and pipelining depth.

Approximate floating point multipliers were not used in simulations of an ADVS-enabled system.

8.4 Conclusion

In this chapter the feasibility of using approximate floating point units in ADVSwas investigated. The

significand units lie on the critical path and are more amenable to design trade-offs that affect both

latency and correctness. Previous designs of approximate integer units were used as components

of floating point adders, multipliers and dividers.

202



Conclusion

0 2 4 6 8
0

20

40

60

80

100

Delay (ns)

C
or

re
ct

ne
ss

 (
%

)

 

 
3:2

4:2

6:2

8:3

14:3

15:1

zoomed region
exact multiplier
approx multiplier: random
approx multiplier: benchmark

(a) Full range.

4 4.5 5 5.5 6
50

60

70

80

90

100
3:2

4:2

16:3

12:3 11:3

6:2

8:3

Delay (ns)

C
or

re
ct

ne
ss

 (
%

)

(b) Zoomed region.

Figure 8.6: Latency vs. correctness for the multiplication of significands from
floating point multiplication operations in benchmarks.

203



Chapter 8: Approximate Floating Point Arithmetic

Simulations using benchmark data showed that the average probability of correctness of the divider

was too low for use in an ADVS enabled system. The average worst case carry length of the approxi-

mate adder was shown to be too long for the required correctness target, resulting in a long latency

design. Several configurations of approximate tree multipliers had an appropriate correctness, but

their latency was too high for use in value speculation.

Based on these results approximate floating point units were not used in a system simulation of

ADVS, presented in Chapter 11.

204



���� ���

����������	



Chapter 9

������ ��	
��


“What you save is, later, like something found.”

Yiddish Proverb

This chapter investigates the caching of arithmetic results to further reduce the average

effective latency of arithmetic operations, including operations where no feasible approx-

imate hardware exists. Indexing schemes are developed to better distribute entries within

the cache. Replacement policies from the literature are used to introduce set associativity,

and are shown to improve the hit rates over direct mapped result caches.



Chapter 9: Result Caching

Result caching was proposed by Richardson to decrease the latency of multi-cycle

arithmetic operations by storing previously calculated arithmetic results in a direct-

mapped result cache [Richardson, 1992]. Result caches with hit rates of over 50

were demonstrated, due to the value locality of many programs.

Despite their apparent promise, result caches remain uncommon in modern processors. Branch

predictors, on the other hand, have been successful in improving throughput by speculating on the

control path of programs, and have increased in sophistication from static prediction to schemes

addressing indirect branches.

This chapter investigates several result caching schemes, and their effect on throughput. Result

caching, rather than prediction, was investigated because result caching does not incur amispredic-

tion penalty. Caching was restricted to long latency arithmetic operations; single cycle operations

are inexpensive in terms of delay, and load/store operations can cause cache thrashing. Indexing

schemes based on operand values, rather than PC or architectural register names were used because

it was assumed that result caches indexed by value would bemore likely to be hit by another process

after a context switch.

Simple arithmetic result caches were extended in three areas: benchmark operands were inspected

to find a cache indexing scheme that could improve utilisation; cache set associativity was intro-

duced to improve hit rate; and several replacement algorithmswere implemented for directmapped

and associative arithmetic result caches. Operand caches were successively refined to maximise the

average hit rates, and were then used in simulations of benchmark programs to determine the effect

on throughput. Finally, timing information was obtained for small operand caches, and matched

to the clock period of arithmetic units developed for an ADVS-enabled system.

Other than improving the latency of multi-cycle arithmetic instructions, operand caching provides

a mechanism in ADVS to store the correct outcome of operations that are incorrectly approximated

and repeated, saving possible frequent pipeline flushes. It is shown that increasing cache associa-

tivity improves hit rates, and improves the throughput of benchmark programs.

208



Caching techniques

9.1 Caching techniques

This section introduces the basic properties of caches and summarises alternative caching schemes,

and alternative methods of value prediction. Latter sections of this chapter extend Richardson’s

research to improve cache hit rate and demonstrate performance improvement in terms of retired

instructions-per-clock (IPC) for benchmark programs.

9.1.1 Result caching schemes

Result cacheswere originally described as single-entity, andwere direct-mapped [Richardson, 1992].

They were later extended to include distinct caches for individual operations [Oberman and Flynn,

1995, 1996]. For example, separate caches could be maintained for division and square root results.

Caches for intermediate results were also described. For example, a divider that calculates a/b as
a × ( /b) could benefit by caching the intermediate reciprocal /b in the case when the divisor b is

frequently reused. A benefit of caching unary operations such as reciprocal and square root is that

they require less storage.

Caches for the results of function calls appeared in [Huang and Lilja, 2000]. The inputs and out-

puts of functions were stored in memory, in structures called ‘memos’. This caching technique was

called ‘memoisation’. An analysis of function calls showed the average resources required by 85

of functions was four input registers, four output registers, three memory inputs and two memory

outputs. The potential gain in throughput by bypassing entire function calls is large, but storage

andmemory accesses are required for each function input and output. Furthermore, result caching

of arbitrary sections of code requires profiling to identify repeated sections of code, and value trac-

ing to verify that significant value recurrence does occur [Richardson, 1992]. Functions must be

necessarily called by value, because the target of pointers are indeterminate.

The approach in [Cheng and Hsiao, 2005] did not limit memoisation to functions, but instead to

repeated small sections of code. Furthermore, the result cache was treated as hit if the input values

weremerely close to the cached values within a certain delta threshold. A proof-of-concept demon-

strated a region-level approximate computation buffer that cached the results of a Inverse Discrete

Cosine Transform (ICDT) used for MPEG2 decoding. A 70 reduction in execution time of the

IDCT code was observed.

209



Chapter 9: Result Caching

9.1.1.1 Extended result caching

Caching schemes indexed by operand values, architectural register names, and architectural reg-

isters with dependence chains were shown to reuse over 20 of instructions with a 1024 entry

buffer [Sodani and Sohi, 1998]. Instruction caches can be located early in processor pipelines, such

as the instruction decode stage, if the indexing scheme depends only on information such as the PC

and architectural register names, and not on operand values. Hence, even single cycle operations

can be bypassed, and pipeline resources are not occupied if the instruction does not issue.

Instruction reuse schemeswere shown to perform aswell as value prediction schemes because reuse

schemes do not suffer misprediction penalties. Furthermore, overall throughput for value predic-

tion schemes were sensitive to the branch resolution scheme. Branch mispredictions could be re-

duced by not resolving branches until after the branch operands were non-speculative [Sodani and

Sohi, 1998].

Caches indexed by PC, called reuse buffers, were used to read their operands earlier than value-

indexed caches. Multiple instructions could be reused when fetched simultaneously. The main

drawback of the reuse buffer was that an identical operation at other addresses could not benefit

from the cached results [Molina et al., 1999].

9.1.2 Result prediction schemes

Value prediction schemes attempt to predict the data value of dynamic instructions. These are value

producing instructions and include arithmetic and logic operations, conditional results and load

targets. Speculative load targets (in result caches indexed by PC) are desirable to mask load latency,

particularly when a traditional cache miss occurs, because the load can be initiated early [Lipasti

and Shen, 1998; Lipasti, 1998].

It was shown that an average accuracy of over 50was attainable by simple last-value and constant-

stride value predictor schemes [Gabbay, 1996]. The most common correctly predicted instructions

were integer additions and load instructions.

Dynamic instructionswere also found to be predictable ondifferent executionpaths. After a branch,

instructions on the incorrect speculative path could be identical, and yield the same values as in-

structions on the correct path. Additionally, repeated function calls with different inputs share

many common control-invariant instructions [Sodani and Sohi, 1997].

Context-based predictors predict the next value in a series, and were shown to be capable of higher

210



Results

Table 9.1: An example history table for a context-based predictor, after a result
stream ‘a c a a a a a b a a ?’. The pattern ‘aa’ before the unknown next value ‘?’
determines that the first row of the history table is used. The element with the
highest counter is column ‘a’, which is selected as the predicted value.

Pattern
Next Value
a b c

aa 3 1 0
ab 1 0 0
ac 1 0 0
ba 1 0 0
⋮

cc 0 0 0

prediction accuracy than last value- and stride- based predictors in SPEC benchmarks [Sazeides and

Smith, 1997, 1999]. Context based predictors track the occurrence of certain value patterns, where

the length of the pattern is termed the order of the pattern. For example an instruction could be

observed to output values a, b, andc. A complete nd order model would record the observed next

value in a history table for all patterns aa, ab, ac, . . . cc. A counter for each next value records the

occurrence of each of a, b and c as the next value in the sequence. Tomake a prediction, the history

table is consulted for the next value that was observed in the past. An example is shown in Table 9.1.

A context based predictor requires cyclic value patterns to make correct value predictions. It also

requires a training period to observe the initial patterns. Context based predictors work poorly

on regularly incremented data, such as loop variables. Hybrid predictor models were proposed in

[Sazeides and Smith, 1999] to obviate the vulnerability to either cyclic or incremental patterns.

Common arithmetic instructions in SPEC and Mediabench typically operate on narrow operands,

often less than a 64 bits. As a power saving mechanism, it was proposed that a processor use clock

gating to turn off portions of the ALU that are unused by small operands [Brooks and Martonosi,

2000]. Additionally, a dynamic scheme to vectorise a series of instructions could yield performance

gains without the need to recompile code.

211



Chapter 9: Result Caching

9.2 Results

Caches can be hit more frequently when they are fully utilised. This requires that the stored data

is indexed so that there is the least conflict amongst entries. In the following section an analysis of

the asserted bits in operands traced from benchmark programs is used to find an indexing scheme.

The arithmetic operands do not have a uniform random distribution. Instead, the bit assertion

pattern is used to determine a hashing scheme to index an operand cache. Later, a comparison of

indexing schemes and cache replacement policies is made. Finally some result caches are used in

an out-of-order simulation to measure the impact on throughput.

9.2.1 Operand Bit Assertion

Figure 9.1 shows the average frequency of assertion of the operand bits in intMult and fpDiv

operations. The following indexing schemes were considered to determine which line entries were

mapped to:

• Schemes labelled with a suffix -A were indexed with the least significant bits of operand A.

Those with -Bwere indexed with the lest significant bits of operand B. Schemes labelled with

suffix-C were hybrid schemes using a concatenation of the lower bits of operand A and B.

• Labels -XA and -XB indicate that the indexing scheme used the operand bits in the order

found in Table 9.2— the bits most likely to be asserted near 50 of the time.

• The cache schemeswithout a suffixdid not use additional information to determine the cache

index—the entire cache was treated as a circular buffer.

In the simulations performed, signed and unsigned integer operands were assigned to the same op-

eration cache to save hardware. The number of signed operations usually outnumbered unsigned

integer operations. Also, single and double precision floating point operands of the same opera-

tion were assigned to the same cache. Caches were maintained for combined signed and unsigned

intMult and intDiv, and combined single- and double-precision fpMult, fpDiv and fpSqrt.

Bit assertion histograms are shown for intMult and fpDiv operations in Figure 9.1, and both

are typical of observed integer and floating point operands, respectively. In general, the lower bits

of integer operands were more commonly asserted due to the average magnitude of the integer

operands, and because there were few negative signed operands. For floating point, the exponent

212



Results

MSB 23 15 7 LSB
0

10

20

30

40

50

60

Bit position

N
um

be
r 

of
 ti

m
es

 a
ss

er
te

d 
(%

)

(a) Signed and unsigned intMult,
operand A

MSB 23 15 7 LSB
0

10

20

30

40

50

60

Bit position

N
um

be
r 

of
 ti

m
es

 a
ss

er
te

d 
(%

)

(b) Signed and unsigned intMult,
operand B

(c) fpDiv, operand A (d) fpDiv, operand B

Figure 9.1: Bit assertion histograms for operands A and B for intmult and fpDiv.

bits were more commonly asserted than the significand bits. Table 9.2 shows the 16 bit positions

that were asserted closest to 50 of the time. The A operand tended to be asserted more frequently

then the B operand in both integer and floating point arithmetic.

9.2.2 Cache replacement policies

When a cache is misses and is filled, the new data is stored in the cache for future re-use. When the

cache is full a replacement policy is used to determine which old data is evicted to store the new

data. Three well known policies were examined:

FIFO (first in, first out) Each element was stored in a circular buffer, and the oldest

element was always evicted.

LRU (least recently used) The element that was accessed the longest time ago was

213



Chapter 9: Result Caching

T
a
b
le

9
.2
:

A
n
or
de

re
d
lis
to

fb
it
as
se
rt
io
n
fr
eq

ue
nc

ie
s
of

ar
ith

m
et
ic
op

er
an

ds
.T
he

16
bi
ts
as
se
rt
ed

cl
os
es
tt
o
50

%
of

th
e
tim

e
ar
e

sh
ow

n.
Th

e
sa
m
pl
ed

in
te
ge

rs
w
er
e
re
pr
es
en

te
d
in

lit
tle

en
di
an

fo
rm

at
.

O
pe
ra
tio

n
O
pe
ra
nd

O
pe
ra
nd

bi
t(
lit
tle

en
di
an

)

i
n
t
M
u
l
t

A
0

1
3

2
4

7
5

6
8

11
9

12
13

10
15

14
i
n
t
M
u
l
t

B
1

0
3

7
5

4
2

9
6

12
8

17
24

10
20

16
i
n
t
D
i
v

A
0

1
5

3
2

12
4

7
14

13
15

6
16

8
9

17
i
n
t
D
i
v

B
0

13
15

1
3

2
4

5
6

8
7

9
11

10
12

14
f
p
A
d
d

A
26

29
27

28
24

11
19

23
25

16
10

21
22

17
14

60
f
p
A
d
d

B
60

61
59

58
57

26
28

24
56

14
18

29
55

27
16

54
f
p
S
u
b

A
53

55
57

56
52

54
59

60
61

58
62

26
24

23
22

28
f
p
S
u
b

B
53

57
55

54
56

60
61

59
58

52
27

62
26

28
18

29
f
p
M
u
l
t

A
26

29
27

28
24

23
55

25
18

10
15

19
60

61
59

58
f
p
M
u
l
t

B
29

28
26

59
60

61
58

27
23

57
56

15
10

24
25

19
f
p
D
i
v

A
52

55
54

53
62

56
48

57
58

60
61

45
59

40
39

51
f
p
D
i
v

B
62

54
52

55
53

50
29

48
26

51
49

39
45

24
44

43

214



Results

evicted.

pLRU (pseudo-LRU) Each element was evicted based on the state of a decision tree,

and every access changed the state. This is simpler to implement than LRU,

although pathological cases can significantly degrade performance compared

to LRU.

9.2.3 Simulation Results

Figure 9.2 shows the hit rate of simple direct mapped caches for tested arithmetic operations. Each

operation was indexed into the result cache with different schemes. The arithmetic operations all

had similar hit-rate profiles, so only intMult and intDiv are shown. As expected from the bit-

error histograms in Figure 9.1, indexing schemes based on operandA (-A) performed slightly better

than schemes indexed on operand B (-B). Also, the dominance of the direct mapped schemes over

the linear replacement schemes (LRU and FIFO) show the advantage of exploiting value locality

rather than temporal locality in result caches.

Figures 9.3 and 9.4 show result caches with increased associativity. LRU and FIFO are used as re-

placement algorithms. The A operand was shown to be more frequently asserted, and -A indexing

yielded a higher hit rate for simple caches. The -A and -XA indexing schemes were used in the

higher associativity caches. As expected, higher cache associativity increased the hit rates in both

cases, but performance gain diminished with associativity.

Figure 9.5 shows the hit rates using various associativities, compared to direct mapped caches. Each

associative cache used 4ways as a tradeoff between complexity and performance. Both LRU and

FIFO replacement schemes showed an increased hit rate over the direct mapped caches. The -XA

and -XB indexing schemes did not yield a significant improvement in hit rates, because -XA and

-XB hashed similar operand bits to the -A and -B indexing schemes. The -XA and -XB schemes

were based on average bit assertions; performance was not improved using these schemes because

the assertion averages failed to capture short-term trends in value patterns.

9.2.4 Implementation

Using the results of Section 9.2.3 operand caching was implemented in simulations of an out-of-

order MIPS pipeline using SimpleScalar. The arithmetic operations intMult, intDiv, fpMult

215



Chapter 9: Result Caching

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

FIFO
LRU
DM−A
DM−B
DM−C

(a) intMult.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

FIFO
LRU
DM−A
DM−B
DM−C

(b) intDiv.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

FIFO
LRU
DM−A
DM−B
DM−C

(c) fpMult.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

FIFO
LRU
DM−A
DM−B
DM−C

(d) fpDiv.

Figure 9.2: Hit rate of direct-mapped result caches. Each operation was tested
with a private cache sized from 1 to 4 k entries.

and fpDiv were assigned private caches, each with 64 entries, 4 way set associative, -A indexing,

and various replacement algorithms. Gains to IPC are shown in Figure 9.6.

Similar trends to hit rates and throughput were observed compared to simple direct mapped result

caches [Richardson, 1992]. Increasing the total size of the result caches yielded a higher but dimin-

ishing increase to hit rates. Richardson measured the total number of cycles eliminated through

caching from three hypothetical processors. The processors were only defined in terms of their

arithmetic latencies, with short, medium and very long (> ) latencies. In this chapter perfor-

mance was shown in terms of IPC gain for a simulatedMIPS-like processor. The throughput trends

are similar—throughput increased almost continually, and did not develop a knee. The maximum

throughput increase was over 7 using the 4way FIFO cache with caches indexed with the -A

scheme. Figure 9.6 shows that the set associative implementations maintain an almost constant

1.5  IPC improvement over the direct mapped cache.

216



Result caches for ADVS

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
LRU−A−2
LRU−A−4
LRU−A−8

(a) intMult.x

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
LRU−A−2
LRU−A−4
LRU−A−8

(b) intDiv.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
LRU−A−2
LRU−A−4
LRU−A−8

(c) fpMult.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
LRU−A−2
LRU−A−4
LRU−A−8

(d) fpDiv.

Figure 9.3: Hit rate of LRU caches. Each operation was tested with a private
cache from 1 entry to 4 k entries, with different levels of associativity.

Although the average hit rates for the operand caches in Figure 9.5 started to level out at 4 k entries,

the trend in IPC continued to increase in Figure 9.6. This effect was observed because distinct

caches were maintained for each operation. Tables 2.2, C.1–C.3 and C.9–C.11 show that the more

frequent operations like intMult and fpAdd have lower latency, while infrequent operations like

fpDiv have higher latency. If all arithmetic operations shared the same cache, it is likely that the

long latency infrequent operations would be evicted before being reused.

9.3 Result caches for ADVS

In this section two sets of caches are simulated with the Cache Access and Cycle Time Information

(CACTI) simulators [HP labs, 2008].

217



Chapter 9: Result Caching

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
FIFO−A−2
FIFO−A−4
FIFO−A−8

(a) intMult.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
FIFO−A−2
FIFO−A−4
FIFO−A−8

(b) intDiv.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
FIFO−A−2
FIFO−A−4
FIFO−A−8

(c) fpMult.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
FIFO−A−2
FIFO−A−4
FIFO−A−8

(d) fpDiv.

Figure 9.4: Hit rate of FIFO caches. Each operation was tested with a private
cache from 1 entry to 4 k entries, with different levels of associativity.

9.3.1 65 nm process

A hypothetical example cache is simulated here in a modern 65 nm process, assuming aggressive

parameters. The purpose of this section is to investigate the scalability of result caches to newer

systems. CACTI 5.3 was required for this feature size. A small access time is desirable because the

cache tags are directed from registers, and are forwarded to execution units in the next stage.

In this implementation the individual caches were implemented separately, allowing the possibility

of independent access. Each individual cache is sized at 4 k entries, yielding a total of 368 kB. The

cache sizing is shown in Table 9.3.

The total access time is shown in Table 9.4. In a short pipeline with few pipeline stages, such as

used in SimpleScalar, we can assume that each stage will operate in approximately 20 FO4 delays.

Also, assuming a 45 ps FO4 delay in a 65 nm process, the clock is set at 20×45 ps=0.9 ns, or 1.1 GHz.

218



Result caches for ADVS

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
FIFO−A−4
FIFO−XA−4
pLRU−A−4
pLRU−XA−4
LRU−A−4
LRU−XA−4

(a) intMult.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−A
FIFO−A−4
FIFO−XA−4
pLRU−A−4
pLRU−XA−4
LRU−A−4
LRU−XA−4

(b) intDiv.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−B
FIFO−B−4
FIFO−XB−4
pLRU−B−4
pLRU−XB−4
LRU−B−4
LRU−XB−4

(c) fpMult.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

Cache size 2i

C
ac

he
 h

its
 (

%
)

 

 

DM−B
FIFO−B−4
FIFO−XB−4
pLRU−B−4
pLRU−XB−4
LRU−B−4
LRU−XB−4

(d) fpDiv.

Figure 9.5: Hit rate for caches with different cache replacement schemes. Most
caches are 4-way associative.

Comparing with Table 9.4, the proposed caches can operate in a single cycle, as required to reduce

the cycle latency of arithmetic operations.

9.3.2 180 nm process

In this section the operand caches are simulated in a 180 nm technology, corresponding to the fea-

ture size of the arithmetic units synthesised in previous chapters. The total size of all caches in

bytes was chosen to be approximately the same as the level 1 iCache and dCache (16 kB). This

corresponds to = entries per operand cache, and an average IPC increase of approximately

6.

CACTI 4.1 was used to operate with the older 180 nm feature size. All caches were configured with

one dedicated read and write port.

219



Chapter 9: Result Caching

0 1 2 3 4 5 6 7 8 9 10 11 12
3.5

4

4.5

5

5.5

6

6.5

7

7.5

Cache size 2i

IP
C

 g
ai

n 
(%

)

 

 

DM−A
FIFO−A−4
LRU−A−4
PLRU−A−4

Figure 9.6: Average IPC gain for benchmarks run in SimpleScalar with
various cache replacement schemes. Long latency integer and floating point
multiplication, division, and square root were all cached separately and indexed
with the -A scheme.

Table 9.3: Modelled cache access times in a 65 nm process using CACTI 5.3. Each
cache has 4 k entries

Cache Operand (B) Result (B) Size (kB)

uintMult/intMult 2×4 2×4 64
uintDiv/intDiv 2×4 1×4 48
fpMult 2×8 1×8 96
fpDiv 2×8 1×8 96
fpSqrt 1×8 1×8 64

Table 9.5 shows the results of simulation of the operand caches. All of the caches can be accessed in

approximately 1 ns. Assuming that the 32 bit Sklansky adder in Section 3.2.1.10 sets the clock at 5 ns,

it is possible that a result cache lookup could be performed in one machine cycle. To avoid issuing

an instruction to an arithmetic unit, the operand cache lookup must occur in the same cycle as the

register access, before execution. If timing is an issue, lookup can occur in parallel with execution,

sacrificing part of the latency saving.

The operand caches simulated in this section have an appropriate data access time to be integrated

into an ADVS-enabled system as a further enhancement, tomitigate the cases where repeated incor-

rectly approximated instructions would cause the system to degrade performance due to flushing.

220



Conclusion

Table 9.4: Modelled cache access times in a 65 nm process using CACTI 5.3.

Cache Access time (ns)

64 kB 0.837
92 kB 0.887
48 kB 0.829

Table 9.5: 180 nm result caches process using CACTI 4.1.

Operation
Entry

Ways Lines
Total size Access Read Power Area

(B) (kB) (ns) (W) (mm)

intMult 12 4 64 3 1.402 0.213 0.726
intDiv 12 4 64 3 1.402 0.213 0.726
fpMult 24 4 64 6 1.393 0.532 1.026
fpDiv 24 4 64 6 1.393 0.532 1.026
fpSqrt 16 4 64 2 1.401 0.215 0.649

9.4 Conclusion

This chapter confirmed that arithmetic result caching can yield significant gains to performance,

as previously proposed in the literature. The experiments in this chapter incorporated associativity

and different replacement strategies to simple result caches, and maintained hit rates of over 50

due the repetitiveness of arithmetic operations. Average throughput gains from result caching were

in excess of 5 . It was also found that increasing set associativity and using an appropriate replace-

ment algorithm improved throughput up to 1.5  over direct mapped caches; and exploiting value

locality can yield higher re-use over temporal locality for arithmetic results. The hardware required

to implement associativity in addition to a that required for result caching is likely to be appealing

for a 1.5  throughput improvement.

Cache area and timing informationwas derived for sample operand caches in amodern technology,

and in the same technology as synthesised arithmetic units. The data access time of the caches were

221



Chapter 9: Result Caching

found to be reasonable to be used in an ADVS-enabled system.

Further research could investigate the impact of context switches on cache hit rates. Entries indexed

by value could contain operands and results used by other processes, where caches indexed by PC

or architectural registers are less likely to.

When simulating the processor throughput using separate operand caches, they were all configured

homogeneously, being indexed with the same schemes, employing the same replacement policies

and maintaining with the same number of entries. The total efficiency of the caches could be im-

proved by heterogeneous caching, where each cache is configured discretely.

222



Chapter 10

���������	
 ���
�� �


����

“Parity is for farmers.”

Seymour Cray (1925–1966),

when asked why he did not include memory parity in the CDC 6600.

“Farmers buy a lot of computers.”

Seymour Cray (1925–1966),

when asked why he agreed to put parity error-correction in the Cray-1.

This chapter demonstrates approximate adders in an error tolerant application---low

density parity check decoding, where it is found that approximate compressors can yield

a saving to area, power and delay, as well as decreasing the frame error rate and average

number of decoding iterations, compared to an implementation found in the literature.



Chapter 10: Approximate Adders in LDPC

Approximate arithmetic can be used in designs other than value speculation. With

ADVS the system is critically dependent on the probability of correctness of the

approximate result. However, approximate arithmetic can be used in other appli-

cations where low latency is important, and small errors can be tolerated. This chapter investigates

low density parity check (LDPC) codes as a case study of an approximation error-tolerant design.

LDPC codes are used to encode and decode data for transmission through a noisy medium. The

sender encodes the signal, and the receiver decodes the signal, with the intent of correcting trans-

mission errors. LDPC correcting codes are robust against occasional approximation errors in their

intermediate calculations, and occasional uncorrected errors are expected and tolerated.

The chapter investigates the use of approximate multioperand adders in the computation nodes of

an LDPC decoder to reduce decoder latency.

10.1 Background

Digital processing techniques balance the precision maintained in number representations against

the implementation performance and cost. This quantisation error can be considered a type of ap-

proximation, and other types of approximation are possible. For example, elementary functions

can be approximated using addition and table look-up [Hassler and Takagi, 1995]. The goal of tech-

niques such as this is to efficiently compute an approximate value with a well-behaved, bounded

error.

The logical incompleteness technique used to develop approximate arithmetic hardware in Chap-

ters 6–8 typically don’t have a bounded error is because the intermediate calculations can drop bits

at any significance.

Section 10.2 discusses the iterative algorithms used to in LDPC to converge upon the desired result,

and their tolerance to occasional errors. Arithmetic approximations are commonly used in LDPC

decoders, but using approximatemultioperand adders in LDPC check nodes is a new idea. Approxi-

matemultioperand adders, such as first discussed in Section 6.1, aremodified for use in LDPC check

nodes in Section 10.3. The simulated operation of LDPC decoders using approximate check nodes is

shown in Section 10.4. It was found that it is possible to reduce decoder latency, consumed power

224



Low density parity check codes

Figure 10.1: LDPC codes can be represented as a bipartite graph of check and
variable nodes.

and silicon area with little increase in the decoder frame error rate.

10.2 Low density parity check codes

This section discusses LDPC decoding, and introduces an implementation from the literature that

is used as a baseline model.

LDPC codes [Gallager, 1962] are linear block codes that are asymptotically superior to turbo codes

with respect to coding gain [Richardson et al., 2001]. Each LDPC code is associated with an m×n

sparse binary parity check matrix H. An LDPC encoder concatenates m parity bits with a k bit

information word to form an n bit codeword x such that H × xT = .

An LDPC decoder can be represented by a bipartite graph as shown in Figure 10.1. Each row in H

corresponds to a parity check node in the graph and each column corresponds to a variable node.

Variable node j is associated with the jth data symbol. A non-zero element hi , j in H indicates that

data symbol j participates in parity check i—in the graph there is a connection between variable

node j and check node i.

LDPC decoding is performed using an algorithm known as belief propagation. The variable nodes

are initialised according to the received data symbols. At the start of an iteration, each variable

node v j sends a message Qi , j to each of its connected check nodes c j. Qi , j represents v j’s ‘belief ’

of being in a particular state given inputs from all connected check nodes except c j. Each of the

check nodes ci then computes messages Ri , j which are sent to the connected variable nodes v j. Ri , j

225



Chapter 10: Approximate Adders in LDPC

is a ‘reliability message’ that indicates the probability of parity check i being satisfied given that v j is

in a particular state and taking into account the beliefs of the connected variable nodes other than

v j [E. Zimmermann and Fettweis, 2004].

There are many variations to this scheme: soft- and hard-decision versions of the decoder exist;

the check matrix can be regular (constant column and row sums) or irregular; the nodes can be

updated in the lock-step fashion indicated above (called flooding) or a different schedule can be

used [Lestable and Zimmermann, 2005]. Messages can be represented in the log-likelihood do-

main to replace multiplications in the computation nodes with additions, but the check nodes

then require the nonlinear ‘box plus’ function. This can be approximated using the ‘MinSum’ al-

gorithm [Lestable and Zimmermann, 2005].

A benchmark implementation based on the LDPC code from IEEE-802.16e [Institute of Electrical and

Electronics Engineers, 2006] and the decoder architecture of Blanksby & Howland [Howland and

Blanksby, 2001] was adopted. This was a parallel, flooding, soft-decision decoder with 4 bit sign-

magnitude reliability and belief messages in the log-likelihood domain. Decoding was terminated

after 64 iterations at most. The 1056 bit, rate / irregular code from 802.16ewas also used. All check

nodes in this code have either 6 or 7 inputs.

Figure 10.2 shows the architecture of a check node [Howland and Blanksby, 2001]. Each 4 bit relia-

bility message was split into a 3 bit magnitude and a 1 bit parity (sign) that were handled separately.

Given the very short word-lengths, the hyperbolic trigonometric functions were merged with ad-

jacent logarithmic and exponentiation functions and implemented efficiently using random logic.

The (; ) compressors were modified to subtract one of the inputs using 2’s complement arith-

metic. This was achieved by inverting one of the inputs and injecting + into one of the otherwise
vacant positions at the least significant end of the compressor. The result must therefore be greater

than or equal to zero, simplifying the sign logic.

10.3 Approximatemultioperand adders

This section revisits multioperand adders, and introduces new logically incomplete counters and

compressors that are used in the check nodes of the LDPC decoders.

Multioperand adders are conventionally constructed using trees of binary counters, the most fun-

damental of which are the (; ) counter (half adder) and the (; ) counter (full adder) [Parhami,

226



Approximatemultioperand adders

(a) Check node parity bits.

(b) Check node reliability bits.

Figure 10.2: Architecture of a k input check node.

227



Chapter 10: Approximate Adders in LDPC

Table 10.1: Truth tables for saturating and reflecting (; ) counters, calculating
the carry and sum bits cs for the sum w + x + y + z.

wx
00 01 11 10

yz

00 00 01 10 01
01 01 10 11 10
11 10 11 11 11
10 01 10 11 10

(a) Saturating (4; 2) counters.

wx
00 01 11 10

yz

00 00 01 10 01
01 01 10 11 10
11 10 11 10 11
10 01 10 11 10

(b) Reflecting (4; 2) counters.

2000]. These are shown as schematic icons and as dot diagrams in Figure 10.3. They take 2 or 3 input

bits respectively and computed their 2 bit sum. As shown in Figure 10.3, a row of (; ) counters can
be used to make a (; ) compressor (carry save adder), a circuit that takes 3 input words and pro-

duces 2 output words with the same sum as the inputs. Larger compressors can be built from trees

of (; ) compressors. For example, 4 bit (; ) and (; ) compressors are shown in Figures 10.4

and 10.5. Given an (n; ) compressor, an n input multioperand adder can be built by including a

carry propagate adder to find the sum of the outputs of the compressor.

The logic for two alternative (; ) approximate counters is shown in Table 10.1. Both counters

produce exact outputs for every input case except wxyz = . The first counter, a saturating (; )
counter, gives the sum  +  +  +  =  = . The second counter, a reflecting (; ) counter,
approximates this sum more crudely as  +  +  +  =  = .

These (; ) approximate counters can be used to build approximate compressors with fewer stages

of counters than their exact counterparts. To investigate the relative performance of (; ) and
approximate (; ) counters, logic circuits were designed and simulated.

Logic synthesis using Synopsys Design Compiler and targeting the TSMC Artisan 0.18 μm process

1.8 V SAGE-X™ standard cell library was used to derive schematic circuits for a fast (; ) counter
and a fast (; ) saturating counter. These are shown in Figures 10.6 and 10.7.

These circuits were then simulated using HSPICE using transistor level netlists carefully designed to

match the Artisan gates as closely as possible. Exhaustive simulations were performed to determine

the worst case propagation delays. The gates under test were driven through 2 serial input-shaping

inverters and loaded by 2 serial instances of the gate under test. The results are shown in Table 10.2.

228



Approximatemultioperand adders

(a) (; ) counter icon. (b) (; ) counter dot diagram.

(c) (; ) counter icon. (d) (; ) counter dot diagram.

(e) (4; 2) compressor icon. (f) (; ) compressor dot diagram.

Figure 10.3: (2; 2) and (3; 2) counters and a (3; 2) compressor.

229



Chapter 10: Approximate Adders in LDPC

(a) 4 bit (6; 2) compressor schematic.

(b) 4 bit (6; 2) compressor dot diagram.

Figure 10.4: Exact (; ) compressors using (3; 2) counters.

230



Approximatemultioperand adders

(a) 4 bit (7; 2) compressor schematic.

(b) 4 bit (; ) compressor dot diagram.

Figure 10.5: Exact (; ) compressors using (; ) counters.

Figure 10.6: Schematic view of a (; ) counter.

231



Chapter 10: Approximate Adders in LDPC

Figure 10.7: Schematic view of a (; ) saturating counter.

Table 10.2: HSPICE timing simulation results for an exact (; ) counter and
(; ) saturating counter.

Input Delay (ps)

a → sum ↑ 256.9
a → sum ↓ 243.6
b → sum ↑ 239.0
b → sum ↓ 233.9
cin → sum ↑ 135.9
cin → sum ↓ 121.6
a → cout ↑ 270.0
a → cout ↓ 245.6
b → cout ↑ 263.5
b → cout ↓ 235.6
cin → cout ↑ 126.9
cin → cout ↓ 157.0

(a) Exact (; ) counter.

Input Delay (ps)

w → sum ↑ 364.4
w → sum ↓ 373.3
x → sum ↑ 374.4
x → sum ↓ 356.6
y → sum ↑ 230.4
y → sum ↓ 200.0
z → sum ↑ 130.3
z → sum ↓ 103.3
w → cout ↑ 341.4
w → cout ↓ 288.4
x → cout ↑ 286.1
x → cout ↓ 309.6
y → cout ↑ 178.8
y → cout ↓ 177.1
z → cout ↑ 119.4
z → cout ↓ 94.0

(b) Approximate (; )
saturating counter.

232



LDPC using approximatemultioperand adders

Figure 10.8 shows 4 bit (; ) and (; ) approximate compressors based on the (; ) approximate

counters. As expected, they require fewer stages of counters than the exact compressors of Fig-

ure 10.4. For example, the (; ) approximate compressor require a row of (; ) counters and a

row of (; ) approximate counters; a (; ) exact compressor require 3 rows of (; ) counters. The

worst-case delays from Table 10.2 give delays of  × . =  ps for the exact compressor and

. + . = . ps for the approximate compressor. Circuit synthesis, discussed in the next

section, confirms that the approximate compressors can be made faster than their exact counter-

parts.

The correctness of the approximate compressors was determined by simulation usingVHDLmodels.

The frequency of errors for 7 bit versions of the (; ) and (; ) approximate compressors was

calculated empirically using 1,000,000 uniformly distributed random inputs in the range [, )
for each compressor. The results are shown in Figure 10.9.

10.4 LDPC using approximatemultioperand adders

In this section the effect of replacing the 7 bit (; ) and (; ) compressors in the check node archi-

tecture of Figure 10.2 with the approximate compressors of Figure 10.8 is presented. The resulting

implementations are compared on the basis of latency, power, and area.

10.4.1 LDPC check node synthesis

Logic synthesis was used to compare the different check node architectures in hardware. Synopsys

Design Compiler was used with the TSMC Artisan 0.18 μm process 1.8 V SAGE-X™ standard cell

library to synthesise logic for the check nodes from the input of the (; ) (or (; )) compressor

to the outputs of the (; ) compressors. For the experiment the inputs were given the drive of a

unit-size DFF as if they followed a pipeline stage. Outputs were loaded as if they were driving one

input of a fast full adder. The synthesiser was given a timing constraint tighter than it could meet

and no area constraint. Typical environmental conditions and wire load models were used.

Results reported by the synthesiser are shown in Table 10.3. The check nodes with approximate

compressors achieved lower delay, area and power than their exact counterparts. In the case of the

7 input check node, the sum circuit with an approximate compressor built from reflecting (; )
counters improved delay by 23, area by 8, and power by 11  compared to the sum circuit using

233



Chapter 10: Approximate Adders in LDPC

(a) 4 bit (; ) approximate compressor
icon.

(b) 4 bit (; ) approximate compressor
dot diagram.

(c) 4 bit (; ) approximate compressor
icon.

(d) 4 bit (; ) approximate compressor
dot diagram.

Figure 10.8: 4 bit approximate compressors.

234



LDPC decoding performance

0

20

40

60

80

e = actual sum − estimated sum

F
re

qu
en

cy
 (

%
)

 

 

e=0 e=1 e=2
2<e≤4

4<e≤8
8<e≤16

16<e≤32

32<e≤64

64<e≤128

128<e≤256

saturating (6; 2)
reflecting (6; 2)
saturating (7; 2)
reflecting (7; 2)

Figure 10.9: Error frequency for 7 bit approximating compressors given
uniformly distributed random inputs. Results from 1,000,000 samples for each
compressor.

an exact compressor. It now remains to evaluate the effect of this approximate arithmetic on LDPC

decoder performance.

10.5 LDPC decoding performance

MATLAB simulations were used to measure the performance of the LDPC decoder. An additive

Table 10.3: Synthesis results for check node sum logic with and without
approximating compressors.

Check node sum circuit
Delay Area Power
(ns) (μm) (mW)

7 input, exact compressor 2.21 201531 124.9
7 input, approximating compressor, saturating counters 1.95 208371 119.9
7 input, approximating compressor, reflecting counters 1.70 185281 110.8
6 input, exact compressor 1.83 167369 100.9
6 input, approximating compressor, reflecting counters 1.62 162504 97.3

235



Chapter 10: Approximate Adders in LDPC

1 1.5 2
10

−3

10
−2

10
−1

10
0

SNR (E
b
/N

0
)

F
ra

m
e 

er
ro

r 
ra

te

 

 

Blanksby & Howland
exact counters
saturating counters
reflecting coutners

(a) LDPC frame error rate vs. SNR.

1 1.5 2
10

20

30

40

50

60

SNR (E
b
/N

0
)

A
ve

ra
ge

 n
um

be
r 

of
 d

ec
od

in
g 

ite
ra

tio
ns

 

 

exact
saturating
reflecting

(b) LDPC average iterations vs. SNR.

Figure 10.10: Frame error rate (FER) and average decoder iterations versus
signal-to-noise ratio (Eb/N) for the LDPC decoders.

white gaussian noise (AWGN) channel with quadrature phase-shift keying (QPSK) modulation

was assumed. Results are shown in Figure 10.10. Recall that a 1056 bit, rate /, soft-decision decoder
with 4 bit messages was used. Decoding was terminated after 64 iterations.

The following properties were measured:

Frame error rate The ratio of data frames that are incorrectly decoded.

SNR (Eb/N) A dimensionless measure of the signal-to-noise ratio (SNR), normalised per

transmitted data bit. Ebis the energy per transmitted bit of data, excluding check

bits. Nis the noise spectral ratio.

The results from Blanksby & Howland [Howland and Blanksby, 2001] are for a 1024 bit, rate /
regular LDPC code with 4 bit messages and exact compressors. Decoding here was also terminated

after 64 iterations.

The results are surprising because the decoders with approximate compressors in their check nodes

actually exhibit slightly better decoding performance than their exact counterparts. A simulation

error in the relative performance of the exact and approximate 1056 bit decoders is unlikely be-

cause their source code is identical except for the few lines implementing the check node sums.

The hypothesis to explain this behaviour is that the perturbations introduced by the approximate

additions help the decoder to converge in a manner analogous to simulated annealing: they bump

the decoder from local maxima, allowing it to convergemore frequently on the correct result. More

experiments are required to test this hypothesis.

236



Conclusions

The approximate decoders achieved improved frame error rate (FER) at a given SNR level (Eb/N),

and with fewer iterations on average. Therefore the benefit of reduced hardware latency was not lost

by increasing the number of decoding iterations. The FER of the approximate versions with satu-

rating and reflecting counters was very similar, but the version with saturating counters appeared to

require fewer iterations on average. Given that the reflecting counters were slightly faster, the best

choice for a given implementation depends on the delay of the counters relative to the total time

per iteration.

10.6 Conclusions

Approximatemultioperand adderswere constructed from several approximate (; ) counters. Syn-
thesis results indicated that approximate multioperand adders exhibited reduced delay, silicon area

and power consumption compared with exact multioperand adders constructed using exact (; )
counters.

Approximate 7 bit 6- and 7-input approximate compressors constructed from approximate counters

were then used in the check nodes of an LDPC decoder. The approximate decoders achieved a better

FER and lower average number of decoding iterations, compared to a baseline decoder using exact

compressors.

The rate / code from IEEE-802.16ewas used to simulate check nodes with at most 7 inputs. Higher

rate codes, such as the rate /, / and / variations require check nodes with 10, 11, 15 and 20

inputs respectively. Further research could attempt to implement decoders at these rates with logi-

cally incomplete arithmetic units. Furthermore, the implementation in this chapter only considered

approximate arithmetic in the LDPC check nodes. The effect of using approximate arithmetic in the

variable nodes was not considered.

237



Chapter 11

���� �����	
���

“They say three weeks in the lab will save you a day in the library, every time.”

R. Stanley Williams (1952 —)

This chapter uses the hardware developed in Chapters 6, 7, 8 & 9 in a processor pipeline.

The operation latencies of arithmetic units in machine cycles are derived from synthesis

results and used in an architectural simulation. A range of arithmetic benchmarks are

simulated in aprocessorwith result caching andarithmetic data value speculation enabled

to determine the performance gain. The cost of ADVS is assessed in terms of the increased

area and power due to the exact arithmetic units used for result checking.



Chapter 11: ADVS Simulation

Value speculation increases the complexity of processor pipelines, due to the hard-

ware required to predict a variable that could assume many values, and the sup-

port hardware necessary to correctlymaintain the architectural state if amisspec-

ulation occurs.

The aim of this chapter is to provide a detailed case study of ADVS in a realistic system. Approxi-

mate hardware units developed in previous chapters are used in a processor pipeline. The necessary

pipelining of exact and approximate arithmetic units is discussed in Section 11.1. Changes are made

to the baseline SimpleScalar model to match the characteristics of the synthesised exact hardware.

The cost of the speculation scheme is evaluated in terms of the additional resources dedicated to

the approximate arithmetic calculations. The cost of maintaining pipeline state is not addressed,

because of it’s complexity and dependence on the microarchitecture of the system. The area ded-

icated to handing incorrect speculations depends on the forwarding paths available in the system

before ADVS is enabled, the floor-plan and proximity of the front-end to the execution pipelines,

and the technology used.

In Section 11.2 the benefit of the ADVS-enabled system is evaluated by performing execution driven

simulations of an out-of-order, superscalar processor, with approximate integer arithmetic hard-

ware. As a further enhancement, result caching is introduced to mitigate the circumstances where

a repeated pathological case for the approximate arithmetic hardware causes excessive flushes due

to incorrect approximations. The probability of correctness is analysed per benchmark, and aver-

aged for different benchmark sets, including the test set containing benchmarks that have not been

used to optimise the approximate hardware units.

11.1 Synthesis

The purpose of this section is to investigate the physical cost of implementing ADVS, and to provide

realistic parameters that can be used to simulate systems that have been modified to include ADVS.

First, exact arithmetic units from previous chapters are adopted for use in SimpleScalar by adding

pipelining registers. Then, the process is repeated for approximate arithmetic units. The results

are compared, and the cost of the arithmetic logic, including pipelining overhead is presented as

additional power and area expenditure.

240



Synthesis

11.1.1 Pipelined arithmetic units

In previous chapters, most of the exact and approximate arithmetic cells synthesised were not

pipelined. To compare the cycle latency of arithmetic units, pipelining registers were manually

inserted, and the units were re-synthesised. To pipeline the designs, the clock period must be de-

fined. In previous chapters, the arithmetic units were synthesised assuming that a unit sized DFF

was connected as a load. An initial attempt at pipelining was made, where each unit was divided

into stages so that the total number of cycles would match the SimpleScalar arithmetic cycle laten-

cies as closely as possible. The resulting cycle latencies were then compared, and it was decided that

the best match would occur if the clock period was set to 5 ns, corresponding to an 18 increase

above the latency of the integer adder. The extra overhead allows for additional logic so that the

adder could be used in an ALU. Sequencing overhead was included in the basic adder design.

With the clock period determined, the exact arithmetic units were re-synthesised. In some cases

more or fewer cycles were required so the cycle latencies of the units used in the simulations were

adjusted accordingly. The cycle latencies of the exact units are used in Section 11.2 as the cycle

latencies of the unmodified baseline system, without ADVS.

Pipelining registers were then inserted into the approximate arithmetic units, with the same cycle

latency of 5 ns. It was confirmed that is was possible to reduce the number of cycles required for

the approximate arithmetic units, due to the logic that had been removed from the data path. The

difference between the exact and approximate latencies determines the potential gain of ADVS. The

probability of correctness was seen in Chapter 4 to strongly affect the potential loss in throughput,

due to pipeline flushes and instruction replays. The approximate cycle latencies are also used in

Section 11.2 to simulate execution with ADVS.

The following subsections discuss the pipelining and synthesis of the exact and approximate arith-

metic units suitable forADVS. Lastly, a summary is presented showing the additional area and power

requirements for the approximate arithmetic units. Integer adders are not shown, because addition

was defined to be a single cycle operation, so a lower latency approximate variant was not possible.

11.1.1.1 Pipelined exact integer multiplier

Multiplier cells were synthesised from VHDL, and verified with test-benches. The VHDL source files

were generated using a program written in C that could be set to generate Wallace or Dadda tree

multipliers. The program was generalised so that the number of input and output bits for all com-

pressors in the multiplier tree can be selected. An optional parameter determined the logic depth

between latches, and was used to construct the pipelined version of the multiplier. The depth pa-

241



Chapter 11: ADVS Simulation

Table 11.1: Synthesis results for exact integer multipliers.

Type Cycles
Clock Latency Area Power

(ns) (ns) (μm) Dyn. (mW) Leak. (nW)

unsigned
unpipelined 1 5.78 5.78 1.585 514.8 2,428.3
pipelined 3 3.41 10.23 1.622 92.1 1,363.3

signed
unpipelined 1 5.82 5.82 1.553 515.7 2,420.0
pipelined 3 3.47 10.41 1.670 94.5 1,410.5

rameter defined the maximum number of compressors that were inserted between each pipelining

register. The pipelining registers were inserted at a uniform depth in a cross section of the tree.

The results of pipelining are shown in Table 11.1. The unpipelined version is the exact (; )multi-

plier used as the baseline multiplier in Chapter 6Approximate Integer Multiplication. The first array

of latches was inserted before the inputs to the final carry-save adder. The latency of the tree struc-

ture was too high for one clock cycle, so another row of latches were inserted in the tree, dividing

it into two parts. A modest area overhead for the timing elements was introduced, but the latency

was significantly increased by the synchronisation. The effect on power was less dramatic because

the timing paths are less aggressive than minimising the entire tree and CSA from inputs directly

to the outputs.

11.1.1.2 Pipelined approximate integer multiplier

The approximate integer multipliers in Section 6.6 were not pipelined, so pipelined versions of the

signed (; ) and (; ), and unsigned (; ) and (; ) multipliers were synthesised. As shown

in Section 6.6, the (; ) and the (; ) multipliers are faster than the signed and unsigned (; )
multipliers, however, when pipelined, these multipliers all provided the result in 2 cycles; at least

1 cycle faster than the exactmultiplier. The (; )multipliers were used inADVS simulations because

they met the correctness and latency requirements.

Results from synthesis are shown in Table 11.2.

The approximating (; ) and (; ) multipliers were faster than the (; ) multipliers because the

higher degree of approximation in each counter resulted in a shorter tree depth and less intercon-

nect.

242



Synthesis

Table 11.2: Synthesis results for approximate integer multipliers.

Type Cycles
Clock Latency Area Power

(ns) (ns) (μm) Dyn. (mW) Leak. (nW)

unsigned
unpipelined (4; 2) 1 5.16 5.16 1.238 398.5 1,903.6
pipelined (4; 2) 2 3.77 7.54 1.703 87.3 2,208.0
unpipelined (7; 2) 1 4.95 4.95 1.123 366.4 1,598.8
pipelined (7; 2) 2 3.11 6.22 2.036 54.5 1,9153

signed
unpipelined (4; 2) 1 5.26 5.26 1.236 390.5 1,827.1
pipelined (4; 2) 2 3.77 7.54 1.695 88.7 2,219.4
unpipelined (8; 2) 1 4.61 4.61 1.122 353.3 1,599.7
pipelined (8; 2) 2 3.96 7.92 1.956 73.7 2,863.1

Table 11.3: Synthesis results for approximate pipelined exact integer dividers.

Type Cycles
Clock Latency Area Power

(ns) (ns) (μm) Dyn. (mW) Leak. (nW)

unpipelined 1 11.86 11.86 1.365 303.0 1,488.9
pipelined 5 4.76 23.80 1.241 60.8 678.0

11.1.1.3 Pipelined exact integer divider

The exact integer divider in Chapter 7 was based on iterative SRT division, so already contained

pipelining registers, (see Figure 7.1). The exact integer dividers used for the baseline simulations

were the same unsigned radix-4 SRTdividers discussed in Section 7.3.2 and Section 7.4, and required

1 initialisation cycle, 16 division cycles, and 1 accumulation cycle.

Synthesis results for the exact and approximate dividers are shown in Tables 11.10, and 11.7–11.9

on pages 248–250. As demonstrated in Chapter 7, the correctness of the unsigned approximate

divider was suitable for ADVS, but the correctness of the signed integer divider was too low, so

only the unsigned approximate divider was used in the ADVS simulations in the next section. It is

unfortunate that the correctness of the signed integer divider was not high enough, because signed

integer division is much more common (see Table 4.2).

243



Chapter 11: ADVS Simulation

Figure 11.1: Basic design of an IEEE Std. 754 floating point adder/subtractor.
Pipelining registers were inserted at the dashed lines.

11.1.1.4 Pipelined approximate integer divider

Similar to the exact integer divider, the approximate integer divider synthesised in Chapter 7 con-

tained pipelining registers (see Figure 7.1). Synthesis results are shown in Table 7.5. The signed and

unsigned approximate integer dividers were used without modifications, because the clock period

was suitable to use with the other arithmetic units in the system ADVS scheme.

11.1.1.5 Pipelined floating point adders

A floating point adder was first shown in Chapter 8. A design with pipelining registers inserted

between significand stages is shown in Figure 11.1.

This fpAdd was unmodified because the cycle latency of the unit is the same as the SimpleScalar

latency, and the critical path delay of the longest stage, the normalisation and rounding, is within

the target 5 ns goal. Full synthesis results are shown in Table 11.4.

244



Synthesis

Table 11.4: Synthesis results for the pipelined floating point adder.

Type Cycles
Clock Latency Area Power

(ns) (ns) (μm) Dyn. (mW) Leak. (nW)

pipelined fpAdd 3 4.98 14.96 0.844 15.3 522.7

Table 11.5: Synthesis results for the pipelined floating point multiplier.

Type Cycles
Clock Latency Area Power

(ns) (ns) (μm) Dyn. (mW) Leak. (nW)

pipelined fpMult 4 19.04 47.08 1.241 60.8 678.0

A general approach for approximating floating point arithmetic was introduced in Section 8.1,

where the block operating on the significand is replaced with approximating arithmetic. If this were

applied to the floating point adder in Figure 11.1, pipelining registers would isolate the approximate

logic from the exact logic. The significand addition occurs in one machine cycle, so approximation

by this method will not yield a faster floating point adder in terms of clock cycles. For this reason

no approximate pipelined unit was synthesised.

11.1.1.6 Pipelined exact FPmultiplier

An approximate fpMult was presented in Chapter 8, where the approximate integer multiplier

from Chapter 6 was resized to 24 bits and used for the significand, including the ‘hidden one’ bit.

The initial version was not pipelined, so DFFs were later inserted, as shown in Figure 11.2. Like the

pipelined fpAdd, the multiplier clock period was set by the normalisation and rounding stage. The

clock period was less than 5 ns, so the pipelined exact multiplier was adopted for simulations later

in this chapter.

Synthesis results are shown in Table 11.5. As the latency of the approximate significand multipliers

was higher than the exact 24 bit significand multiplier, the approximate fpMult was not used in

the ADVS-enabled processor core. Generally, the latency of the approximate counters used in the

approximate multipliers is much greater than the exact counters. The synthesiser typically used the

library provided FA cell, which is hand placed and optimised for speed. To synthesise other counters

such as the (; ), other primitive gates from the library were used. In order for an approximate

multiplier to be faster than an exact tree multiplier, the latency saving form reducing the number

245



Chapter 11: ADVS Simulation

Figure 11.2: Basic design of an IEEE Std. 754 floating point multiplier. Pipelining
registers were inserted at the dashed lines.

of levels and fanout at each level must be higher than the cost of the slower gates. This was the

case for the wider 32 bit integer multipliers that require more levels in the multiplier tree but not for

the narrower 24 bit significand multipliers. This difference in cost could be mitigated with custom

approximate counter cells.

11.1.1.7 Pipelined exact FP divider

A floating point divider was synthesised with pipelining registers inserted in between major stages,

shown in Figure 11.3. Additional registers were inserted into the significand division stage, for iter-

ation of the partial remainder (not shown).

The floating point divider was synthesised with the same constraints and tools as the other arith-

metic units; results are shown in Table 11.6.

For comparison, synthesis results for the exact unpipelined floating point divider from Chapter 8

are shown in Table 11.6. The unpipelined version simply provides a reference for the area and power

of the pipelined version when synthesised for minimum latency. The unpipelined version is func-

tionally incorrect because the iterative division algorithm requires the use of the pipelining registers

and feedback. The total area and power reducedwith the addition of the pipelining registers because

the 5 ns constraint on the clock allowed many timing paths to relax in each circuit stage. Likewise

246



Synthesis

Figure 11.3: Basic design of an IEEE Std. 754 floating point divider. Pipelining
registers are inserted at the dashed lines.

Table 11.6: Synthesis results for the pipelined floating point divider.

Type Cycles
Clock Latency Area Power

(ns) (ns) (μm) Dyn. (mW) Leak. (nW)

unpipelined fpDiv 1 — — 0.602 29.9 528.9
pipelined fpDiv 11 4.28 47.08 0.551 17.2 238.9

247



Chapter 11: ADVS Simulation

Table 11.7: ADVS arithmetic unit area cost.

Area (μm)

Baseline ADVS
Unit Qty. Area Total Qty. Area Total

uintAdd/intAdd 4 0.018 0.092 0
uintMult 1 1.622 1.622 1 1.703 1.703
intMult 1 1.670 1.670 1 1.695 1.695
uintDiv 1 0.717 0.717 1 0.539 0.539
intDiv 1 0.717 0.717 0
fpAdd 1 0.844 0.844 0
fpMult 1 1.241 1.241 0
fpDiv 1 0.551 0.551 0

Total 7.454 3.937
+53.82

the dynamic power reduced because the effective toggle rate is determined by the clock.

As shown inChapter 8, the correctness of the approximate significand divider was too low for ADVS,

hence no pipelined approximate fpDiv was synthesised.

11.1.2 Synthesis summary

This section presents a summary of the pipelined exact and approximated arithmetic units used

in the ADVS enabled system. Tables 11.7–11.9 show the area, leakage power, and dynamic power of

the pipelined units presented. The baseline system contains exact arithmetic units, and the ADVS-

enabled system contains the exact units in the baseline system, plus additional approximating units

for unsigned integer multiplication and division, and signed multiplication. In each case, the per-

centage increase is shown for the ADVS-enabled system.

Table 11.7 shows the total increase in area due to the additional approximate arithmetic units. The

largest units were the multipliers; all of the arithmetic units were optimised for speed. The layout of

tree multipliers is irregular leading inefficient placement and high interconnect area. Interconnect

dominated most of the other designs but to a lesser degree. Furthermore, the pipelining scheme

was simple, and performed by inserting registers at regular depths as measured by the number of

248



Synthesis

Table 11.8: ADVS arithmetic unit dynamic power cost.

Dynamic Power (mW)

Baseline ADVS
Unit Qty. Power Total Qty. Power Total

uintAdd/intAdd 4 0.907 3.628 0
uintMult 1 92.1 92.1 1 87.2 87.2
intMult 1 94.5 94.5 1 88.7 88.7
uintDiv 1 19.8 19.8 1 10.1 10.1
intDiv 1 19.8 19.8 0
fpAdd 1 15.3 15.3 0
fpMult 1 60.8 60.8 0
fpDiv 1 17.2 17.2 0

Total 323.1 186.0
+57.56

approximate counters in the data path. Approximate multipliers could be investigated further with

different area and timing constraints, to determine if the difference in latency between exact and

approximate versions increases or decreases with respect to the fast case presented.

Table 11.8 shows that the approximate and exact multipliers consume the most dynamic power,

corresponding to the large area footprint. In the case of the exact fpMult, the significandmultiplier

was synthesised in the sameway as the approximating treemultipliers, but exact (; ) counterswere
substituted for the approximating counters. The significand multiplier is the dominant component

in the fpMult unit for area and power due to the aggressive latency optimisations. The power

consumed by the fpMult is less than the intMult because the power saved by scaling down the

operandwidth from 32 to 24 bits is greater than the added power of the additional rounding and pre-

shift logic. Dynamic power increased by approximately 58 in the ADVS-enabled scheme, similar

to the 54 area overhead.

The leakage power increased by approximately 90, and is due to the approximate integer multipli-

ers. The increase in leakage power of the exact multipliers compared to other exact units is roughly

proportional to the relative area of each circuit, however, the leakage power of the approximate

multipliers is not representative of the small area increase compared to the exact multipliers.

The approximate multipliers consume approximately 15 more interconnect, 16 more cells, 23

249



Chapter 11: ADVS Simulation

Table 11.9: ADVS arithmetic unit leakage power cost.

Leakage Power (nW)

Baseline ADVS
Unit Qty. Power Total Qty. Power Total

uintAdd/intAdd 4 5.755 23.0 0
uintMult 1 1,363.3 1,363.3 1 2,208.4 2,208.4
intMult 1 1,410.5 1,410.5 1 2,219.4 2.219.4
uintDiv 1 569.5 569.5 1 408.4 408.4
intDiv 1 569.5 569.5 0
fpAdd 1 522.7 522.7 0
fpMult 1 678.0 678.0 0
fpDiv 1 238.9 238.9 0

Total 5,376.3 4,836.2
+89.96

more cell area, but nearly 90 more leakage power. In both cases, the types of cells used by the

synthesiser were similar, but the approximate multiplier used more cells, with a larger drive, capac-

itance and leakage then the exact multiplier. Although the depth of the multiplier tree is shorter for

approximate multiplier in terms of counters, the synthesised multipliers were factored differently

by the synthesiser to minimise the critical path delay.

Unlike the approximate multipliers, the approximate divider consumed less area and power than

the exact counterpart, so the overall impact of the additional approximate uintDiv unit was small

compared to the total for all the exact arithmetic units combined.

11.2 ADVS simulation

This section describes simulations to determine throughput of a processor pipeline using ADVS.

First, the delays of the synthesised approximate arithmetic units are compared, and expressed as

machine cycles. Secondly, the machine cycles are used in simulations of an ADVS enabled system.

The ultimate gain from ADVS is determined by the correctness of the arithmetic units, and the

latency reduction by approximation.

250



ADVS simulation

Table 11.10: Latencies of the pipelined exact and approximate arithmetic units
used in the simulation of an ADVS enabled system.

Arithmetic SimpleScalar Exact Approx.
unit cycles period (ns) cycles period (ns) cycles

intAdd/uintAdd 1 4.141 1 —2 —
uintMult 3 3.413 3 3.774 2
intMult 3 3.465 3 3.776 2
uintDiv 20 4.457 18 3.458 10
intDiv 20 4.459 18 —10 —
fpAdd 2 4.9211 3 —12 —
fpMult 4 4.7613 3 —14 —
fpDiv 12 4.8915 11 —16 —

1Sklansky adder in Table 3.5.
2Approximate adders cannot operate faster than 1 cycle (see Chapter 8).
3Unsigned (; )multiplier in Table 11.1.
4Unsigned approximate (; )multiplier in Table 11.2
5Signed (; )multiplier in Table 11.1.
6Signed approximate (; )multiplier in Table 11.2
7The baseline unsigned SRT divider was used from Section 7.5 (see Table 7.5).
8The correctness and latency of the unsigned divider are shown in Section 7.3 and Table 7.5.
9Unsigned exact SRT radix-4 divider in Table 7.5.
10The correctness of the signed approximate divider was too low (see Section 8.2.3).
11Pipelined exact fpAdd (Table 11.4).
12The pipelined significand addition stage in fpAdd could not be shortened below one cycle (see Chapter 8).
13Pipelined exact floating point multiplier in Table 11.5.
14The latency of the proposed approximate significand multipliers was too high (see Section 8.3).
15Pipelined exact fpDiv unit is shown in Table 11.6.
16The correctness of approximate fpDiv unit was too low for ADVS, see Chapter 8.

11.2.1 Simulated arithmetic latencies

Table 11.10 shows the latencies of the synthesised approximate arithmetic units. Some of the de-

fault latencies used by SimpleScalar are different to the synthesised units. The cycle latencies of the

synthesised units are dependent on a number of factors, including the target library, and process

conditions.

In the following sections simulations are used to determine the effectiveness of an arithmetic data

value speculation scheme. Later, result caching is introduced to reduce the penalty of repeated

calculations that are incorrectly approximated. In the simulations, a new baseline throughput rate

is established for each benchmark, due to the differences when using the latencies of the synthesised

251



Chapter 11: ADVS Simulation

approximate units.

11.2.2 Benchmark simulation with ADVS

This section presents the results of simulation of the ADVS-enabled system.

The results for the correctness of some operations are different to the values quoted in previous

chapters for the individual approximate units. Only the first 10 million instances of any operation

were recorded in each instruction trace, but the results shown here include the entire benchmark

execution. Also, compiler optimisation was not enabled in the initial traces, and execution was

performed in order. The simulations performed in this chapter use gcc -O2 optimisation.

Level two optimisation enables an additional static code scheduling pass by the compiler. Assuming

that the compiler is properly tuned for the SimpleScalar defaults arithmetic latencies, this could

improve performance, or at worst have no impact because the arithmetic latencies used (shown in

Table 11.10) are not longer than the SimpleScalar defaults. Additional optimisations are detailed in

Section A.1.

Later, a selection of the benchmarks are analysed in detail, with attention paid to benchmarks with

a very high or very low correctness, a significant change in IPC when ADVS was enabled, or a sig-

nificant improvement through result caching.

The ADVS-enabled simulation results are presented in sets. Figure 11.4 shows the results for the

arithmetic benchmarks, Figure 11.5 showsMediabench results, Figure 11.6 shows the SPEC CINT2000

benchmarks, and finally the test benchmarks are shown in Figure 11.7.

All of the figures show the IPC impact for the all benchmarks in the set, at different optimisation

levels in subfigure (a). In comparison, the IPC improvement of a system implementing ADVS and

operand caching is shown alongside in subfigure (b). Beneath the IPC plots are histograms of the

achieved correctness of each approximated operation, shown in subfigures (c) and (d). The correct-

ness histograms are only shown for binaries compiled with optimisation -O2.

The cache configuration is shown in Section 9.3.

The average proportion of correct approximations in each benchmark set is shown in Tables 11.11

and 11.12 for systems with ADVS, and with ADVS and result caching. As discussed above, some of

the average correctness values are slightly different to the values quoted in previous chapters. Note

also that the operands from the test benchmark set has not been previously simulated.

252



ADVS simulation

−
20

−
10010203040506070

B
en

ch
m

ar
k

IPC gain (%)

 

 

ca
lc

_p
i

dh
ry

2r
eg

lin
pa

ck
_f

lo
at

m
at

m
ul

t

w
he

ts
to

ne
_s

in
gl

e

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(a
)
Th

ro
ug

hp
ut

in
cr
ea
se

w
ith

AD
VS

en
ab

le
d.

−
20

−
10010203040506070

B
en

ch
m

ar
k

IPC gain (%)

 

 

ca
lc

_p
i

dh
ry

2r
eg

lin
pa

ck
_f

lo
at

m
at

m
ul

t

w
he

ts
to

ne
_s

in
gl

e

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(b
)
Th

ro
ug

hp
ut

in
cr
ea
se

w
ith

AD
VS

an
d
op

er
an

d
ca
ch

in
g
en

ab
le
d.

02040608010
0

B
en

ch
m

ar
k

Correct operations (%)

 

 

ca
lc

_p
i

dh
ry

2r
eg

lin
pa

ck
_f

lo
at

m
at

m
ul

t

w
he

ts
to

ne
_s

in
gl

e

sg
n.

 m
ul

tip
lic

at
io

n
un

s.
 m

ul
tip

lic
at

io
n

un
s.

 d
iv

is
io

n

(c
)
Co

rr
ec
tn
es
s
of

ap
pr
ox

im
at
ed

op
er
at
io
ns
.
Ta
rg
et

co
rr
ec
tn
es
s
of

95
%

is
sh
ow

n
a
da

sh
ed

lin
e.

02040608010
0

B
en

ch
m

ar
k

Correct operations (%)

 

 

ca
lc

_p
i

dh
ry

2r
eg

lin
pa

ck
_f

lo
at

m
at

m
ul

t

w
he

ts
to

ne
_s

in
gl

e

sg
n.

 m
ul

tip
lic

at
io

n
un

s.
 m

ul
tip

lic
at

io
n

un
s.

 d
iv

is
io

n

(d
)
Co

rr
ec
tn
es
s
w
ith

op
er
an

d
ca
ch

in
g
en

ab
le
d.

F
ig
u
re

11
.4
:

IP
C
of

ar
ith

m
et
ic
be

nc
hm

ar
ks

in
an

A
D
VS

-e
na

bl
ed

sy
st
em

.

253



Chapter 11: ADVS Simulation

−
505101520253035

B
en

ch
m

ar
k

IPC gain (%)

 

 

ad
pc

m
de

co
de

ad
pc

m
en

co
de

ep
ic

g7
21

de
co

de g7
21

en
co

de gh
os

ts
cr

ip
t

jp
eg

de
co

de jp
eg

en
co

de

m
es

a_
m

ip
m

ap

m
es

a_
os

de
m

o

m
es

a_
te

xg
en

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ra
st

a

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(a
)
Th

ro
ug

hp
ut

in
cr
ea
se

w
ith

AD
VS

en
ab

le
d.

−
505101520253035

B
en

ch
m

ar
k

IPC gain (%)

 

 

ad
pc

m
de

co
de

ad
pc

m
en

co
de

ep
ic

g7
21

de
co

de g7
21

en
co

de gh
os

ts
cr

ip
t

jp
eg

de
co

de jp
eg

en
co

de

m
es

a_
m

ip
m

ap

m
es

a_
os

de
m

o

m
es

a_
te

xg
en

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ra
st

a

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(b
)
Th

ro
ug

hp
ut

in
cr
ea
se

w
ith

AD
VS

an
d
op

er
an

d
ca
ch

in
g
en

ab
le
d.

02040608010
0

B
en

ch
m

ar
k

Correct operations (%)

 

 

ad
pc

m
de

co
de

ad
pc

m
en

co
de

ep
ic

g7
21

de
co

de g7
21

en
co

de gh
os

ts
cr

ip
t

jp
eg

de
co

de jp
eg

en
co

de

m
es

a_
m

ip
m

ap

m
es

a_
os

de
m

o

m
es

a_
te

xg
en

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ra
st

a

sg
n.

 m
ul

tip
lic

at
io

n
un

s.
 m

ul
tip

lic
at

io
n

un
s.

 d
iv

is
io

n

(c
)
Co

rr
ec
tn
es
s
of

ap
pr
ox

im
at
ed

op
er
at
io
ns
.
Ta
rg
et

co
rr
ec
tn
es
s
of

95
%

is
sh
ow

n
a
da

sh
ed

lin
e.

02040608010
0

B
en

ch
m

ar
k

Correct operations (%)

 

 

ad
pc

m
de

co
de

ad
pc

m
en

co
de

ep
ic

g7
21

de
co

de g7
21

en
co

de gh
os

ts
cr

ip
t

jp
eg

de
co

de jp
eg

en
co

de

m
es

a_
m

ip
m

ap

m
es

a_
os

de
m

o

m
es

a_
te

xg
en

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ra
st

a

sg
n.

 m
ul

tip
lic

at
io

n
un

s.
 m

ul
tip

lic
at

io
n

un
s.

 d
iv

is
io

n

(d
)
Co

rr
ec
tn
es
s
w
ith

op
er
an

d
ca
ch

in
g
en

ab
le
d.

F
ig
u
re

11
.5
:

IP
C
fo
rM

ed
ia
be
nc
h
be

nc
hm

ar
ks

in
an

A
D
VS

-e
na

bl
ed

sy
st
em

.

254



ADVS simulation

−
4048121620

B
en

ch
m

ar
k

IPC gain (%)

 

 

16
8_

w
up

w
is

e 17
3_

ap
pl

u

17
5_

vp
r 17

7_
m

es
a

18
1_

m
cf 18

3_
eq

ua
ke

18
8_

am
m

p 19
7_

pa
rs

er

25
5_

vo
rte

x 25
6_

bz
ip

2

30
1_

ap
si

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(a
)
Th

ro
ug

hp
ut

in
cr
ea
se

w
ith

AD
VS

en
ab

le
d.

−
4048121620

B
en

ch
m

ar
k

IPC gain (%)

 

 

16
8_

w
up

w
is

e 17
3_

ap
pl

u

17
5_

vp
r 17

7_
m

es
a

18
1_

m
cf 18

3_
eq

ua
ke

18
8_

am
m

p 19
7_

pa
rs

er

25
5_

vo
rte

x 25
6_

bz
ip

2

30
1_

ap
si

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(b
)
Th

ro
ug

hp
ut

in
cr
ea
se

w
ith

AD
VS

an
d
op

er
an

d
ca
ch

in
g
en

ab
le
d.

02040608010
0

B
en

ch
m

ar
k

Correct operations (%)

 

 

16
8_

w
up

w
is

e 17
3_

ap
pl

u

17
5_

vp
r 17

7_
m

es
a

18
1_

m
cf 18

3_
eq

ua
ke

18
8_

am
m

p 19
7_

pa
rs

er

25
5_

vo
rte

x 25
6_

bz
ip

2

30
1_

ap
si

sg
n.

 m
ul

tip
lic

at
io

n
un

s.
 m

ul
tip

lic
at

io
n

un
s.

 d
iv

is
io

n

(c
)
Co

rr
ec
tn
es
s
of

ap
pr
ox

im
at
ed

op
er
at
io
ns
.
Ta
rg
et

co
rr
ec
tn
es
s
of

95
%

is
sh
ow

n
a
da

sh
ed

lin
e.

02040608010
0

B
en

ch
m

ar
k

Correct operations (%)

 

 

16
8_

w
up

w
is

e 17
3_

ap
pl

u

17
5_

vp
r 17

7_
m

es
a

18
1_

m
cf 18

3_
eq

ua
ke

18
8_

am
m

p 19
7_

pa
rs

er

25
5_

vo
rte

x 25
6_

bz
ip

2

30
1_

ap
si

sg
n.

 m
ul

tip
lic

at
io

n
un

s.
 m

ul
tip

lic
at

io
n

un
s.

 d
iv

is
io

n

(d
)
Co

rr
ec
tn
es
s
w
ith

op
er
an

d
ca
ch

in
g
en

ab
le
d.

F
ig
u
re

11
.6
:

IP
C
of

SP
EC

be
nc

hm
ar
ks

in
an

A
D
VS

-e
na

bl
ed

sy
st
em

.

255



Chapter 11: ADVS Simulation

−
20

−
100102030405060

B
en

ch
m

ar
k

IPC gain (%)

 

 

ar
ith

_t
hr

ou
gh

pu
t

fb
en

ch
ffb

en
ch

m
ille

r_
ra

bi
n

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(a
)
Th

ro
ug

hp
ut

in
cr
ea
se

w
ith

AD
VS

en
ab

le
d.

−
20

−
100102030405060

B
en

ch
m

ar
k

IPC gain (%)

 

 

ar
ith

_t
hr

ou
gh

pu
t

fb
en

ch
ffb

en
ch

m
ille

r_
ra

bi
n

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(b
)
Th

ro
ug

hp
ut

in
cr
ea
se

w
ith

AD
VS

an
d
op

er
an

d
ca
ch

in
g
en

ab
le
d.

02040608010
0

B
en

ch
m

ar
k

Correct operations (%)

 

 

ar
ith

_t
hr

ou
gh

pu
t

fb
en

ch
ffb

en
ch

m
ille

r_
ra

bi
n

sg
n.

 m
ul

tip
lic

at
io

n
un

s.
 m

ul
tip

lic
at

io
n

un
s.

 d
iv

is
io

n

(c
)
Co

rr
ec
tn
es
s
of

ap
pr
ox

im
at
ed

op
er
at
io
ns
.
Ta
rg
et

co
rr
ec
tn
es
s
of

95
%

is
sh
ow

n
a
da

sh
ed

lin
e.

02040608010
0

B
en

ch
m

ar
k

Correct operations (%)

 

 

ar
ith

_t
hr

ou
gh

pu
t

fb
en

ch
ffb

en
ch

m
ille

r_
ra

bi
n

sg
n.

 m
ul

tip
lic

at
io

n
un

s.
 m

ul
tip

lic
at

io
n

un
s.

 d
iv

is
io

n

(d
)
Co

rr
ec
tn
es
s
w
ith

op
er
an

d
ca
ch

in
g
en

ab
le
d.

F
ig
u
re

11
.7
:

IP
C
of

te
st
be

nc
hm

ar
ks

in
an

AD
VS
-e
na

bl
ed

sy
st
em

.

256



ADVS simulation

02040608010
0

B
en

ch
m

ar
k

Cache hit rate (%)

 

 

ca
lc

_p
i

dh
ry

2r
eg

lin
pa

ck
_f

lo
at

m
at

m
ul

t

w
he

ts
to

ne
_s

in
gl

e

in
tm

ul
t

in
td

iv
fp

m
ul

t
fp

di
v

fp
sq

rt

(a
)
Ar
ith

m
et
ic
be

nc
hm

ar
ks
.

02040608010
0

B
en

ch
m

ar
k

Cache hit rate (%)

 

 

ad
pc

m
de

co
de

ad
pc

m
en

co
de

ep
ic

g7
21

de
co

de g7
21

en
co

de gh
os

ts
cr

ip
t

jp
eg

de
co

de jp
eg

en
co

de

m
es

a_
m

ip
m

ap

m
es

a_
os

de
m

o

m
es

a_
te

xg
en

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ra
st

a

in
tm

ul
t

in
td

iv
fp

m
ul

t
fp

di
v

fp
sq

rt

(b
)
M
ed
ia
be
nc
h
be

nc
hm

ar
ks
.

02040608010
0

B
en

ch
m

ar
k

Cache hit rate (%)

 

 

16
8_

w
up

w
is

e 17
3_

ap
pl

u

17
5_

vp
r 17

7_
m

es
a

18
1_

m
cf 18

3_
eq

ua
ke

18
8_

am
m

p 19
7_

pa
rs

er

25
5_

vo
rte

x 25
6_

bz
ip

2

30
1_

ap
si

in
tm

ul
t

in
td

iv
fp

m
ul

t
fp

di
v

fp
sq

rt

(c
)
SP
EC

be
nc

hm
ar
ks
.

02040608010
0

B
en

ch
m

ar
k

Cache hit rate (%)

 

 

ar
ith

_t
hr

ou
gh

pu
t

fb
en

ch
ffb

en
ch

m
ille

r_
ra

bi
n

in
tm

ul
t

in
td

iv
fp

m
ul

t
fp

di
v

fp
sq

rt

(d
)
Te
st
be

nc
hm

ar
ks
.

F
ig
u
re

11
.8
:

O
pe

ra
nd

ca
ch

e
hi
tr
at
es

in
an

AD
VS
-e
na

bl
ed

sy
st
em

.

257



Chapter 11: ADVS Simulation

Table 11.11: Average proportion of correct approximations of each approximate
arithmetic unit with benchmark operands. SimpleScalar was modified for with
arithmetic latencies from Table 11.10.

Benchmark uintMult intMult uintDiv

Arithmetic — 95.65 89.81
Mediabench 93.30 93.38 85.16
SPEC 92.15 88.10 43.19
Test 81.02 86.97 19.89

Table 11.12: Average number of correct approximations of each approximate
unit in an ADVS enabled system, with operand caching.

Benchmark uintMult intMult uintDiv

Arithmetic — 93.71 89.54
Mediabench 89.97 89.54 90.08
SPEC 85.62 88.44 84.51
Test 42.89 86.45 36.17

Table 11.13 shows the average hit rates of the operand caches in the ADVS-enabled system. As shown

in Figure 11.7, the test benchmarks gained very little IPC, except for the arith-throughput bench-

mark where the low correctness of the approximate uintMult and uintDiv units caused many

instruction replays.

Table 11.14 shows the average IPC change of each of the benchmark sets with ADVS, and ADVS

with result caching. The averages are calculated per benchmark, and are not weighted by the num-

ber of retired instructions or executed arithmetic operations. The averages show that the effect on

IPC of ADVS with the achieved levels of accuracy is low. The IPC rates for the benchmarks with

operand caching are high for the arithmetic and test benchmarks, due to their small memory foot-

print and repetitive operation. With the IPC change shown per benchmark in Figures 11.4–11.7,

and per benchmark set in Table 11.14, it can be observed that the variation in IPC is high for differ-

ent programs. The average percent IPC change per benchmark in the arithmetic,Mediabench and

SPEC sets is 6.37 , as expected from Figure 9.6, using a caches with  entries. Including the test

benchmarks, the average IPC change increases to 9.46 due to the high cache hit rates of the long

latency fpMult and fpDiv operations.

258



ADVS simulation

Table 11.13: Operand cache hit rates in an ADVS-enabled system. Each cache is
4way set associative with FIFO replacement, indexed by the lower bits in the B
operand, and has 64 cache lines.

Benchmark intMult intDiv fpMult fpDiv fpSqrt

Arithmetic 56.85 43.33 96.34 50.29 99.99
Mediabench 60.40 53.68 51.53 36.70 28.24
SPEC 68.75 62.23 54.13 47.65 72.85
Test 36.35 28.37 61.18 64.61 0.03

Table 11.14: Average percentage change in IPC for each benchmark set, in an
ADVS-enabled system with and without operand caching.

Benchmark ADVS-enabled ADVS & caching

Arithmetic 4.18 16.25
Mediabench 0.66 3.96
SPEC 0.37 4.94
Test -2.14 15.67

Average 0.75 9.46

259



Chapter 11: ADVS Simulation

11.2.2.1 Arithmetic benchmarks

Despite the name, the arithmetic benchmarks do not contain the highest proportion of arithmetic

operations (excluding intAdd) of the benchmark sets. The benchmarks are small, perform little

input processing, and have a high proportion of loops. There is a low proportion of long latency

integer operations; most of the integer operations increment loop counters. Most of the arithmetic

operations are floating point, so in the scheme tested, the full benefit of ADVS was not realised

because many of the arithmetic operations in the benchmarks were not approximated. Despite a

high average correctness, the average performance measured as IPC did not improve much. The

correctness of all of the approximated operations in calc pi andmatrix multwas less that the target,

and the IPC suffered due to speculation flushes.

Linpack

The linpack benchmark in the arithmetic set uses the BLAS (Basic Linear Algebra Subprograms)

libraries to test system throughput by performingmatrix operations on a 100×100matrix. First, the

matrix A is generated and reduced by Gaussian elimination, then solved for A × x = B. The main

loop is shown below in C code. The variable ntimes is set to 1, so that the main loop is executed

only once.
1 for (j=1 ; j<6 ; j++)
2 {
3
4
5 for (i = 0; i < ntimes; i++)
6 {
7 matgen(a,lda,n,b,&norma);
8
9 /* dgefa factors a double precision matrix by gaussian elimination. */
10 dgefa(a,lda,n,ipvt,&info );
11 }
12
13
14 for (i = 0; i < ntimes; i++)
15 {
16 /* dgesl solves the double precision system
17 * a * x = b or trans(a) * x = b
18 */
19 dgesl(a,lda,n,ipvt,b,0);
20 }
21 }

The three functions shown are executed six times each in succession, with the matrix A in variable

a initialised to the same values in each iteration. Themost common arithmetic operation is floating

point addition, accounting for over 8 of the total number of instructions retired (see Table C.13). It

is expected that integer multiplication is also a common operation, used frequently to calculate the

array indices when accessing the matrix elements. However, the compiler re-factors the indexing

expression so that the index is incremented or decremented in each iteration (see Table C.5).

Despite a high probability of correctness of the approximated integer operations (see Figure 11.4c),

the impact to throughput was negligible. With operand caching enabled, the effective latency of the

frequent floating point operations is reduced due to the high hit-rate (see Figure 11.8a), causing a

260



ADVS simulation

significant gain in IPC (see Figure 11.5b).

Whetstone

The whetstone benchmark benefits negligibly from ADVS (see Figure 11.4a), but the performance

significantly improves with result caching (see Figure 11.4b). Whetstone iterates thorough a main

outer loop containing nested loops that perform test operations including array element access,

conditional branches, integer arithmetic, floating point trigonometry and procedure calls. In this

small benchmark, the main loop is passed through once, but the nested loops iterate several times.

In the following code fragment, the integer variables are fixed in each loop iteration (j=1, k=2,

l=3). The inner loop executes 25,000 times, so the benefit of result caching is realised many times.
1 /* Section 4, Integer arithmetic */
2 j = 1;
3 k = 2;
4 l = 3;
5 timea = dtime();
6 {
7 for (ix=0; ix<xtra; ix++)
8 {
9 for(i=0; i<n4; i++)
10 {
11 j = j *(k-j)*(l-k);
12 k = l * k - (l-j) * k;
13 l = (l-k) * (k+j);
14 e1[l-2] = j + k + l;
15 e1[k-2] = j * k * l;
16 }
17 }
18 }

In the code sequence below, the value of t changes in each loop cycle, so x and y change in each

iteration. Some of the inner terms are repeated trigonometric expressions so there is some benefit

to result caching, but not as significant as in Section 4 of the code.
1 /* Section 5, Trig functions */
2 x = 0.5;
3 y = 0.5;
4 timea = dtime();
5 {
6 for (ix=0; ix<xtra; ix++)
7 {
8 for(i=1; i<n5; i++)
9 {
10 x = t*atan(t2*sin(x)*cos(x)/(cos(x+y)+cos(x-y)-1.0));
11 y = t*atan(t2*sin(y)*cos(y)/(cos(x+y)+cos(x-y)-1.0));
12 }
13 t = 1.0 - t;
14 }
15 t = t0;
16 }

In the code fragment below, the variable x varies in each of the 9,300 iterations, but the cache hit

rate remained high in SimpleScalar for this section of code. When investigated, a error was found

in the output of the log() function in the version of glibc library provided with SimpleScalar cross-

compiler. Table 11.15 shows the manifestation of a cumulative error in the SimpleScalar whetstone

simulation. The effect of the error is that the value of x in the code fragment repeated periodi-

cally when it should be monotonically decreasing, and hence the frequent floating point operations

become cacheable, artificially inflating the performance.

261



Chapter 11: ADVS Simulation

Table 11.15: Differences in glibc function values for a PC and SimpleScalar.

Iteration Term Correct value SimpleScalar value

1

x 0x3f400000 0x3f400000

log(x) 0xbe934b11 0xbe934b11

log(x)/t 0xbf134b0c 0xbf134b0c

exp(log(x)/t) 0x3f100003 0x3f100003

sqrt(exp(log(x)/t)) 0x3f400002 0x3f400002

2

x 0x3f400002 0x3f400002

log(x) 0xbe934b0c 0xbe934b0b

log(x)/t 0xbf134b07 0xbf134b07

exp(log(x)/t) 0x3f100005 0x3f100006

sqrt(exp(log(x)/t)) 0x3f400004 0x3f400004

3

x 0x3f400004 0x3f400004

log(x) 0xbe934b07 0xbe934b06

log(x)/t 0xbf134b02 0xbf134b01

exp(log(x)/t) 0x3f100008 0x3f100009

sqrt(exp(log(x)/t)) 0x3f400005 0x3f400006

1 /* Section 8, Standard functions */
2 x = 0.75;
3 timea = dtime();
4 {
5 for (ix=0; ix<xtra; ix++)
6 {
7 for(i=0; i<n8; i++)
8 {
9 x = sqrt(exp(log(x)/t1));
10 }
11 }
12 }

Further investigation found that the source of the error not in the provided library, but in the

floating point hardware used on the host system. A floating point error was found using Kahan’s

paranoia program, written in C [Kahan, 1986]. Because SimpleScalar uses the host machines hard-

ware for many calculations, the bug was exposed on the host Intel® Pentium® 4 CPU, at 3 GHz. The

floating point hardware on this platform did not correctly account for guard, round and sticky bits

in the intermediate representations of the significand. A sample of the output of paranoia is shown

below:

262



ADVS simulation

Figure 11.9: Simulated throughput of whetstone using ADVS on platforms with
andwithout erroneous floatingpoint arithmetic. The simulationmarked ‘suspect‘
executed on the erroneous system.

0
10
20
30
40
50
60
70

Benchmark

IP
C

 g
ai

n 
(%

)

 

 

whetstone_single

whetstone_suspect_single

O0 O1 O2 O3 O3 inline O3 unroll

Checking rounding on multiply, divide and add/subtract.

* is neither chopped nor correctly rounded.

/ is neither chopped nor correctly rounded.

Addition/Subtraction neither rounds nor chops.

Sticky bit used incorrectly or not at all.

FLAW: lack(s) of guard digits or failure(s) to correctly round or chop

(noted above) count as one flaw in the final tally below.

This problem was addressed by running the SimpleScalar simulations on another platform that

did not suffer from the same errors. The code labelled ‘Section 8’ was a small part of the total

benchmark, so there was a negligible reduction in IPC when correct floating point arithmetic was

used. Table 11.9 shows the total difference in IPC with and without the erroneous floating point

arithmetic.

Importantly, the anomaly discovered above does not affect the results of ADVS simulation, because

there is no approximate floating point hardware used. The results using operand caches are indexed

by the lower bits of the operand, and so could be affected by the floating point bug. The caching

results were repeated on reliable hardware, and the reliable results were presented in Figures 11.4–

11.8.

11.2.2.2 Mediabench benchmarks

The Mediabench benchmarks are similar to the arithmetic benchmarks, but they contain a higher

diversity of arithmetic instructions in each benchmark. In most cases, the arithmetic speculation

gains due to a high correctness of one operations are offset by a low correctness of another opera-

263



Chapter 11: ADVS Simulation

tion. Throughput gains of almost 10 were achieved by ghostscript, due to a very high correctness

in the all approximate units, and the highest uintDiv proportion of any benchmark. Significant

performance gains are made when result caching is introduced, due to effective latency reduction

of the other frequent arithmetic operations that were not approximated.

11.2.2.3 SPEC benchmarks

In general the SPEC benchmarks did not significantly gain in IPC, and only 175.vpr lost perfor-

mance at all optimisation levels. In most cases, the correctness of at least one operation was too far

below the threshold to gain IPC. Interestingly some benchmarks such as 181.mcf tolerated very low

correctness for uintDiv operations, but the number of operations was too small to compromise

performance much.

177.mesa and 301.apsi

The two SPEC benchmarks 177.mesa and 301.apsi gained the highest percentage in IPC with ADVS,

and were among the top benchmarks with operand caching enabled.

In the case of mesa, the correctness of the intMult operation fell when caching was introduced.

Correctly approximated intMult operations that were repeated would eventually be cached, and

the correctness of the approximate units would decrease because these operations would not con-

tribute to the correctness average.

The 301.apsi benchmark increased the correctness of the uintDiv operation dramatically with

operand caching enabled. In this case an operation would miss in the result cache the first time

that is was encountered, and the approximate unit would also approximate incorrectly. On future

occasions, the result cache would hit, sparing the repeated loss of correctness to the arithmetic unit.

The effect of the result caching was dominant over the execution cycles saved through approxima-

tion. Figure 11.10 shows the throughput increase of SPEC benchmarks by using only result caching

in Figure 11.10a, isolated from result caching with ADVS in Figure 11.10b. The small effects of the

ADVS-only system in Figure 11.6a can be observed as the small difference between the result caching

systems with and without ADVS; most benchmarks have incremental gains, and the IPC of 175.vpr

declines slightly.

11.2.2.4 Test benchmarks

Operand data was traced from the arithmetic,Mediabench, and SPEC benchmarks, and was used to

determine the correctness of the approximate arithmetic units. These benchmarks form a training

set for the approximate arithmetic units. Many benchmarks in different categories were used. They

264



ADVS simulation

−
4048121620

B
en

ch
m

ar
k

IPC gain (%)

 

 

16
8_

w
up

w
is

e 17
3_

ap
pl

u

17
5_

vp
r 17

7_
m

es
a

18
1_

m
cf 18

3_
eq

ua
ke

18
8_

am
m

p 19
7_

pa
rs

er

25
5_

vo
rte

x 25
6_

bz
ip

2

30
1_

ap
si

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(a
)
O
pe

ra
nd

ca
ch

in
g
on

ly
.

−
4048121620

B
en

ch
m

ar
k

IPC gain (%)

 

 

16
8_

w
up

w
is

e 17
3_

ap
pl

u

17
5_

vp
r 17

7_
m

es
a

18
1_

m
cf 18

3_
eq

ua
ke

18
8_

am
m

p 19
7_

pa
rs

er

25
5_

vo
rte

x 25
6_

bz
ip

2

30
1_

ap
si

O
0

O
1

O
2

O
3

O
3 

in
lin

e
O

3 
un

ro
ll

(b
)
O
pe

ra
nd

ca
ch

in
g
an

d
AD

VS
.

F
ig
u
re

11
.1
0
:

Ef
fe
ct
of

op
er
an

d
ca
ch

in
g
in

an
AD

VS
-e
na

bl
ed

sy
st
em

.

265



Chapter 11: ADVS Simulation

were designed to exhibit a broad range of characteristics, so that they test different aspects of a

computer system. However, because the same data was used in the architectural simulations in this

chapter, there is a risk that the approximate hardware will be over-optimised for the training set.

The test set of benchmarks was also simulated to increase the coverage.

A description of the benchmarks in the test set is provided in Chapter 2. Most of the arithmetic

operations in the test benchmarks are floating point operations, especially in the fbench and ffbench

benchmarks, so they benefit greatly from result caching.

arith throughput

The arith-throughput benchmark suffers a approximately a 10 performance loss with ADVS in

Figure 11.7a, but this is improved to a >10 gain with operand caching. Integer multiplication and

unsigned division account for approximately 4 of the total number of instructions retired. In this

case the correctness of the approximate divisions was less than 1 so it is hard to see on the graph.

The benchmark tests integer throughput using the code shown below:

1 while (i < intMax)
2 {
3 intResult -= i++;
4 intResult += i++;
5 intResult *= i++;
6 intResult /= i++;
7 }

intResult is initially zero, and follows the series

intResult = intResult +  −  ∗ / +  −  ∗ / +  −  ∗ /
The operations performed in the first iteration are:  ←  −  ←  +  ←  ∗  ← /, and in the
second iteration are: −←  − ← − + ←  ∗ ← /
The input operands to the approximate divider in this series tend to yield quotients that are small,

and truncated. Often, the approximate algorithm used will terminate after a few correction rounds,

and the result would be correctly approximated, particularly when the operands are both positive.

In this case the operands were signed but the approximate signed intDiv unit was not included

in the ADVS-enabled system because the average correctness was low in other programs. The poor

performance of the uintDiv operations outside of this loop were the single biggest contributor to

the performance losses in this benchmark.

266



Conclusion

11.3 Conclusion

The ADVS-enabled system presented in this chapter yielded small gains to IPC. As shown in Chap-

ter 4 the correctness requirements of approximate arithmetic hardware are above 90 on average.

Throughput performance was more sensitive to correctness than the speedup in machine cycles

of an approximate unit compared to an exact unit. It was demonstrated that the average achieved

correctness of the approximate units was near the threshold in most benchmark sets, and the out-

come in terms of IPC gain matched predictions made with earlier probabilistic models. It is there-

fore likely that improving the correctness of the approximate arithmetic units, and extending them

to more frequent and longer latency floating point operations will improve the throughput. The

average latency improvement using the ADVS-scheme described was 1.1  for the arithmetic, Me-

diabench and SPEC benchmarks, but this was reduced to 0.75  with the introduction of the test

benchmarks. The overall change in IPC was found to be highly variable between programs. The

177.mesa and Mesa benchmarks share a very similar code base, but the differences in input data

yielded highly differences in IPC gain. The variables affecting correctness include compiler optimi-

sation and code structure, input data, and the method of approximation.

The cost of an ADVS scheme could be prohibitive unless the application is well known and char-

acterised. Most of the arithmetic units, exact and approximate, were synthesised with speed as the

predominant constraint. Hence, the associated costs in area and power are exacerbated, particu-

larly in the case of the integermultipliers. The approximate units increased the arithmetic consumed

power and area by approximately 55  per unit, assuming highly aggressive implementations for the

baseline and approximate units.

The introduction of result caching as backup plan for incorrectly approximated values was found

to dominate the performance change of the benchmarks. Firstly, operand caching was enabled for

operations that could not be approximated with a high enough correctness for ADVS, secondly the

caches maintained high hit rates, and did not impose a penalty on a miss, and thirdly the operand

caches are situated earlier in the pipeline, so the already small effects of ADVS are only applicable

when the operand caches do miss.

The operand caches selected were deliberately kept as small as possible while maintaining a high

positive impact on performance, but they have assumptions on their implementation and use. The

total size of the operand caches in bytes is approximately the size of the level 1 iCache or dCache.

The same effective area might be required do to additional wiring for the two operands and result

that form each entry. The access time to the caches was also assumed to be 1 cycle, the same as the

267



Chapter 11: ADVS Simulation

SimpleScalar traditional level 1 caches. This could impose a challenge to a floor plan engineer.

This chapter cumulates an investigation of ADVS from the system architecture level, down to the

level of individual arithmetic units. A systematic approach was adopted to share information be-

tween levels of abstraction, so that a realistic ADVS-enabled system could be developed as a case

study. The throughput results of this chapter have closely matched the outcomes predicted by dif-

ferentmodels, and validate the correctness targets developed in earlier chapters. Thedetailed results

in this chapter could be used to further developADVS for use in general purpose processor pipelines

by improving the correctness of approximate arithmetic units, or by applying approximate arith-

metic to niche applications, such as LDPC explored in Chapter 10.

268



Chapter 12

�����������

“Hofstadter’s Law: It always takes longer than you expect, even when you take into account

Hofstadter’s Law.”

Douglas Hofstadter (1945 —), in

Godel, Escher, Bach: an Eternal Golden Braid

This chapter contains a brief summary of the designs presented and simulation outcomes

presented in previous chapters, with a particular emphasis on the engineering trade offs

necessary to implement ADVS, and approximate arithmetic in general. Future research

avenues are identified.



Chapter 12: Conclusions

The majority of computing technology has been built around determinism; the sys-

tem outputs should always be exact and definite for a given set of inputs. Some

newer technologies are relaxing this constraint in favour of increased throughput

or battery life, or reduced cost. If this trend continues, approximate arithmetic units will be a fun-

damental component of approximate systems. Even if these technologies are further developed and

become commonplace, there will always be a need for high performance exact systems.

Speculation has been employed in many facets of computer technology, throughout the memory

hierarchy andwithin the pipelines to advance themachine state during idle time. This thesis has ap-

plied approximate arithmetic to value speculation to leverage further speculative gains and increase

throughput.

The top-down approach used in this research determined the design targets for the approximate

arithmetic units that were considered suitable for data value speculation. Although arithmetic op-

erations formed a relatively small part of a total program, they were often on the critical path of

execution due to their longer latencies. In the case of division and square root this was exacerbated

because the operation was not pipelined.

Theminimum required correctness for arithmetic speculation was found to be above 95. Modern

high performance hardware exploits many techniques for latency hiding and parallelism, so the

remaining opportunities for improving throughput are harder, and yield only incremental gains.

New approximate arithmetic algorithms and hardware were investigated for each of the fundamen-

tal arithmetic units. When attempting to trade latency for correctness in high performance arith-

metic units, it was found that the high degree of parallelism inherent in arithmetic circuit designs

left correctness susceptible to even small modifications, especially on the critical path that must

necessarily be shortened.

A simulation of an ADVS-enabled system was conducted with hardware that was shown to have

a high correctness and latency less than exact arithmetic units, allowing the processor pipeline to

speculate in the approximation window. The goal of this thesis was to investigate the feasibility of

using arithmetic value speculation as a mechanism to increase throughput in a processor pipeline.

It can be concluded that:

1. Reducing the latency of arithmetic circuits while maintaining high correctness is difficult,

due to the logic density and fan out in the data paths of high performance arithmetic circuits.

270



Summary of Contributions

2. The correctness of approximate arithmetic is sensitive to the input data. Any system that

uses approximate arithmetic, for speculation or error-tolerant probabilistic computing, will

need to be application specific, and be carefully designed for characteristics of the expected

input.

3. The effects of speculation in complex processor pipelines is compounded by multiple levels

of speculation, and deeply exploited parallelism. Because approximate arithmetic latency is

hard to reduce, potential gains are small, yet potential detriment is high because the pipeline

replay caused by an incorrect approximation must be on the critical path of the machine, if

it were to yield any real time saving.

4. Full implementation of all of the necessary hardware for speculation is expensive, due to the

need to replicate hardware. While the considerable costs would have to be carefully balanced

against the potential gains, it is unlikely that the expense would be justified without signifi-

cant improvement to the average correctness of approximate units. The constraints for ADVS

are imposing, and in measured cases where the achieved correctness was almost 100 for

all of the approximated calculations, the maximum throughput gains were incremental.

5. Althoughmany programs contain repetitive operands, different programs have different be-

haviours with respect to the predictability of operands. This makes approximation difficult

for general purpose computing. Alternative schemes like operand caching are less sensitive

to operand values.

6. Theperformance ofADVS-enabled systems is sensitive tomany factors. Simulations of bench-

marks showed that even where speculative gains were obtained by approximating one op-

eration, they could be offset by another. Because of the variations in performance between

programs, but general consistency within programs, arithmetic speculation could be adapt-

able, and disabled after a repeated hindrance to performance is detected.

7. Approximate arithmetic units can operate over a broad range of delay and correctness. Log-

ical incompleteness typically introduces promising reductions to power, delay and area, so

the future applications of approximate arithmetic are likely to be in probabilistic or error

tolerant fields, like LDPC or multimedia decoding.

8. Programs with a high proportion of arithmetic operations tend to reuse values, therefore

caching operand values can improve throughput of long latency operations, but imposes

significant area overhead.

271



Chapter 12: Conclusions

12.1 Summary of Contributions

This thesis has made the following contributions:

1. Comprehensive statistics of typical operands observed in a range of benchmark programs

was presented in Chapter 2.

2. A survey of approximationmethods, including an algorithm for determining the exact prob-

ability of correctness for N bit addition with a maximum carry length of l bits was presented

in Chapter 3.

3. Performance thresholds for approximate arithmetic units to be used in value speculation in

a RISC processor pipeline were established in Chapter 4.

4. Simple characteristics of arithmetic operands in benchmark programs, such as the probable

locations of carries in array multiplication, and the likelihood of floating point units requir-

ing rounding of the result were measured in Chapter 5.

5. New algorithms and implementations of approximate integermultiplication and division for

signed and unsigned operands were presented in Chapters 6 and 7, including an analysis of

their average correctness for benchmark operands.

6. Approximate integer arithmetic techniqueswere adapted to floating point hardware inChap-

ter 8.

7. In Chapter 9 basic result caches were extended with increased associativity and replacement

policies, and demonstrated an increase in cache read hit rate.

8. Alternative uses for approximate arithmetic units other than value speculation was demon-

strated in Chapter 10 by employing approximatemultioperand adders in error-tolerant LDPC

decoders.

9. The thesis culminated in Chapter 11 with a full system simulation using a range of bench-

marks to assess the real-world performance of an out-of-order, superscalar RISC processor

employing data value speculation.

272



Future Research

12.2 Future Research

Liu and Lu’s adder was analysed in Chapter 3, comparing it to a high performance Sklansky adder,

showing that the restricted carry length is not a good indicator of the physical properties of the

synthesised adder, especially delay. Furthermore, addition is typically a single cycle operation in

many processor pipelines, so reducing the system addition cycle latency is not possible. Other

approximate prefix adder topologies were proposed, and could be investigated by further research.

Approximate counters were introduced in Chapter 6 and used to construct a family of approximate

tree multipliers by homogeneously replacing counters in an exact tree. Each approximate counter

truncates one or more sum bits from the exact sum, saving critical path delay, area and power, at

the expense of correctness. Each asserted sum bit that was truncated will cause an error in the

product. The probability of assertion of each approximate counter output bit is function of many

highly dependent relationships between bits in the partial products. A rigorous analysis of these

probabilities might suggest heterogeneous approximate multipliers and use different approximate

or exact counters to improve the probability of correctness for marginally increased delay.

Chapter 7 presented amodified algorithm for integer division that converged on the precise division

quotient in a variable, possibly infinite, number of division rounds, and requiring infinite storage.

An error bound was found for the division algorithm after n rounds. An implementation of the

division algorithm removed the requirements for an exact result, and possibly introduced an error

in the quotient result by setting an upper limit on the number of division rounds and fractional bits

maintained. The division algorithmpresented required a delay-expensivemultiplication, and so the

multiplication product was approximated using the most significant partial products, introducing

a further source of error. A modification was proposed to allow the implemented dividers to han-

dle signed operands, requiring that negative operands and possibly the integer quotient result are

negated. To reduce the delay introduced by negating the d operand, the negation was approximated

by complementation. The effects of each approximation introduced are complex and not indepen-

dent, so the probability of correctness of each divider was determined by the simulation of many

benchmark inputs. Further research could determine an error bound for each implemented divider

or amathematical analysis of the correctness of each divider after the introduced quantisation error,

etc.

An approximate, iterative division algorithm was developed in Chapter 7. The algorithm takes ad-

vantage of the distribution of typical integer operands observed in benchmarks so that as little pre-

cision is maintained to calculate a correct inter quotient. Because the algorithm is convergent, and

273



Chapter 12: Conclusions

much information is regularly discarded, it is not possible to know with certainty ahead of time

if the quotient produced is incorrect. Other approximation techniques not using feedback, such

as the approximate intMult unit could detect a dropped carry early, and signal an error before

the result is available. For this reason, future research with approximate integer division could be

applied to probabilistic computing.

In Chapter 8 An approximate fpMult unit was built around an approximate significand multi-

plier, using the same techniques from Chapter 6. Although some of the multiplier trees obtained

a correctness above 90, the multiplication trees using the larger counters were slower than the

case using more faster, exact counters. A similar approach was taken to construct an approximate

floating point divider, but the significand divider was replaced with the approximate integer di-

viders discussed in Chapter 7. The approximate divider performed poorly, due to the very different

distribution of floating point significands compared to integer operands.

The basic approach was taken with both approximate floating point units; the significands were

approximated; and the exponent and normalisation calculations were exact. Unlike the exponent

calculation, the rounding and normalisation stage are on the critical path, and highly serialised.

Future research could consider treating the components of this stage separately in order to ap-

proximate some of the functions, if the total calculation time can be reduced below a clock cycle

threshold. For example, the carry to the exponent update could be omitted, as it is unlikely that a

rounding will cause overflow in the significand (see Figure 8.1c).

In Chapter 9 set associativity and line replacement algorithms were introduced to operand value-

indexed result caches, and indexing schemes derived from benchmark data were investigated. It

was found that set associative caches improved the hit rate of value-indexed result caches, and

could yield gains of over 5 to IPC. Value indexed result caches must be read later in the pipeline

than caches indexed by architectural register or PC, but are able to hit when identical data values

are produced by an otherwise identical instruction at another address, or referencing other regis-

ters. Further research could investigate if this property can yield a higher hit rate than other result

caching schemes after a context switch, where the nature of the code executed, and the PC address

range is likely to change.

Rate / LDPC decoders were constructed in Chapter 10Approximate Adders in LDPCwith approx-

imate (; ) counters introduced into the check nodes, and were shown to reduce the power, area

and delay of themultioperand adders used in the LDPCcheck nodes, and unexpectedlywith slightly

better decoding performance for the same noise level. Further research can be conducted into ex-

tending the degree of approximation used in the counters, such as with (; ) counters, etc. used in

274



Future Research

Chapter 6. Other combinations of approximate counters and decoding rates, such as /, / and
/ are possible. Furthermore, approximation could be introduced into the LDPC variable nodes.

Chapter 11 summarised the synthesis results of arithmetic units optimised for speed, and presented

thorough simulations of an out-of-order RISC processor using ADVS and result caching. Future

research could investigate the latency and correctness tradeoffs at area or power efficient design

points. Using custom approximate arithmetic cells could improve the latency and power margins

compared to exact arithmetic units. Benchmarking was important to determine the correctness of

the arithmetic units, and can be performed for other application domains.

Althoughmany benchmarks were analysed on themodified system, little was done to further mod-

ify the system to enhance ADVS. In particular, although the system had many of the features of a

modern high performance system, the size of hardware blocks and microarchitectural techniques

were scaled down from the bleeding edge, such as might be used in a high performance server. In

particular, ADVS could be investigated on systems with deeper pipelines, or vector arithmetic units.

Finally, there are many potential applications of approximate arithmetic that are tolerant of errors,

including audio, video and picture decoding, forecasting and heuristic-based computation.

275



���� ��

�����	�
��



Appendix A

��� ��� ����	

“Any inaccuracies in this index may be explained by the fact that it has been sorted with the help of a

computer.”

Donald Knuth (1938 —)

This appendix highlights some key features of the SimpleScalar compiler used throughout

the project. The SimpleScalar compiler is based on GCC version 2.6.3.



Chapter A: GCCman pages

A.1 gccman pages

The following is extracted from the man pages of the cross-compiler used for SimpleScalar, gcc

version 2.6.3.

A.1.1 OPTIMIZATIONOPTIONS

These options control various sorts of optimizations:

-O

-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more

memory for a large function.

Without ‘-O’, the compiler’s goal is to reduce the cost of compilation and tomake

debugging produce the expected results. Statements are independent: if you

stop the program with a breakpoint between statements, you can then assign a

new value to any variable or change the program counter to any other statement

in the function and get exactly the results you would expect from the source

code.

Without ‘-O’, only variables declared register are allocated in registers. The re-

sulting compiled code is a little worse than produced by PCC without ‘-O’.

With ‘-O’, the compiler tries to reduce code size and execution time.

When you specify ‘-O’, the two options ‘-fthread-jumps’ and ‘-fdefer-pop’ are

turned on. On machines that have delay slots, the ‘-fdelayed-branch’ option

is turned on. For those machines that can support debugging even without a

frame pointer, the ‘-fomit-frame-pointer’ option is turned on. On some ma-

chines other flags may also be turned on.

-O2 Optimize even more. Nearly all supported optimizations that do not involve a

space-speed tradeoff are performed. Loop unrolling and function inlining are

not done, for example. As compared to -O, this option increases both compila-

tion time and the performance of the generated code.

280



gccman pages

-O3 Optimize yet more. This turns on everything -O2 does, along with also turning

on -finline-functions.

-O0 Do not optimize.

If you use multiple -O options, with or without level numbers, the last such

option is the one that is effective.

281



Chapter A: GCCman pages

282



Appendix B

������ ����

“Debugging is twice as hard as writing the code in the first place. Therefore, if you write code as

cleverly as possible, you are, by definition, not smart enough to debug it. ”

Brian Kernighan (1942 —)



Chapter B: Source Code

This appendix provides the source code to some of the tools written by the can-

didate, and a selection of benchmarks referenced throughout the thesis. Many

benchmarks are common, and are easily available online. Other benchmarks not

listed here can be found from references in the Bibliography.

B.1 Probability of correctness

The BackCount algorithm was developed to accurately count the number of cases in N bit addition

that a carry chain of longer that l bits would be generated. The algorithm subtracts the number of

cases from the total number of possible N additions, and derives the exact probability of correct-

ness. The carry lengths are progressively shortened until l bits are reached. Every possible place-

ment of an i bit carry chain are calculated using partitions of N , and combinatorics. Hence, the

number of placements increases exponentially for small l , and the running time increases dramat-

ically. This is of little consequence, as the expected probability of correctness for l < log(N) is
< .

The source code for BackCount was coded in MATLAB, and was written to provide an exact result,

rather than the complex equations that yield lower bounds on the correctness.

B.1.1 backCount.m

1 % Return the number of incorrect sums for an N-bit adder, with maximum
2 % carry length of k-bits.
3 function [count,table] = backCount(N,k,table,s)
4
5 s = [s ’ ’];
6
7 if N<=k
8 count = 0;
9 return;
10 end
11
12 if k==0
13 count = 4^N - 3^N;
14 return
15 end
16
17 if table(N,k)~=-1
18 count = table(N,k);
19 return;
20 end
21
22 count = 0;
23 % consider strings of length N ... (k+1)
24 for len = N:-1:(k+1)
25
26 if len > N/2
27 smallLen = false;
28 else

284



Probability of correctness

29 smallLen = true;
30 end
31
32 % consider each way of having a len-string
33 for i = 1:(N-len+1)
34 % (a) places on the left of this string
35 a = i-1;
36
37 % (b) places right of this string
38 b = N-len-i+1;
39
40 % (c) non-propagate after gpp string
41 if b>0
42 c = 1;
43 else
44 c = 0;
45 end
46
47 % (d) number of places after gpp string terminator (c)
48 if b >= 1
49 d = b-1;
50 else
51 d = 0;
52 end
53
54 % count the ways of having this as the longest string
55 if smallLen
56 % leftGEi: errors on the left with errors >= len
57 if a<len
58 leftErrors = 4^a;
59 elseif a>=len
60 leftErrors = 4^(a)-backCount(a,len-1,table,s);
61 elseif a==0
62 leftErrors = 1;
63 else
64 error(’Impossible case (b)’);
65 end
66
67 % errors to the right with length >= len
68 if b<len
69 rightErrors = 2^(c)*4^(d);
70 elseif b>=len
71 rightErrors = 2^(c)*4^(d) -fixGenRight(b,len-1,table,s);
72 elseif b==0
73 rightErrors = 1;
74 else
75 error(’Impossible case (a)’);
76 end
77
78 % all combinaions of errors of length len to the right of i
79 precount = count;
80 errors = 2^(len-1)*leftErrors*rightErrors;
81 count = count + errors;
82
83 else
84 % (not smallLen)
85 precount = count;
86 errors = 2^(len-1)*4^(a+d)*2^(c);
87 count = count + errors;
88 end
89
90 end
91
92 % consider having multiple length blocks
93 if len <= N/2 && len > k
94 overlaps = overlapComb(N,k,len,table,s);
95 count = count + overlaps;
96 end
97
98 % write-back to the table for easy reference
99 table(N,len) = count;
100 end

B.1.2 fixGenRight.m

1
2 % a routine for the combinations to the right, with first string a generate
3 function err = fixGenRight(N,k,table,s)
4
5 err = 0;
6 % trivial case
7 if k>=N
8 return;
9 end
10
11 % consider all gpp strings starting at first bit > k
12 for i = (k+1):N
13 if N-i > 0

285



Chapter B: Source Code

14 c = 1;
15 else
16 c = 0;
17 end
18 if N-i-1 > 0
19 d = N-i-1;
20 else
21 d = 0;
22 end
23 % err = err + 2^(i-1)*2^(c)*4^(d);%*backCount(N-i,k,table,s);
24 err = err + 2^(i-1)*( 2^(c)*4^(d) - fixGenRight(N-i,k,table,s));%*backCount(N-i,k,table,s);
25 end
26 % count the remaining errors on the right, ignoring the first bit
27 err = err + 2*backCount(N-1,k,table,s); % CHECK THIS... 2 or 4? I’ll go with 2, thankyou....

B.2 Logic approximation

logicApprox is a program to automate the generation of logically incomplete circuits, byminimising

the number ofminterms in the canonical representation of the approximate function, with provided

error bounds. The user determines the maximum number of input combinations for which the

output can be asserted differently, which sets the maximum probability of error. The assertions can

be automatic using the -a flag, or forced to be positive (forced to 1) or negative (forced to zero) using

the -p and -n flags respectively.

The output is printed in the canonical form, formatted for the Espresso logicminimiser to condense

to a more efficient representation. logicApprox was written in C, and is provided below.

B.2.1 approx.c

1 #include "approx.h"
2
3 int main(int argc, char *argv[])
4 {
5
6 trace = 0;
7 /* trace */
8 if (trace) {
9 printf("%s\n", "main()");
10 printf("%s%s\n", "espresso file: ", argv[argc-1]);
11 }
12
13 extern int posAssert;
14 extern int negAssert;
15 extern int totalAssert;
16 extern int fileOutput;
17 posAssert = negAssert = totalAssert = 0;
18 fileOutput = 0;
19 int i = 0;
20 if (argc==2 && strncmp(argv[1], "-h", 2)!=0) {
21 printf("\nYou must specify a maximum number of assertions\n"
22 "or every function will be approximated as true.\n"
23 "For help try ‘approx -h’\n\n");
24 return 1;
25 }
26 else if (argc==2 && strncmp(argv[1], "-h", 2)==0) {
27 printHelp();
28 }
29
30 /* this will need some serious extra error handling */
31 for (i=0; i<argc-1; i++) {
32 if (strncmp(argv[i], "-h", 2)==0) {
33 i = argc-2;
34 printHelp();

286



Logic approximation

35 }
36 else if (strncmp(argv[i], "-p", 2)==0) {
37 posAssert = atoi(argv[i+1]);
38 i++;;
39 }
40 else if (strncmp(argv[i], "-n", 2)==0) {
41 negAssert = atoi(argv[i+1]);
42 i++;;
43 }
44 else if (strncmp(argv[i], "-a", 2)==0) {
45 totalAssert = atoi(argv[i+1]);
46 i++;;
47 }
48 else if (strncmp(argv[i], "-o", 2)==0) {
49 extern char* outputFile;
50 outputFile = argv[i+1];
51 fileOutput = 1;
52 i++;;
53 }
54 }
55
56 /* interpret ‘-p x’ as ’-p x -a x’ */
57 if (totalAssert==0) {
58 if (posAssert==0 && negAssert!=0) {
59 totalAssert = negAssert;
60 }
61 else if (negAssert==0 && posAssert!=0) {
62 totalAssert = posAssert;
63 }
64 }
65
66 /* interpret ’-a x’ as ’-p x -n x -a x’ */
67 if (totalAssert!=0) {
68 if (negAssert==0 && posAssert==0) {
69 posAssert = totalAssert;
70 negAssert = totalAssert;
71 }
72 }
73
74 /* trace */
75 if (trace) {
76 printf("%s%i%s%i%s%i\n", "posAssert = ", posAssert, \
77 "\nnegAssert = ", negAssert, "\ntotalAssert = ", \
78 totalAssert);
79 if (fileOutput) {
80 printf("%s%s\n", "writing output to file: ", outputFile);
81 }
82 else {
83 printf("Not printing to a file.. brace for stdout spam...\n");
84 }
85 }
86
87 /* populate the terms struct */
88 if (readFile(argv[argc-1]) != 0)
89 {
90 printf("%s%s\n", "Error reading file ", argv[argc-1]);
91 printf("%s\n","Usage: approx <options> <espresso_output_file>");
92 return 1;
93 }
94
95 /* trace */
96 if (trace) {
97 printf("%s%i\n", "numSignals: ", numSignals);
98 printf("%s%i\n", "numFunctions: ", numFunctions);
99 }
100
101 /* set up an array, so that all outputs can be reduced equally */
102 extern int *pos, *neg, *all;
103 pos = malloc(numFunctions*sizeof(int));
104 neg = malloc(numFunctions*sizeof(int));
105 all = malloc(numFunctions*sizeof(int));
106
107
108 /* Populate the arrays of reductions */
109 for (i=0; i<numFunctions; i++) {
110 all[i] = totalAssert;
111 neg[i] = negAssert;
112 pos[i] = posAssert;
113 }
114
115 /* parameters set up, run algorithm */
116 int reset = 1;
117 do {
118 reset = approximate();
119 } while (reset!=0);
120
121 /* print the function: stdout or outputFile */
122 printOutput();
123
124 return 0;
125 }

287



Chapter B: Source Code

B.2.2 approx.h

1 #include <stdio.h>
2 #include <string.h>
3 #include <ctype.h>
4 #include <stdlib.h>
5 #include <gsl/gsl_combination.h>
6
7 /* Trace variable */
8 /* this is poor form, get rid of this before code release */
9 int trace;
10
11 /* Global variables */
12 int posAssert;
13 int negAssert;
14 int totalAssert;
15 int fileOutput;
16 char *outputFile;
17
18 int *pos;
19 int *neg;
20 int *all;
21
22 char *inVarCnt;
23 char *outVarCnt;
24 char *inVarNames;
25 char *outVarNames;
26
27 int * fnTerms;
28 int *initFnTerms;
29 int numSignals;
30 int numFunctions;
31
32 int ***cell;
33
34 int *termLog;
35 int *fnLog;
36 int totalNumTerms;
37
38 int *similar;
39 int *diff1;
40 int *diff2;
41 int *diff3;
42 int *diff4;
43
44 /* Function prototypes */
45 int readFile(char *);
46 void printHelp(void);
47 int approximate(void);
48 void printOutput(void);
49 int signalCnt(int *term);
50 int reduce_a(int fnNum);
51 int reduce_b(int fnNum);
52 int reduce_c(int fnNum);
53 int reduce_d(int fnNum);
54 int reduce_e(int fnNum);
55 int reduce_f(int fnNum);
56 int reduce_g(int fnNum);
57 void stalemate_heuristic(void);
58 void compare2Terms(int fnNum, int term_a, int term_b);
59 void compare3Terms(int fnNum, int term_a, int term_b, int term_c);
60 void compare4Terms(int fnNum, int term_a, int term_b, int term_c, int term_d);
61 int findDiffSig(int *term, int index);
62 int similarCnt(void);
63 void copyTerm(int *out, int *in);
64 void copySimilar(int *dest, int *source);
65 void convEspresso();
66 int checkEspressoTerm(int *term, int numLines, int funcNum);
67 char *getEspOutput();

B.2.3 reduce.c

1 #include "approx.h"
2
3 void printTerms(void);
4
5 /* Performs the logic reduction algorithm.
6 Data structure is an extern variable.
7 In: Nothing
8 Out: Nothing
9 */
10 int approximate(void) {
11
12 /* trace */
13 if (trace) {
14 printf("approximate()\n");
15 }

288



Logic approximation

16
17 extern int *similar;
18 extern int *diff1;
19 extern int *diff2;
20 extern int *diff3;
21 extern int *diff4;
22
23 int initialAssert = totalAssert;
24
25 similar = NULL;
26 diff1 = NULL;
27 diff2 = NULL;
28 diff3 = NULL;
29 diff4 = NULL;
30
31 int i = 0, reset = 0;
32
33 /* trace */
34 if (trace) {
35 printf("\t - start a new round -\n");
36 printOutput();
37 }
38
39 for (i=0; i<numFunctions; i++) {
40 if (all[i]>0 && pos[i]>0 && !reset) {
41 reset = reduce_a(i);
42
43 /* trace */
44 if (trace) {
45 printOutput();
46 }
47 if (reset==1)
48 return reset;
49
50 }
51 }
52
53 if (!reset) {
54 for (i=0; i<numFunctions; i++) {
55 if (all[i]>0 && neg[i]>0 && !reset) {
56 reset = reduce_b(i);
57
58 /* trace */
59 if (trace) {
60 printOutput();
61 }
62 if (reset==1)
63 return reset;
64 }
65 }
66 }
67
68 if (!reset) {
69 for (i=0; i<numFunctions; i++) {
70 if (all[i]>0 && pos[i]>0 && !reset) {
71 reset = reduce_c(i);
72
73 /* trace */
74 if (trace) {
75 printOutput();
76 }
77 if (reset==1)
78 return reset;
79 }
80 }
81 }
82
83 if (!reset) {
84 for (i=0; i<numFunctions; i++) {
85 if (all[i]>0 && neg[i]>0 && !reset) {
86 reset = reduce_d(i);
87
88 /* trace */
89 if (trace) {
90 printOutput();
91 }
92 if (reset==1)
93 return reset;
94 }
95 }
96 }
97
98 if (!reset) {
99 for (i=0; i<numFunctions; i++) {
100 if (all[i]>0 && pos[i]>0 && !reset) {
101 reset = reduce_e(i);
102
103 /* trace */
104 if (trace) {
105 printOutput();
106 }
107 }
108 }
109 }
110

289



Chapter B: Source Code

111 /* stalemate_heuristic */
112 if (totalAssert==initialAssert)
113 stalemate_heuristic();
114
115
116 free(similar);
117 free(diff1);
118 free(diff2);
119 free(diff3);
120 free(diff4);
121
122 return 0;
123 }
124
125
126 /* Compares two terms in the cell for a given function.
127 Arrays of structs are written to show differences, similarities.
128 In: The function number to compare, and two term numbers.
129 Out: Nothing
130 */
131 void compare2Terms(int fnNum, int term_a, int term_b) {
132
133 /* trace */
134 if (trace) {
135 printf("compare2Terms()\n");
136 }
137
138 int i;
139 extern int *similar;
140 extern int *diff1;
141 extern int *diff2;
142 extern int numSignals;
143
144 /* trace */
145 if (trace) {
146 printf("free mem...\n");
147 }
148
149 free(similar);
150 free(diff1);
151 free(diff2);
152
153 /* trace */
154 if (trace) {
155 printf("mallocs...\n");
156 }
157
158 similar = (int *)malloc(numSignals * sizeof(int));
159 diff1 = (int *)malloc(numSignals * sizeof(int));
160 diff2 = (int *)malloc(numSignals * sizeof(int));
161
162 /* trace */
163 if (trace) {
164 printf("done mallocs...\n");
165 }
166
167 for (i=0; i<numSignals; i++) {
168 if (cell[fnNum][term_a][i] == cell[fnNum][term_b][i]) {
169 similar[i] = 1;
170 diff1[i] = -1;
171 diff2[i] = -1;
172 }
173 else {
174 similar[i] = 0;
175 diff1[i] = cell[fnNum][term_a][i];
176 diff2[i] = cell[fnNum][term_b][i];
177 }
178 }
179 }
180
181
182 /* Compares three terms in the cell for a given function.
183 Arrays of structs are written to show differences, similarities.
184 Comparisons are only made between (a,b) & (a,c), not (b,c).
185 In: The function number to compare, and the indices of the three terms.
186 Out: Nothing
187 */
188 void compare3Terms(int fnNum, int term_a, int term_b, int term_c) {
189
190 /* trace */
191 if (trace) {
192 printf("compare3Terms()\n");
193 }
194
195 int i;
196 extern int *similar;
197 extern int *diff1;
198 extern int *diff2;
199 extern int *diff3;
200 extern int numSignals;
201
202 free(similar);
203 free(diff1);
204 free(diff2);
205 free(diff3);

290



Logic approximation

206
207 similar = (int *)malloc(numSignals * sizeof(int));
208 diff1 = (int *)malloc(numSignals * sizeof(int));
209 diff2 = (int *)malloc(numSignals * sizeof(int));
210 diff3 = (int *)malloc(numSignals * sizeof(int));
211
212 for (i=0; i<numSignals; i++) {
213 if (cell[fnNum][term_a][i] == cell[fnNum][term_b][i] \
214 && cell[fnNum][term_a][i] == cell[fnNum][term_c][i] ) {
215 similar[i] = 1;
216 diff1[i] = -1;
217 diff2[i] = -1;
218 diff3[i] = -1;
219 }
220 else {
221 similar[i] = 0;
222 diff1[i] = cell[fnNum][term_a][i];
223 diff2[i] = cell[fnNum][term_b][i];
224 diff3[i] = cell[fnNum][term_c][i];
225 }
226 }
227 }
228
229
230 /* Compares four terms in the cell for a given function.
231 Arrays of structs are written to show differences, similarities.
232 Differences are the terms different in the comparison of (a,b), (a,c) &
233 (a,d) i.e., there is no comparison between (b,c), (b,d) & (c,d).
234 In: The function number to compare, and index of the four terms.
235 Out: Nothing
236 */
237 void compare4Terms(int fnNum, int term_a, int term_b, int term_c, int term_d) {
238
239 /* trace */
240 if (trace) {
241 printf("compare4Terms()\n");
242 }
243
244 int i;
245 extern int *similar;
246 extern int *diff1;
247 extern int *diff2;
248 extern int *diff3;
249 extern int *diff4;
250 extern int numSignals;
251
252 free(similar);
253 free(diff1);
254 free(diff2);
255 free(diff3);
256 free(diff4);
257
258 similar = (int *)malloc(numSignals * sizeof(int));
259 diff1 = (int *)malloc(numSignals * sizeof(int));
260 diff2 = (int *)malloc(numSignals * sizeof(int));
261 diff3 = (int *)malloc(numSignals * sizeof(int));
262 diff4 = (int *)malloc(numSignals * sizeof(int));
263
264 for (i=0; i<numSignals; i++) {
265 if (cell[fnNum][term_a][i] == cell[fnNum][term_b][i] \
266 && cell[fnNum][term_a][i] == cell[fnNum][term_c][i] \
267 && cell[fnNum][term_a][i] == cell[fnNum][term_d][i] ) {
268 similar[i] = 1;
269 diff1[i] = -1;
270 diff2[i] = -1;
271 diff3[i] = -1;
272 diff4[i] = -1;
273 }
274 else {
275 similar[i] = 0;
276 diff1[i] = cell[fnNum][term_a][i];
277 diff2[i] = cell[fnNum][term_b][i];
278 diff3[i] = cell[fnNum][term_c][i];
279 diff4[i] = cell[fnNum][term_d][i];
280 }
281 }
282 }
283
284
285 /*Reduction method (a)
286 (positive assertion)
287 (w + x + y + z).common -> 1.common
288 In: nothing
289 Out: nothing
290 */
291 int reduce_a(int fnNum) {
292
293 /* trace */
294 if (trace) {
295 printf("\t\t-:reduce_a():-\n");
296 }
297
298 int term1;
299 int term2;
300 int term3;

291



Chapter B: Source Code

301 int term4;
302
303 extern int *fnTerms;
304 extern int *diff1;
305 extern int *diff2;
306 extern int *diff3;
307 extern int *diff4;
308
309 int numTerms;
310 numTerms = fnTerms[fnNum];
311
312 /* this section can be very expensive, abort if too many combinations... */
313 if (numTerms >= 20) {
314 return 0;
315 }
316
317 if (numTerms >= 4) {
318 /* trace */
319 if (trace) {
320 printf("new combination time...\n");
321 printf("new combination time...\n");
322 }
323
324 gsl_combination * comb = gsl_combination_calloc(numTerms,4);
325 do {
326 term1 = gsl_combination_data(comb)[0];
327 term2 = gsl_combination_data(comb)[1];
328 term3 = gsl_combination_data(comb)[2];
329 term4 = gsl_combination_data(comb)[3];
330 compare4Terms(fnNum, term1, term2, term3, term4);
331 /* trace */
332 if (trace) {
333 printf("%s%i", "signalCnt(diff1) = ", signalCnt(diff1));
334 printf("%s%i", "signalCnt(diff2) = ", signalCnt(diff2));
335 printf("%s%i", "signalCnt(diff3) = ", signalCnt(diff3));
336 printf("%s%i", "signalCnt(diff4) = ", signalCnt(diff4));
337 }
338
339 if (signalCnt(diff1)==1 && signalCnt(diff2)==1 && signalCnt(diff3)==1 \
340 && signalCnt(diff4)==1) {
341
342 /* sufficient conditions to reduce logic */
343 /* don’t overwrite other terms */
344 if (cell[fnNum][fnTerms[fnNum]-1]!=cell[fnNum][term1]) {
345 memcpy(cell[fnNum][term1], \
346 cell[fnNum][fnTerms[fnNum]-1], \
347 sizeof(int *) \
348 );
349 }
350 if (cell[fnNum][fnTerms[fnNum]-2]!=cell[fnNum][term2]) {
351 memcpy(cell[fnNum][term2], \
352 cell[fnNum][fnTerms[fnNum]-2], \
353 sizeof(int *) \
354 );
355 }
356 if (cell[fnNum][fnTerms[fnNum]-3]!=cell[fnNum][term3]) {
357 memcpy(cell[fnNum][term3], \
358 cell[fnNum][fnTerms[fnNum]-3], \
359 sizeof(int *) \
360 );
361 }
362 if (cell[fnNum][fnTerms[fnNum]-4]!=cell[fnNum][term4]) {
363 memcpy(cell[fnNum][term4], \
364 cell[fnNum][fnTerms[fnNum]-4], \
365 sizeof(int *) \
366 );
367 }
368 /* perform the reduction */
369 memset(cell[fnNum][fnTerms[fnNum]-4], -1, numSignals*sizeof(int));
370 fnTerms[fnNum] -= 3;
371 pos[fnNum]--;
372 all[fnNum]--;
373 /* reset the reduction procedure */
374 return 1;
375 }
376 } while (gsl_combination_next (comb) == GSL_SUCCESS);
377 }
378 return 0;
379 }
380
381
382 /*Reduction method (b)
383 (negative assertion)
384 (wxy + z).common -> z.common
385 In: nothing
386 Out: nothing
387 */
388 int reduce_b(int fnNum) {
389
390 /* trace */
391 if (trace) {
392 printf("\t\t-:reduce_b():-\n");
393 }
394
395 int term1;

292



Logic approximation

396 int term2;
397
398 int numTerms = fnTerms[fnNum];
399 /* trace */
400 if (trace) {
401 printf("%s%i\n", "numTerms: ", numTerms);
402 }
403
404 if (numTerms>=2) {
405 gsl_combination * comb = gsl_combination_calloc(numTerms,2);
406 do {
407 term1 = gsl_combination_data(comb)[0];
408 term2 = gsl_combination_data(comb)[1];
409 compare2Terms(fnNum, term1, term2);
410
411 if ((signalCnt(diff1)==1 && signalCnt(diff2)==3) || \
412 (signalCnt(diff1)==3 && signalCnt(diff2)==1) ) {
413 /* both term have the correct num of signals, and no differences
414 sufficeint conditions to reduce
415 */
416 int *temp = malloc(numSignals*sizeof(int));
417 if (signalCnt(diff1)==1)
418 memcpy(temp, cell[fnNum][term1], numSignals*sizeof(int));
419 else
420 memcpy(temp, cell[fnNum][term2], numSignals*sizeof(int));
421
422 if (cell[fnNum][term1]!=cell[fnNum][fnTerms[fnNum]-1]) {
423 memcpy(cell[fnNum][fnTerms[fnNum]-1], \
424 cell[fnNum][term1], \
425 sizeof(int *) \
426 );
427 }
428 if (cell[fnNum][term2]!=cell[fnNum][fnTerms[fnNum]-2])
429 memcpy(cell[fnNum][fnTerms[fnNum]-2], \
430 cell[fnNum][term2], \
431 sizeof(int *) \
432 );
433 memcpy(cell[fnNum][fnTerms[fnNum]-2], temp, numSignals*sizeof(int));
434 free(temp);
435 fnTerms[fnNum]--;
436 neg[fnNum]--;
437 all[fnNum]--;
438 return 1;
439 }
440 } while(gsl_combination_next (comb) == GSL_SUCCESS);
441 }
442 return 0;
443 }
444
445
446 /*Reduction method (c)
447 (positive assertion)
448 (wx + wy + wz).common -> w.common
449 In: nothing
450 Out: nothing
451 */
452 int reduce_c(int fnNum) {
453
454 /* trace */
455 if (trace) {
456 printf("\t\t-:reduce_c():-\n");
457 }
458
459 int numTerms = fnTerms[fnNum];
460 int term1;
461 int term2;
462 int term3;
463 int *temp;
464
465 if (numTerms>=3) {
466 gsl_combination *comb = gsl_combination_calloc(numTerms,3);
467 do {
468 term1 = gsl_combination_data(comb)[0];
469 term2 = gsl_combination_data(comb)[1];
470 term3 = gsl_combination_data(comb)[2];
471 compare3Terms(fnNum, term1, term2, term3);
472 if (signalCnt(diff1)==1 && signalCnt(diff2)==1 \
473 && signalCnt(diff3)==1 ) {
474 temp = malloc(numSignals*sizeof(int));
475 memcpy(temp, cell[fnNum][term1], numSignals*sizeof(int));
476
477 /* all have exactly one similar term (plus common) */
478 if (cell[fnNum][fnTerms[fnNum]-2]!=cell[fnNum][term2]) {
479 memcpy(cell[fnNum][term2], \
480 cell[fnNum][fnTerms[fnNum-2]], \
481 numSignals*sizeof(int) \
482 );
483 }
484 if (cell[fnNum][fnTerms[fnNum]-1]!=cell[fnNum][term1]) {
485 memcpy(cell[fnNum][term1], \
486 cell[fnNum][fnTerms[fnNum]-1], \
487 numSignals*sizeof(int) \
488 );
489 }
490 if (cell[fnNum][fnTerms[fnNum]-3]!=cell[fnNum][term3]) {

293



Chapter B: Source Code

491 memcpy(cell[fnNum][term3], \
492 cell[fnNum][fnTerms[fnNum]-3], \
493 numSignals*sizeof(int) \
494 );
495 }
496 memcpy(cell[fnNum][fnTerms[fnNum]-3], temp, numSignals*sizeof(int));
497 free(temp);
498
499 /* get rid of the differnce */
500 cell[fnNum][fnNum[fnTerms]-3][findDiffSig(diff1, 0)] = -1;
501 fnTerms[fnNum] -= 2;
502 pos[fnNum]--;
503 all[fnNum]--;
504 return 1;
505 }
506 } while(gsl_combination_next (comb) == GSL_SUCCESS);
507 }
508
509 return 0;
510 }
511
512
513 /*Reduction method (d)
514 (negative assertion)
515 (wyz + wx).common -> wx.common
516 In: nothing
517 Out: nothing
518 */
519 int reduce_d(int fnNum) {
520
521 /* trace */
522 if (trace) {
523 printf("\t\t-:reduce_d():-\n");
524 }
525
526 int term1;
527 int term2;
528 int *temp = malloc(numSignals*sizeof(int));
529 int reduce = 0;
530
531 int numTerms = fnTerms[fnNum];
532 if (numTerms>=2) {
533 gsl_combination * comb = gsl_combination_calloc(numTerms,2);
534
535 do {
536 term1 = gsl_combination_data(comb)[0];
537 term2 = gsl_combination_data(comb)[1];
538 compare2Terms(fnNum, term1, term2);
539
540 if (signalCnt(diff1)==1 && \
541 signalCnt(diff2)==2) {
542 memcpy(temp, cell[fnNum][term1], numSignals*sizeof(int));
543 reduce = 1;
544 }
545 else if (signalCnt(diff1)==2 && \
546 signalCnt(diff2)==1 ) {
547 memcpy(temp, cell[fnNum][term2], numSignals*sizeof(int));
548 reduce = 1;
549 }
550
551 /* conditions satisifed to reduce */
552 if (reduce!=0 && similarCnt()>0) {
553 if (cell[fnNum][fnTerms[fnNum]-1]!=cell[fnNum][fnTerms[fnNum]-1]) {
554 memcpy(cell[fnNum][term1], \
555 cell[fnNum][fnTerms[fnNum]-1], \
556 numSignals*sizeof(int) \
557 );
558 }
559 if (cell[fnNum][fnTerms[fnNum]-2]!=cell[fnNum][fnTerms[fnNum]-2]) {
560 memcpy(cell[fnNum][term2], \
561 cell[fnNum][fnTerms[fnNum]-2], \
562 numSignals*sizeof(int) \
563 );
564 }
565 /* reduction operation */
566 memcpy(cell[fnNum][fnTerms[fnNum]-2], \
567 temp, \
568 numSignals*sizeof(int) \
569 );
570 fnTerms[fnNum]--;
571 neg[fnNum]--;
572 all[fnNum]--;
573 free(temp);
574 return 1;
575 }
576 } while(gsl_combination_next (comb) == GSL_SUCCESS);
577 }
578 free(temp);
579 return 0;
580 }
581
582
583 /*Reduction method (e)
584 (positive assertion)
585 (wyz + wxy).common -> wy.common

294



Logic approximation

586 In: nothing
587 Out: nothing
588 */
589 int reduce_e(int fnNum) {
590
591 /* trace */
592 if (trace) {
593 printf("\t\t-:reduce_e():-\n");
594 }
595
596 int term1;
597 int term2;
598
599 int numTerms = fnTerms[fnNum];
600 if (numTerms>=2) {
601 gsl_combination * comb = gsl_combination_calloc(numTerms,2);
602 do {
603 term1 = gsl_combination_data(comb)[0];
604 term2 = gsl_combination_data(comb)[1];
605 compare2Terms(fnNum, term1, term2);
606
607 if (signalCnt(diff1)==1 && signalCnt(diff2)==1) {
608 /* sufficient requirements for reduction */
609 int *temp = malloc(numSignals*sizeof(int));
610 memcpy(temp, cell[fnNum][term1], numSignals*sizeof(int));
611
612 if (cell[fnNum][fnTerms[fnNum]-1]!=cell[fnNum][term2]) {
613 memcpy(cell[fnNum][term2], \
614 cell[fnNum][fnTerms[fnNum]-1], \
615 numSignals*sizeof(int) \
616 );
617 }
618 if (cell[fnNum][fnTerms[fnNum]-2]!=cell[fnNum][term2]) {
619 memcpy(cell[fnNum][term2], \
620 cell[fnNum][fnTerms[fnNum]-2], \
621 numSignals*sizeof(int) \
622 );
623 }
624 copySimilar(cell[fnNum][fnTerms[fnNum]-2], temp);
625 fnTerms[fnNum]--;
626 pos[fnNum]--;
627 all[fnNum]--;
628 return 1;
629 }
630 } while(gsl_combination_next (comb) == GSL_SUCCESS);
631 }
632
633 return 0;
634 }
635
636
637 /*stalemate_heuristic
638 Used to transform large xor structures into other logic if
639 many spare assertions exist.
640 In: nothing
641 Out: nothing
642 */
643 void stalemate_heuristic(void) {
644
645 /* trace */
646 if (trace) {
647 printf("stalemate_heuristic()\n");
648 }
649
650 /* Not currently implemented */
651 }
652
653
654 /*Count the number of (valid) signals in a term.
655 In: Pointer to the array of signals
656 Out: Count of signals in the term
657 */
658 int signalCnt(int *term) {
659
660 /* trace */
661 if (trace) {
662 printf("%s\n", "signalCnt()");
663 }
664
665 extern int numSignals;
666 int i = 0;
667 int cnt = 0;
668
669 for (i=0; i<numSignals; i++) {
670
671 /* trace */
672 if (trace) {
673 printf("%s%i%s%i\n", "\tsignal[", i, "] = ", term[i]);
674 }
675
676 if (term[i]!=-1)
677 cnt++;
678 }
679 return cnt;
680 }

295



Chapter B: Source Code

681
682
683 /*Look through a diff term to find the first occurance of a signal which is
684 not invalid (not -1), starting at ’index’.
685 In: Pointer to the diff term (array of signals)
686 Out: Index of the first occuring valid signal, return -1 if no such signal
687 occurs.
688 */
689 int findDiffSig(int *term, int index) {
690
691 /* trace */
692 if (trace) {
693 printf("findDiffSig()\n");
694 }
695
696 extern int numSignals;
697 int i;
698 for (i=index; i<numSignals; i++) {
699 if (term[i]!=-1)
700 return i;
701 }
702 return -1;
703 }
704
705
706 /*Look through a diff term to find the first occurance of a signal which is
707 not invalid (not 0), starting at ’index’.
708 In: Pointer to the diff term (array of signals)
709 Out: Index of the first occuring valid signal, return -1 if no such signal
710 occurs.
711 */
712 int findSimilarSig(int *term, int index) {
713
714 /* trace */
715 if (trace) {
716 printf("findSimilarSig()\n");
717 }
718
719 extern int numSignals;
720 int i;
721 for (i=index; i<numSignals; i++) {
722 if (term[i]!=-1)
723 return i;
724 }
725 return -1;
726 }
727
728
729 /*Count the number of similarities between two terms.
730 In: Pointer to the similar term
731 Out: Count of similarities.
732 */
733 int similarCnt() {
734
735 /* trace */
736 if (trace) {
737 printf("similarCnt()\n");
738 }
739
740 extern int numSignals;
741 int i=0, cnt=0;
742 for (i=0; i<numSignals; i++) {
743 if (similar[i]==1)
744 cnt++;
745 }
746 return cnt;
747 }
748
749
750 /*Copy the contents of term IN to term OUT.
751 In: Pointers to IN and OUT.
752 Out: VOID
753 */
754 void copyTerm(int *out, int *in) {
755
756 /* trace */
757 if (trace) {
758 printf("copyTerm()\n");
759 }
760
761 int i;
762 for (i=0; i<numSignals; i++)
763 out[i] = in[i];
764
765 return;
766 }
767
768
769 /*Copy only the similarites of a term at index to the destination.
770 In: fnNum and termIndex to indentify the term,
771 as well as poiner to destination
772 Out: VOID
773 */
774 void copySimilar(int *dest, int *source) {
775

296



Logic approximation

776 /* trace */
777 if (trace) {
778 printf("copySimilar()\n");
779 }
780
781 int i;
782 for (i=0; i<numSignals; i++) {
783 if (similar[i]==1)
784 dest[i] = source[i];
785 else
786 dest[i] = -1;
787 }
788 }
789
790
791
792
793
794 void printTerms(void) {
795 int i;
796 printf("\t%s", "all = [ ");
797 for (i=0; i< numFunctions; i++) {
798 printf("%i%s", all[i], " ");
799 }
800 printf("]\n");
801 printf("\t%s", "pos = [ ");
802 for (i=0; i< numFunctions; i++) {
803 printf("%i%s", pos[i], " ");
804 }
805 printf("]\n");
806 printf("\t%s", "all = [ ");
807 for (i=0; i< numFunctions; i++) {
808 printf("%i%s", neg[i], " ");
809 }
810 printf("]\n\n");
811 }

B.2.4 io.c

1 #include "approx.h"
2
3 /* Prints the help for the command line.
4 In: Nothing
5 Out: Nothing
6 */
7 void printHelp(void) {
8
9 /* trace */
10 if (trace) {
11 printf("printHelp()\n");
12 }
13
14 printf("\n%s\n\n","APPROX: A logic approximation program");
15 printf("%s\n\n", "Approx simplifies the logic for a given function, or logic unit\n"
16 "with multiple outputs (functions) by inferring a limited number\n"
17 "of errors to a circuit. The repesentation will reduce the number\n"
18 "of AND/OR gates in the function representations. The input file\n"
19 "suppied must be a BASIC espresso output file, *and is assumed\n"
20 "to be minimised*.");
21 printf("%s\n","Usage: approx <options> <espresso_file>");
22 printf("\n%s\n","\toptions\t\tdescription");
23 printf("%s\n","\t-------\t\t-----------");
24 printf("%s\n", "help\t-h \t\tturns out you already found it!");
25 printf("%s\n", "+ve\t-p <num>\tthe max number of positive assertions");
26 printf("%s\n", "-ve\t-n <num>\tthe max number of negative assertions");
27 printf("%s\n", "all\t-a <num>\tthe total maximum number of assertions");
28 printf("%s\n\n", "output\t-o <filename>\tthe output file, default stdout");
29 printf("%s\n\n", "e.g., to have 10 assertions, but no more than 8 of either,\n"
30 "then use options ‘-p 9 -n 8 -a 10’\n"
31 "\n"
32 "It is not necessary to specify a total number of assertions\n"
33 "if all the assertions you want are to be of one type or another\n"
34 "(just use ‘-p 10’ instead of ‘-p 10 -a 10’)" );
35 }
36
37 /* Reads a string input starting at pos,.
38 In: espresso output filename
39 Out: boolean (success=>0, failure=>!0)
40 */
41 int readFile(char *espFile) {
42
43 /* trace */
44 if (trace) {
45 printf("%s\n", "readFile()");
46 }
47
48 FILE *fp;
49 int lineLength = 128;

297



Chapter B: Source Code

50 char line[lineLength];
51
52 extern char *inVarCnt;
53 extern char *outVarCnt;
54 extern char *inVarNames;
55 extern char *outVarNames;
56
57 fp = fopen(espFile, "r");
58 /* trace */
59 if (trace) {
60 printf("%s%i\n", "fp = ", (int)fp);
61 }
62
63 if (fp == NULL)
64 return 1;
65
66 /* determine the number of varibles and outputs */
67 /* determine thh number of functions in the file */
68 extern int numSignals;
69 extern int numFunctions;
70 char space[] = " ";
71 char *token;
72
73 /* inputs */
74 fgets(line, lineLength, fp);
75 /* trace */
76 if (trace) {
77 printf("%s%s", "read from file: ", line);
78 }
79
80 inVarCnt = malloc(strlen(line)+1);
81 strcpy(inVarCnt, line);
82
83 if (strcmp(token = strtok(line, space),".i")!=0) {
84 printf("%s\n", "Error. ‘.i’ required in line 1.");
85 return 1;
86 }
87 /* trace */
88 if (trace) {
89 printf("%s%s\n%s%s\n","line: ",line,"token: ",token);
90 }
91
92 token = strtok(NULL, space);
93 /* trace */
94 if (trace) {
95 printf("%s%s","token: ",token);
96 }
97
98 numSignals = atoi(token);
99 /* trace */
100 if (trace) {
101 printf("%s%i\n","Value read from file: .i ",numSignals);
102 }
103
104 /* Functions */
105 fgets(line, lineLength, fp);
106 /* trace */
107 if (trace) {
108 printf("%s%s", "read from file: ", line);
109 }
110
111 outVarCnt = malloc(strlen(line)+1);
112 strcpy(outVarCnt, line);
113
114 if (strcmp(token = strtok(line, space),".o")!=0) {
115 printf("%s\n", "Error. ‘.o’ required in line 2.");
116 return 1;
117 }
118 /* trace */
119 if (trace) {
120 printf("%s%s\n%s%s\n","line: ",line,"token: ",token);
121 }
122
123 token = strtok(NULL, space);
124 /* trace */
125 if (trace) {
126 printf("%s%s","token: ",token);
127 }
128
129 numFunctions = atoi(token);
130 /* trace */
131 if (trace) {
132 printf("%s%i\n","Value read from file: ",numFunctions);
133 }
134
135 /* The remaining lines indicates the number of terms for
136 each function.
137 */
138 extern int *fnTerms;
139 fnTerms = calloc(numFunctions, sizeof(int)/4);
140 char fileTerm[] = ".e";
141 char tempStr[2];
142 int i;
143 int fnTok = 0;
144

298



Logic approximation

145 fgets(line, lineLength, fp);
146 inVarNames = malloc(strlen(line)+1);
147 strncpy(inVarNames, line, strlen(line));
148
149 fgets(line, lineLength, fp);
150 outVarNames = malloc(strlen(line)+1);
151 strncpy(outVarNames, line, strlen(line));
152
153 fgets(line, lineLength, fp);
154 fgets(line, lineLength, fp);
155
156 /* zero out the array */
157 for (i=0; i<numFunctions; i++) {
158 fnTerms[i] = 0;
159 }
160
161 while(strncmp(line, fileTerm, 2)!=0) {
162 /* the second token per line indicates the functions */
163 token = strtok(line, space);
164 token = strtok(NULL, space);
165 /* trace */
166 if (trace) {
167 printf("%s%s","token: ", token);
168 }
169
170 for (i=0; i<strlen(token)-1; i++) {
171 /* trace */
172 if (trace) {
173 printf("%s%c\n", " char: ", token[i]);
174 }
175
176 strncpy(tempStr,token+i,1);
177 /* trace */
178 if (trace) {
179 printf("%s%s\n", "tempStr: ", tempStr);
180 }
181
182 fnTok = atoi(tempStr);
183 if (fnTok==1)
184 fnTerms[i]++;
185 /* trace */
186 if (trace) {
187 printf("%s%i%s%i\n", " fnTerms[", i, "] = ", fnTerms[i]);
188 }
189
190 }
191 if (strncmp(line, fileTerm, 2)!=0)
192 fgets(line, lineLength, fp);
193 /* trace */
194 if (trace) {
195 printf("%s%s\n", "line: ", line);
196 }
197 }
198
199 /* trace */
200 if (trace) {
201 printf("%s\n", "closing the file...");
202 }
203
204 fclose(fp);
205
206 /* create the data structure */
207 extern int ***cell;
208 /* a term is an array of signal structs */
209 int j = 0;
210 int temp = 0;
211
212 /* trace */
213 if (trace) {
214 printf("%s\n", "ready to initalise data structure...");
215 }
216
217 cell = (int ***)calloc(numFunctions, sizeof(int **));
218
219 /* trace */
220 if (trace) {
221 printf("%s\n", "cell created!");
222 }
223
224 for (i=0; i<numFunctions; i++) {
225 /* trace */
226 if (trace) {
227 printf("%s%i%s\n", "cell [", i, "] ...");
228 }
229
230 temp = (int)calloc(fnTerms[i], sizeof(int *));
231 if (temp!=(int)NULL){
232 cell[i] = (int **)temp;
233 }
234 else {
235 printf("%s\n\n","Memory allocation failure.");
236 return 1;
237 }
238 /* trace */
239 if (trace) {

299



Chapter B: Source Code

240 printf("%s\n", " ... created");
241 }
242
243 for (j=0; j<fnTerms[i]; j++) {
244 /* trace */
245 if (trace) {
246 printf("%s%i%s%i%s%i%s\n", "cell [", i, "][", j, "]... (there are ", \
247 fnTerms[i], " terms in this function...)");
248 }
249
250 temp = (int)calloc(numSignals, sizeof(int));
251 if (temp!=(int)NULL)
252 cell[i][j] = (int *)temp;
253 else {
254 printf("%s\n\n","Memory allocation failure.");
255 return 1;
256 }
257 /* trace */
258 if (trace) {
259 printf("%s\n", " ... created");
260 }
261 }
262 }
263
264 /* trace */
265 if (trace) {
266 printf("fnTerms = [ ");
267 for (i=0; i<numFunctions; i++)
268 printf("%i%s", fnTerms[i], " ");
269 printf("]\n");
270 }
271
272 /* populate the data structure */
273 char *fnToken;
274 char *termToken;
275 int sigNum = 0;
276 /* a temporary working copy of fnTerms */
277 int *terms = malloc(numFunctions*sizeof(int));
278 memcpy(terms, fnTerms, sizeof(int)*numFunctions);
279
280 /* trace */
281 if (trace) {
282 printf("Re-open the file to populate the data.. \n");
283 }
284
285 fp = fopen(espFile, "r");
286 if (fp == NULL)
287 return 1;
288 for (i=0; i<6; i++)
289 fgets(line, lineLength, fp);
290 /* trace */
291 if (trace) {
292 printf("%s%s\n", "The first function line read is.. ", line);
293 }
294
295 while (strncmp(line, ".e", 2)!=0) {
296 termToken = strtok(line, " ");
297 fnToken = strtok(NULL, " ");
298 /* trace */
299 if (trace) {
300 printf("%s%s%s%s\n", "termTok: ", termToken, "\nfuncTok: ", fnToken);
301 }
302
303 for (i=0; i<numFunctions; i++) {
304 if (strncmp(fnToken+i, "1", 1)==0) {
305 /* trace */
306 if (trace) {
307 printf("%s%i\n", "\tfunction: ", i);
308 }
309 for (j=0; j<numSignals; j++) {
310 strncpy(tempStr, termToken+j, 1);
311 if (strncmp(tempStr, "1", 1)==0)
312 sigNum = 1;
313 else if (strncmp(tempStr, "0", 1)==0)
314 sigNum = 0;
315 else if (strncmp(tempStr, "-", 1)==0)
316 sigNum = -1;
317 else {
318 printf("File does not look like a standard espresso file.\n");
319 return 1;
320 }
321 /* trace */
322 if (trace) {
323 printf("%s%i\n", "\tsignal: ", sigNum);
324 }
325
326 cell[i][fnTerms[i]-terms[i]][j] = sigNum;
327 /* trace */
328 if (trace) {
329 printf("\t%s%i%s%i%s%i%s%i\n", "(", i, ",", fnTerms[i]-terms[i], \
330 ",", j, ") = ", sigNum);
331 }
332 }
333 terms[i]--;
334 }

300



Logic approximation

335 }
336 fgets(line, lineLength, fp);
337 }
338
339 /* save the initial number of terms of each array for mem dealloc later */
340 extern int *initFnTerms;
341 initFnTerms = malloc(numFunctions*sizeof(int));
342 memcpy(initFnTerms, fnTerms, numFunctions*sizeof(int));
343
344 return 0;
345 }
346
347
348 /* Displays the (bitter) fruits of my labour.
349 In: Nothing
350 Out: Nothing
351 */
352 void printOutput() {
353
354 /* trace */
355 if (trace) {
356 printf("printOutput()\n");
357 }
358
359 convEspresso();
360
361 /* trace */
362 if (trace) {
363 int i, termCnt = 0;
364 for (i=0; i<numFunctions; i++)
365 termCnt += fnTerms[i];
366 }
367
368 if (fileOutput) {
369 FILE *fp = fopen(outputFile, "w");
370 fprintf(fp, "%s", inVarCnt);
371 fprintf(fp, "%s", outVarCnt);
372 fprintf(fp, "%s", inVarNames);
373 fprintf(fp, "%s", outVarNames);
374 fprintf(fp, "%s%i\n", ".p ", totalNumTerms);
375 fprintf(fp, "%s\n", getEspOutput());
376 fprintf(fp, "%s\n", ".e");
377 }
378 else {
379 printf("%s", inVarCnt);
380 printf("%s", outVarCnt);
381 printf("%s", inVarNames);
382 printf("%s", outVarNames);
383 printf("%s%i\n", ".p ", totalNumTerms);
384 printf("%s\n", getEspOutput());
385 printf("%s\n", ".e");
386 }
387 }
388
389
390 /* Compress the data structure into standard espresso form.
391 In: Nothing
392 Out: Nothing
393 */
394 void convEspresso() {
395
396 /* trace */
397 if (trace) {
398 printf("\nconvEspresso()\n");
399 }
400
401 /* trace */
402 trace = 0;
403
404 extern int *fnLog;
405 extern int *termLog;
406 extern int numSignals;
407 extern int totalNumTerms;
408
409 int maxSize = 0;
410 int i, j, dupeNum;
411 for (i=0; i<numFunctions; i++)
412 maxSize += fnTerms[i];
413 /* trace */
414 if (trace) {
415 printf("%s%i\n", "maxSize = ", maxSize);
416 }
417
418 /* trace */
419 if (trace) {
420 printf("%s\n", "initialised");
421 }
422
423 /* init */
424
425
426
427 termLog = malloc(maxSize*numSignals*sizeof(int));
428 fnLog = malloc(maxSize*numFunctions*sizeof(int));
429 totalNumTerms = 0;

301



Chapter B: Source Code

430
431 /* populate */
432 for (i=0; i<numFunctions; i++) {
433 /* trace */
434 if (trace) {
435 printf("\t%s%i", "i=", i);
436 }
437 for (j=0; j<fnTerms[i]; j++) {
438 /* trace */
439 if (trace) {
440 printf("\t%s%i", "j=", j);
441 }
442 /* trace */
443 if (trace) {
444 printf("%s%i\n", \
445 "function is logged? ", \
446 checkEspressoTerm(cell[i][j], totalNumTerms, i) \
447 );
448 }
449
450 dupeNum = checkEspressoTerm(cell[i][j], totalNumTerms, i);
451 if (dupeNum==-1) {
452 memcpy(termLog + totalNumTerms*numSignals, \
453 cell[i][j], \
454 numSignals*sizeof(int) \
455 );
456 /* trace */
457 if (trace) {
458 printf("%s%i%s%i%s\n", "\ttermLog write (", \
459 totalNumTerms*numSignals*(int)sizeof(int), "/", \
460 maxSize*numSignals*(int)sizeof(int), ")" \
461 );
462 printf("\tcell[i][j][k] = [ ");
463 int k;
464 for (k=0; k<numSignals; k++) {
465 printf("%i%s", cell[i][j][k], " ");
466 }
467 printf(" ]\n");
468 printf("\ttermLog = [ ");
469 for (k=0; k<numSignals; k++) {
470 printf("%i%s", termLog[totalNumTerms*numSignals + k], " ");
471 }
472 printf(" ]\n");
473 printf("%s%i\n", "\t** fnLog index i: ", i*totalNumTerms+j);
474 }
475
476 fnLog[totalNumTerms*numFunctions + i] = 1;
477 /* trace */
478 if (trace) {
479 int k;
480 printf("\t%s%i%s", "term(", totalNumTerms, ") = ");
481 for (k=0; k<numSignals; k++) {
482 printf("%i%s", cell[i][j][k], " ");
483 }
484 printf("\n");
485 printf("\t%s%i%s%i%s\n", "fn(", totalNumTerms, ",", i, ") = 1");
486 }
487
488 totalNumTerms++;
489 }
490 else {
491 fnLog[dupeNum*numFunctions + i] = 1;
492 }
493 }
494 }
495 }
496
497
498 /* Check if the standard espresso form contains this term.
499 If it does, then associate it with the new function as well.
500 In: number of lines in esp std form, function term pointer, function num.
501 Out: -1->term does not exist, x->term exists, associted with function.
502 */
503 int checkEspressoTerm(int *term, int numLines, int funcNum) {
504
505 /* trace */
506 if (trace) {
507 printf("checkEspressoTerm()\n");
508 }
509
510 int i, j, same;
511 for (i=0; i<numLines; i++) {
512 same = 1;
513 for (j=0; j<numSignals; j++) {
514 /* trace */
515 if (trace) {
516 printf("%s%i%s%i%s\n", "(", i, ",", j, ")");
517 printf("%s%i%s%i%s%i%s%i\n", "termLog[", j, "]=",
518 termLog[i*numSignals + j], ", term[", j, "]=", term[j]);
519 }
520 if (termLog[i*numSignals + j]!=term[j]) {
521 same = 0;
522 }
523 }
524 if (same) {

302



Simple arithmetic benchmarks

525 return i;
526 }
527 }
528
529 return -1;
530 }
531
532
533 /* Convert the Espresso standard output data structure to a string to display.
534 In: Nothing.
535 Out: String representation of espresso standard output.
536 */
537 char *getEspOutput() {
538
539 /* trace */
540 if (trace) {
541 printf("getEspOutput()\n");
542 }
543
544 /* trace */
545 if (trace) {
546 printf("%s%i\n", "numSignals: ", numSignals);
547 printf("%s%i\n", "numFunctions: ", numFunctions);
548 printf("%s%i\n", "totalNumTerms: ", totalNumTerms);
549 }
550
551 char *str = malloc((numSignals+numFunctions+2)
552 *totalNumTerms*sizeof(char) + 4*sizeof(char));
553
554 int i, j, charNum = 0;
555 for (i=0; i<totalNumTerms; i++) {
556
557 /* trace */
558 if (trace) {
559 printf("%s%i\n", "\ti = ", i);
560 }
561
562 for (j=0; j<numSignals; j++) {
563
564 /* trace */
565 if (trace) {
566 printf("%s%i\n", "\t\tj = ", j);
567 }
568
569 if (termLog[i*numSignals + j]==0)
570 sprintf((char *)((int)str + charNum), "%i", 0);
571 else if (termLog[i*numSignals + j]==1)
572 sprintf((char *)((int)str + charNum), "%i", 1);
573 else if (termLog[i*numSignals + j]==-1)
574 sprintf((char *)((int)str + charNum), "%c", ’-’);
575 else
576 sprintf((char *)((int)str + charNum), "%c", ’?’);
577
578 charNum++;
579 }
580
581 sprintf((char *)((int)str + charNum), "%c", ’ ’);
582 charNum++;
583
584 for (j=0; j<numFunctions; j++) {
585
586 if (fnLog[i*numFunctions + j]==0)
587 sprintf((char *)((int)str + charNum), "%i", 0);
588 else if (fnLog[i*numFunctions + j]==1)
589 sprintf((char *)((int)str + charNum), "%i", 1);
590 else
591 sprintf((char *)((int)str + charNum), "%c",
592 fnLog[i*numFunctions + j]);
593
594 charNum++;
595 }
596
597 sprintf((char *)((int)str + charNum), "%c", ’\n’);
598 charNum++;
599 }
600 sprintf((char *)((int)str + charNum-1), "%c", ’\0’);
601
602 return str;
603 }

303



Chapter B: Source Code

B.3 Simple arithmetic benchmarks

B.3.1 Dhrystone

The dhrystone benchmark is a well known simple intger benchmark. The program attempts to

measure the execution rate inDMIPS, (millions of instructions per second, in dhrystone). Although

basic, and lacking code to exercise many components of typicaly modern processors, DMIPS/MHz

is still widely used in industry to quote the performance of embedded systems.

B.3.1.1 dhry.c

Most of the code in a typical portable dhrystone implementation is dedicated to measuring time in

order to calculate the execution rate. This version below was been modified to remove user input,

fix the number of loops thorugh the main body, and remove timing code.
1 /*****************************************************************************
2 * The BYTE UNIX Benchmarks - Release 3
3 * Module: dhry_2.c SID: 3.4 5/15/91 19:30:22
4 *
5 *****************************************************************************
6 * Bug reports, patches, comments, suggestions should be sent to:
7 *
8 * Ben Smith, Rick Grehan or Tom Yager
9 * ben@bytepb.byte.com rick_g@bytepb.byte.com tyager@bytepb.byte.com
10 *
11 *****************************************************************************
12 * Modification Log:
13 *
14 * Adapted from:
15 *
16 * "DHRYSTONE" Benchmark Program
17 * -----------------------------
18 *
19 * **** WARNING **** See warning in n.dhry_1.c
20 *
21 * Version: C, Version 2.1
22 *
23 * File: dhry_2.c (part 3 of 3)
24 *
25 * Date: May 25, 1988
26 *
27 * Author: Reinhold P. Weicker
28 *
29 ****************************************************************************/
30 /* SCCSid is defined in dhry_1.c */
31
32 #include "dhry.h"
33
34 #ifndef REG
35 #define REG
36 /* REG becomes defined as empty */
37 /* i.e. no register variables */
38 #endif
39
40 extern int Int_Glob;
41 extern char Ch_1_Glob;
42
43
44 Proc_6 (Enum_Val_Par, Enum_Ref_Par)
45 /*********************************/
46 /* executed once */
47 /* Enum_Val_Par == Ident_3, Enum_Ref_Par becomes Ident_2 */
48
49 Enumeration Enum_Val_Par;
50 Enumeration *Enum_Ref_Par;
51 {
52 *Enum_Ref_Par = Enum_Val_Par;
53 if (! Func_3 (Enum_Val_Par))
54 /* then, not executed */
55 *Enum_Ref_Par = Ident_4;
56 switch (Enum_Val_Par)
57 {

304



Simple arithmetic benchmarks

58 case Ident_1:
59 *Enum_Ref_Par = Ident_1;
60 break;
61 case Ident_2:
62 if (Int_Glob > 100)
63 /* then */
64 *Enum_Ref_Par = Ident_1;
65 else *Enum_Ref_Par = Ident_4;
66 break;
67 case Ident_3: /* executed */
68 *Enum_Ref_Par = Ident_2;
69 break;
70 case Ident_4: break;
71 case Ident_5:
72 *Enum_Ref_Par = Ident_3;
73 break;
74 } /* switch */
75 } /* Proc_6 */
76
77
78 Proc_7 (Int_1_Par_Val, Int_2_Par_Val, Int_Par_Ref)
79 /**********************************************/
80 /* executed three times */
81 /* first call: Int_1_Par_Val == 2, Int_2_Par_Val == 3, */
82 /* Int_Par_Ref becomes 7 */
83 /* second call: Int_1_Par_Val == 10, Int_2_Par_Val == 5, */
84 /* Int_Par_Ref becomes 17 */
85 /* third call: Int_1_Par_Val == 6, Int_2_Par_Val == 10, */
86 /* Int_Par_Ref becomes 18 */
87 One_Fifty Int_1_Par_Val;
88 One_Fifty Int_2_Par_Val;
89 One_Fifty *Int_Par_Ref;
90 {
91 One_Fifty Int_Loc;
92
93 Int_Loc = Int_1_Par_Val + 2;
94 *Int_Par_Ref = Int_2_Par_Val + Int_Loc;
95 } /* Proc_7 */
96
97
98 Proc_8 (Arr_1_Par_Ref, Arr_2_Par_Ref, Int_1_Par_Val, Int_2_Par_Val)
99 /*********************************************************************/
100 /* executed once */
101 /* Int_Par_Val_1 == 3 */
102 /* Int_Par_Val_2 == 7 */
103 Arr_1_Dim Arr_1_Par_Ref;
104 Arr_2_Dim Arr_2_Par_Ref;
105 int Int_1_Par_Val;
106 int Int_2_Par_Val;
107 {
108 REG One_Fifty Int_Index;
109 REG One_Fifty Int_Loc;
110
111 Int_Loc = Int_1_Par_Val + 5;
112 Arr_1_Par_Ref [Int_Loc] = Int_2_Par_Val;
113 Arr_1_Par_Ref [Int_Loc+1] = Arr_1_Par_Ref [Int_Loc];
114 Arr_1_Par_Ref [Int_Loc+30] = Int_Loc;
115 for (Int_Index = Int_Loc; Int_Index <= Int_Loc+1; ++Int_Index)
116 Arr_2_Par_Ref [Int_Loc] [Int_Index] = Int_Loc;
117 Arr_2_Par_Ref [Int_Loc] [Int_Loc-1] += 1;
118 Arr_2_Par_Ref [Int_Loc+20] [Int_Loc] = Arr_1_Par_Ref [Int_Loc];
119 Int_Glob = 5;
120 } /* Proc_8 */
121
122
123 Enumeration Func_1 (Ch_1_Par_Val, Ch_2_Par_Val)
124 /*************************************************/
125 /* executed three times */
126 /* first call: Ch_1_Par_Val == ’H’, Ch_2_Par_Val == ’R’ */
127 /* second call: Ch_1_Par_Val == ’A’, Ch_2_Par_Val == ’C’ */
128 /* third call: Ch_1_Par_Val == ’B’, Ch_2_Par_Val == ’C’ */
129
130 Capital_Letter Ch_1_Par_Val;
131 Capital_Letter Ch_2_Par_Val;
132 {
133 Capital_Letter Ch_1_Loc;
134 Capital_Letter Ch_2_Loc;
135
136 Ch_1_Loc = Ch_1_Par_Val;
137 Ch_2_Loc = Ch_1_Loc;
138 if (Ch_2_Loc != Ch_2_Par_Val)
139 /* then, executed */
140 return (Ident_1);
141 else /* not executed */
142 {
143 Ch_1_Glob = Ch_1_Loc;
144 return (Ident_2);
145 }
146 } /* Func_1 */
147
148
149 Boolean Func_2 (Str_1_Par_Ref, Str_2_Par_Ref)
150 /*************************************************/
151 /* executed once */
152 /* Str_1_Par_Ref == "DHRYSTONE PROGRAM, 1’ST STRING" */

305



Chapter B: Source Code

153 /* Str_2_Par_Ref == "DHRYSTONE PROGRAM, 2’ND STRING" */
154
155 Str_30 Str_1_Par_Ref;
156 Str_30 Str_2_Par_Ref;
157 {
158 REG One_Thirty Int_Loc;
159 Capital_Letter Ch_Loc;
160
161 Int_Loc = 2;
162 while (Int_Loc <= 2) /* loop body executed once */
163 if (Func_1 (Str_1_Par_Ref[Int_Loc],
164 Str_2_Par_Ref[Int_Loc+1]) == Ident_1)
165 /* then, executed */
166 {
167 Ch_Loc = ’A’;
168 Int_Loc += 1;
169 } /* if, while */
170 if (Ch_Loc >= ’W’ && Ch_Loc < ’Z’)
171 /* then, not executed */
172 Int_Loc = 7;
173 if (Ch_Loc == ’R’)
174 /* then, not executed */
175 return (true);
176 else /* executed */
177 {
178 if (strcmp (Str_1_Par_Ref, Str_2_Par_Ref) > 0)
179 /* then, not executed */
180 {
181 Int_Loc += 7;
182 Int_Glob = Int_Loc;
183 return (true);
184 }
185 else /* executed */
186 return (false);
187 } /* if Ch_Loc */
188 } /* Func_2 */
189
190
191 Boolean Func_3 (Enum_Par_Val)
192 /***************************/
193 /* executed once */
194 /* Enum_Par_Val == Ident_3 */
195 Enumeration Enum_Par_Val;
196 {
197 Enumeration Enum_Loc;
198
199 Enum_Loc = Enum_Par_Val;
200 if (Enum_Loc == Ident_3)
201 /* then, executed */
202 return (true);
203 else /* not executed */
204 return (false);
205 } /* Func_3 */

B.3.2 CalcPi

The calc pi program was chosen as a simple, easy to understand version of a program to calculate

the value of π, to 1,000 decimal places. The algorithm is short, arithmetically intensive, written in

C, and does not depend on other libraries, making it suitable to compile for SimpleScalar. calc pi

was sourced online [Author unknown, 2008, 1938].

B.3.2.1 calc pi.c

1 #include <stdio.h>
2 #define SCALE 10000
3 #define MAXARR 2800
4 #define ARRINIT 2000
5
6 int main()
7 {
8 int i, j;
9 int carry = 0;
10 int arr[MAXARR+1];
11
12 for (i = 0; i <= MAXARR; ++i)
13 arr[i] = ARRINIT;
14 for (i = MAXARR; i; i -= 14)
15 {

306



VHDLmultiplier generator

16 int sum = 0;
17 for (j = i; j > 0; --j)
18 {
19 sum = sum*j + SCALE*arr[j];
20 arr[j] = sum % (j*2-1);
21 sum /= (j*2-1);
22 }
23 printf("%04d", carry + sum/SCALE);
24 carry = sum % SCALE;
25 }
26 return 0;
27 }

B.4 VHDLmultiplier generator

Themultiplier generatormultgen can generateVHDL code for anN×N bitmultiplier. Themultiplier

is approximate, constructed of (n;m) compressors, which determine the degree of approximation.

Pipelining is optional, and the user determines the depth in compressors between flip-flops. The

user must provide a VHDL description of a (n;m) counter, and a DFF is pipelining is used. multgen

is writen in C.

B.4.1 multgen.c

1 /*
2 * Generate VHDL descriptions of compressor multipliers.
3 * -----------------------------------------------------
4 */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <limits.h>
11 #include <math.h>
12 #include <time.h>
13 #include <getopt.h>
14
15
16 int checkDefined (char c, int val);
17 int intArrayMax (int *array, int len);
18 int checkRange (char c, int x, int low, int high);
19 int printHeader (FILE* file, char *name, int a, int b, int n, int m, int p,
20 int signMult);
21 int freeStrPtrMatrix (char *** matrix, int x, int y);
22 int printPNames (char ***array, int x, int y);
23 int printPCnt (int *array, int len);
24 int printUsage (char *name);
25 int mostSigBit (int num);
26
27
28 #define MULT_MAX 128
29 #define GREATEST_REQUIRED_M(N) ( (int)( floorf( log2f( (float)N ) ) ) +1 )
30 #define DECLARE_FILE_NAME "cmultgen.declare.temp"
31 #define USE_FILE_NAME "cmultgen.use.temp"
32 #define LINE_SIZE 256
33 #define PARTIAL_NAME_SIZE 64
34 #define DEBUG 0
35
36
37 char *entityName;
38
39 /*
40 * Main program. Acquire inputs, sanity check args, invoke methods to print
41 * VHDL output.
42 */
43 int main (int argc, char *argv[]) {
44
45 char *progName; /* name of this binary */

307



Chapter B: Source Code

46 int n, m; /* use n:m compressors */
47 int a, b; /* multiply two numbers A & B - what are their widths? */
48 char opt; /* command line option */
49 int *pCnt, *pCntNext, *pCntTemp; /* number of partials in this column */
50 char ***pNames, ***pNamesNext; /* names of the partial products */
51 int i, j; /* loop counters */
52 int signMult=0; /* multipler is signed/unsigned */
53 int wantSigned=0, wantUnsigned=0; /* user wants a signed/unsigned mult */
54
55 /* Signal names will be defined as we need them. VHDL required that they are
56 * declared before they are used. Open two files, one for declatations, and
57 * one for assignment and variable use. Aftet the multiplier has been
58 * generated, print back from the files in order, and remove them.
59 */
60 FILE *DECLARE;
61 FILE *USE;
62 FILE *OUTPUT;
63 char *outputFileName;
64 int compNonZeroInputs; /* how many partials wired into this compressor? */
65 int partialCnt; /* how many partials input in this column? */
66
67 char *partialName; /* create a partial with this name */
68 char *partialNameLat; /* create a latched partial */
69 char *line; /* a line read from one of the temp files */
70 int compCnt=0; /* how many compressors instantiated? */
71 int passThruCnt; /* how many partials to pass through? */
72 int cpaLen; /* how long does the CPA ader need to be? */
73 int pipeDepth=0; /* how deep before adding a register ? */
74
75 progName = argv[0];
76 /* program name is after the last trailing slash */
77 if (strrchr(progName, ’/’)) {
78 progName = strrchr(progName, ’/’)+1;
79 }
80
81 n = m = a = b = INT_MIN;
82
83 /* parse the command line args */
84 while ((opt = getopt(argc, argv, "a:b:n:m:p:su")) != -1) {
85 switch (opt) {
86 case ’a’:
87 a = atoi(optarg);
88 break;
89 case ’b’:
90 b = atoi(optarg);
91 break;
92 case ’n’:
93 n = atoi(optarg);
94 break;
95 case ’m’:
96 m = atoi(optarg);
97 break;
98 case ’p’:
99 pipeDepth = atoi(optarg);
100 break;
101 case ’s’:
102 wantSigned = 1;
103 break;
104 case ’u’:
105 wantUnsigned = 1;
106 break;
107 default:
108 fprintf (stderr, "Unrecognized option ‘%c’.\n", (char)optopt);
109 printUsage(progName);
110 exit(0);
111 }
112 }
113
114 /* check the inputs */
115 if (!checkDefined(’a’, a)) { printUsage(progName); exit(0); }
116 if (!checkDefined(’b’, b)) { printUsage(progName); exit(0); }
117 if (!checkDefined(’n’, n)) { printUsage(progName); exit(0); }
118 if (!checkDefined(’m’, m)) { printUsage(progName); exit(0); }
119 if (!checkDefined(’p’, pipeDepth)) { printUsage(progName); exit(0); }
120
121 if (!checkRange(’a’, a, 1, MULT_MAX)) { printUsage(progName); exit(0); }
122 if (!checkRange(’b’, b, 1, MULT_MAX)) { printUsage(progName); exit(0); }
123 if (!checkRange(’n’, n, 2, MULT_MAX)) { printUsage(progName); exit(0); }
124 if (!checkRange(’p’, pipeDepth, 0, INT_MAX)) {printUsage(progName); exit(0);}
125 if (!checkRange(’m’, m, 1, log2f((float)MULT_MAX))) {
126 printUsage(progName); exit(0);
127 }
128
129 if (m >= n) {
130 fprintf(stderr, "Error: m >= n (%i >= %i).\n", m, n);
131 printUsage(progName);
132 exit(0);
133 }
134
135 if (m > b) {
136 fprintf (stderr, "Error: m > b. You don’t need a compressor with so many"
137 "outputs if\n the B operand has %i bits\n", b);
138 exit (0);
139 }
140

308



VHDLmultiplier generator

141
142 /* check that the compressors are not greater than required to be exact */
143 if ( m > GREATEST_REQUIRED_M(n) ) {
144 fprintf (stderr, "Error: Redundancy. %i inputs only require %i outputs.\n",
145 n, GREATEST_REQUIRED_M(n) );
146 exit(0);
147 }
148
149 if (!(wantSigned ^ wantUnsigned)) {
150 fprintf (stderr,
151 "Error: Multiplier must be one of signed OR unsigned.\n");
152 printUsage(progName);
153 exit(0);
154 }
155 if (wantSigned) {
156 signMult = 1;
157 } else {
158 signMult = 0;
159 }
160
161 entityName = malloc (64);
162 outputFileName = malloc (64);
163 if (signMult) {
164 sprintf (entityName, "signed_compressor_mult_%ib_by_%ib_%i_to_%i",
165 a, b, n, m);
166 } else {
167 sprintf (entityName, "unsigned_compressor_mult_%ib_by_%ib_%i_to_%i",
168 a, b, n, m);
169 }
170 strcpy (outputFileName, entityName);
171 if (pipeDepth) {
172 strcat (outputFileName, "_pipelined");
173 }
174 strcat (outputFileName, ".vhd");
175
176 /* allocate memory for arrays */
177 pCnt = (int *)malloc ((a+b)*sizeof(int));
178 pCntNext = (int *)malloc ((a+b)*sizeof(int));
179 pCntTemp = (int *)malloc ((a+b)*sizeof(int));
180 pNames = (char ***)malloc (b*sizeof(char **));
181 pNamesNext = (char ***)malloc (b*sizeof(char **));
182 for ( i=0 ; i<b; i++ ) {
183 pNames[i] = (char **)malloc ((a+b)*sizeof(char **));
184 pNamesNext[i] = (char **)malloc ((a+b)*sizeof(char **));
185 for ( j=0 ; j<a+b ; j++ ){
186 pNames[i][j] = (char *)malloc (PARTIAL_NAME_SIZE);
187 pNamesNext[i][j] = (char *)malloc (PARTIAL_NAME_SIZE);
188 }
189 }
190
191 /* generate the VHDL output */
192 /* ************************ */
193
194 /* initial number of partials */
195 i = 1;
196 for ( j=0; j<a+b; j++) {
197 /* set the number of partials */
198 if (i >= 0 ) {
199 pCnt[j] = i;
200 } else {
201 pCnt[j] = 0;
202 }
203 /* calculate the next number */
204 if (j<b-1) {
205 i++;
206 }
207 if (j>=a-1) {
208 i--;
209 }
210 pCntNext[j] = 0;
211 }
212
213 /* add additional bits for Baugh Wooley signed multiplier scheme */
214 if (signMult) {
215 pCnt[a]++;
216 pCnt[a+b-1]++;
217 }
218
219 if (DEBUG) { printPCnt(pCnt, a+b); }
220
221 /* open temp files for writing signal names */
222 DECLARE = fopen(DECLARE_FILE_NAME,"w");
223 USE = fopen(USE_FILE_NAME,"w");
224
225 /* create the initial partials */
226 /* keep a temporary count to check the partials have been
227 * created in the correct place */
228 for ( i=0 ; i<a+b ; i++ ) {
229 pCntTemp[i] = 0;
230 }
231 partialName = (char *)malloc(PARTIAL_NAME_SIZE);
232 partialNameLat = (char *)malloc(PARTIAL_NAME_SIZE);
233 /* insert the additional partials for Baugh Wooley first */
234 if (signMult) {
235 sprintf (partialName, "bw1");

309



Chapter B: Source Code

236 pCntTemp[a]++;
237 strcpy(pNames[0][a], partialName);
238 fprintf (DECLARE, " signal %14s : std_logic; -- Baugh-Wooley\n", partialName);
239 fprintf (USE, " %s <= ’1’;\n", partialName);
240 sprintf (partialName, "bw2");
241 pCntTemp[a+b-1]++;
242 strcpy(pNames[0][a+b-1], partialName);
243 fprintf (DECLARE, " signal %14s : std_logic; -- Baugh-Wooley\n", partialName);
244 fprintf (USE, " %s <= ’1’;\n", partialName);
245 }
246
247 /* generate the initial partial products */
248 /* ************************************* */
249 for ( j=0; j<b ; j++) {
250 for ( i=0; i<a ; i++) {
251 sprintf (partialName, "a%i_b%i", i, j);
252 if (pCntTemp[i+j] < pCnt[i+j]) {
253 strcpy (pNames[pCntTemp[i+j]][i+j], partialName);
254 fprintf (DECLARE, " signal %14s : std_logic; -- partial product\n",
255 partialName);
256 if ( signMult && ((j==a-1)^(i==b-1)) ) {
257 fprintf (USE, " %s <= NOT ( multA(%i) AND multB(%i) );\n",
258 partialName, i, j);
259 } else {
260 fprintf (USE, " %s <= multA(%i) AND multB(%i);\n",
261 partialName, i, j);
262 }
263 } else {
264 fprintf (stderr, "Error: Too many partials (%i > %i) in column %i.\n",
265 pCntTemp[i+j], pCnt[i+j], i+j);
266 exit (0);
267 }
268 pCntTemp[i+j]++;
269 }
270 }
271
272 if (DEBUG) { printf ("initial:\n"); printPNames(pNames, b, a+b); }
273
274 /* check that we have initialised the correct number of partials */
275 for ( i=0 ; i<a+b ; i++ ) {
276 if (pCnt[i] != pCntTemp[i]) {
277 fprintf (stderr, "Error: not enough partials in column %i.\n", i);
278 exit (0);
279 }
280 }
281
282 fprintf (USE, "\n");
283
284 int depth=0;
285 int latchCnt=0;
286
287 /* reduce the partials until they can be added by a CPA */
288 while (intArrayMax(pCnt, a+b) > 2) {
289
290 if (pipeDepth) {
291 depth = (depth+1) % pipeDepth;
292 if (depth==0) {
293 latchCnt++;
294 }
295 }
296
297 if (DEBUG) { printf ("another round:\n"); printPNames(pNames, b, a+b); }
298
299 /* group partials in each column */
300 for ( i=0 ; i<a+b ; i++ ) {
301 if (DEBUG) { printf ("column %i\n", i); }
302 /* pass through the partials that won’t be put into compressors */
303 passThruCnt = pCnt[i]%n;
304 if (passThruCnt==1) {
305 strcpy (pNamesNext[pCntNext[i]][i],pNames[pCnt[i]-1][i]);
306 pCntNext[i]++;
307 pCnt[i]--;
308 }
309 if (DEBUG) {
310 printf ("after pass through:\n");
311 printPNames (pNames, b, a+b);
312 printf ("to:\n");
313 printPNames (pNamesNext, b, a+b);
314 }
315 } /* pass though partials i<a+b */
316
317 /* now feed the rest of the partials through compressors */
318 for (i=0 ; i<a+b ; i++) {
319 /* track which partials have been input into a compressor */
320 partialCnt=0;
321
322 while (pCnt[i]) {
323 /* count partials that input into this compressor */
324 compNonZeroInputs = 0;
325 if (DEBUG) {printf ("groups of %i\n", n); printPNames(pNames, b, a+b);}
326 /* 3 or more, group them into compressors */
327 sprintf (partialName, "c%ii", compCnt);
328 fprintf (DECLARE, " signal %14s : std_logic_vector(%i downto 0); "
329 "-- compressor %i input\n",
330 partialName, n-1, compCnt);

310



VHDLmultiplier generator

331 if (pipeDepth && (depth==pipeDepth-1)) {
332 /* pipe register */
333 sprintf (partialNameLat, "c%ii_lat", compCnt);
334 fprintf (DECLARE, " signal %14s : "
335 "std_logic_vector(%i downto 0); \n",
336 partialNameLat, n-1);
337 }
338 fprintf (USE, " c%ii <= ", compCnt);
339 for ( j=0; j<n; j++ ) {
340 if (pCnt[i]>0) {
341 fprintf (USE, "%s", pNames[partialCnt][i]);
342 compNonZeroInputs++;
343 partialCnt++;
344 pCnt[i]--;
345 } else {
346 fprintf (USE, "’0’");
347 }
348 if (j!=n-1) {
349 fprintf (USE, " & ");
350 } else {
351 fprintf (USE, ";\n\n");
352 }
353 }
354
355 /* add latches if needed */
356 if (pipeDepth && (depth==pipeDepth-1)) {
357 fprintf (USE, " compressor%ii_lat: for i in %i downto 0 generate\n",
358 compCnt, n-1);
359 fprintf (USE, " compressor%i_latch_level%i : dFFReset\n",
360 compCnt, latchCnt);
361 fprintf (USE, " port map (\n");
362 fprintf (USE, " D => c%ii(i),\n", compCnt);
363 fprintf (USE, " R => RESET,\n");
364 fprintf (USE, " CLK => CLK,\n");
365 fprintf (USE, " Q => c%ii_lat(i));\n", compCnt);
366 fprintf (USE, " end generate compressor%ii_lat;\n\n", compCnt);
367
368 /* latched signal */
369 fprintf (USE, " compressor%i : compressor_%i_to_%i\n",
370 compCnt, n, m);
371 fprintf (USE, " port map (\n");
372 fprintf (USE, " X => c%ii_lat,\n", compCnt);
373
374 } else {
375 /* normal signal */
376 fprintf (USE, " compressor%i : compressor_%i_to_%i\n",
377 compCnt, n, m);
378 fprintf (USE, " port map (\n");
379 fprintf (USE, " X => c%ii,\n", compCnt);
380 }
381
382 /* determine the output of the compressors */
383 sprintf (partialName, "c%i", compCnt);
384 fprintf (USE, " Y => %s);\n\n", partialName);
385 if (m>1) {
386 fprintf (DECLARE,
387 " signal %14s : std_logic_vector(%i downto 0); "
388 "-- compressor %i output\n",
389 partialName, m-1, compCnt);
390 } else {
391 fprintf (DECLARE,
392 " signal %14s : std_logic; "
393 "-- compressor %i output\n",
394 partialName, compCnt);
395
396 }
397 for ( j=0; j<m; j++) {
398 /* don’t connect the output if there is no chance of
399 * it being asserted */
400
401 if ( j <= mostSigBit(compNonZeroInputs) ) {
402 /* output partials need to go into the appropriate column */
403 if (m>1) {
404 sprintf (partialName, "c%i(%i)", compCnt, j);
405 } else {
406 sprintf (partialName, "c%i", compCnt);
407 }
408
409 /* don’t include partials that can’t possibly contribute to the
410 * product
411 * ie (for 32x32 bit multiplication, the result must be in 64 bits)
412 */
413 if (i+j < a+b) {
414
415 /* check array in bounds */
416 if (pCntNext[i+j] >= b) {
417 fprintf (stderr,
418 "pNamesNext[%i][%i] out of bounds on line %i\n",
419 pCntNext[i+j], i+j, __LINE__); exit(0);
420 }
421 if (i+j>=a+b) {
422 fprintf (stderr,
423 "pNamesNext[%i][%i] out of bounds on line %i\n",
424 pCntNext[i+j], i+j, __LINE__); exit(0);
425 }

311



Chapter B: Source Code

426 /*************************/
427
428 strcpy (pNamesNext[pCntNext[i+j]][i+j], partialName);
429 pCntNext[i+j]++;
430 }
431
432 } /* j <= mostSigBit */
433
434 }
435 compCnt++;
436 if (DEBUG) { printf ("became:\n"); printPNames (pNamesNext, b, a+b); }
437 } /* while pCnt */
438
439 }
440
441 /* copy the arrays */
442 for ( i=0 ; i<b ; i++ ) {
443 for ( j=0 ; j<a+b ; j++ ) {
444 strcpy (pNames[i][j], pNamesNext[i][j]);
445 }
446 }
447 for ( i=0 ; i<a+b ; i++ ) {
448 pCnt[i] = pCntNext[i];
449 }
450
451 /* clear the next arrays */
452 for ( i=0 ; i<b ; i++ ) {
453 for ( j=0 ; j<a+b ; j++ ) {
454 sprintf (pNamesNext[i][j], "%s", "");
455 }
456 }
457 for ( i=0 ; i<a+b ; i++ ) {
458 pCntNext[i] = 0;
459 }
460
461 if (DEBUG) { printf ("check pCnt: "); printPCnt(pCnt, a+b); }
462
463 } /* while intArrayMax > 2 */
464
465
466 /* all the partials have been accumulated, determine the length of the
467 * required carry propagate adder */
468 cpaLen = a+b;
469 i = 0;
470 while ( (pCnt[i]<2) && (i<a+b)) {
471 cpaLen--;
472 i++;
473 }
474
475 /* accumulate the remaining partials in a carry propagate adder */
476 if (cpaLen > 0) {
477 fprintf (DECLARE, " signal %14s : std_logic_vector(%i downto 0);\n",
478 "cpaAdd_A", cpaLen-1);
479 fprintf (DECLARE, " signal %14s : std_logic_vector(%i downto 0);\n",
480 "cpaAdd_B", cpaLen-1);
481 fprintf (DECLARE, " signal %14s : std_logic_vector(%i downto 0);\n",
482 "cpaAdd_SUM", cpaLen-1);
483 }
484 fprintf (DECLARE, " signal %14s : std_logic_vector(%i downto 0);\n",
485 "product", a+b-1);
486
487 if (cpaLen > 0) {
488 fprintf (USE, " cpaAdd_A <= ");
489 for ( i=a+b-1 ; i>=a+b-cpaLen ; i-- ) {
490 if (strlen(pNames[0][i])>0) {
491 fprintf (USE, "%s", pNames[0][i]);
492 } else {
493 fprintf (USE, "’0’");
494 }
495 if (i>a+b-cpaLen) {
496 fprintf (USE, " & ");
497 }
498 }
499 fprintf (USE, ";\n");
500 fprintf (USE, " cpaAdd_B <= ");
501 for ( i=a+b-1 ; i>=a+b-cpaLen ; i-- ) {
502 if (strlen(pNames[1][i])>0) {
503 fprintf (USE, "%s", pNames[1][i]);
504 } else {
505 fprintf (USE, "’0’");
506 }
507 if (i>a+b-cpaLen) {
508 fprintf (USE, " & ");
509 }
510 }
511 fprintf (USE, ";\n\n");
512
513 /* instantiate Zimmerman’s Adder from the arith_lib */
514 fprintf (USE, " cpaAdder : Add\n");
515 fprintf (USE, " generic map (\n");
516 fprintf (USE, " width => %i,\n", cpaLen);
517 fprintf (USE, " speed => 2)\n");
518 fprintf (USE, " port map (\n");
519 fprintf (USE, " A => cpaAdd_A,\n");
520 fprintf (USE, " B => cpaAdd_B,\n");

312



VHDLmultiplier generator

521 fprintf (USE, " S => cpaAdd_SUM);\n\n");
522
523 }
524
525 /* generate the product from the CPA adder outputs and indivdual partials */
526 if (cpaLen!=a+b-1) {
527 fprintf (USE, " product(%i downto 0) <= ", a+b-cpaLen-1);
528 } else {
529 fprintf (USE, " product(0) <= ");
530 }
531 for ( i=a+b-cpaLen-1 ; i>=0 ; i-- ) {
532 if (strlen(pNames[0][i]) > 0) {
533 fprintf (USE, "%s", pNames[0][i]);
534 } else {
535 fprintf (USE, "%s", "’0’");
536 }
537 if (i>0) { fprintf (USE, " & "); }
538 }
539 fprintf (USE, ";\n");
540
541 if (cpaLen > 0) {
542 fprintf (USE,
543 " product(%i downto %i) <= cpaAdd_SUM;\n\n", a+b-1, a+b-cpaLen);
544 }
545
546 fprintf (USE, " PROD <= product;\n\n");
547
548 /* close the temp files */
549 fclose (DECLARE);
550 fclose (USE);
551
552 /* reopen the temp files for reading */
553 DECLARE = fopen (DECLARE_FILE_NAME,"r");
554 USE = fopen(USE_FILE_NAME,"r");
555
556 /* print files to OUTPUT */
557 OUTPUT = fopen (outputFileName, "w");
558 printf ("Writing to %s\n", outputFileName);
559 printHeader(OUTPUT, progName, a, b, n, m, pipeDepth, signMult);
560
561 line = (char *)malloc (LINE_SIZE);
562 while (fgets(line, LINE_SIZE, DECLARE)!=0) {
563 fprintf (OUTPUT, "%s", line);
564 }
565 fprintf (OUTPUT,"begin\n\n");
566 while (fgets(line, LINE_SIZE, USE)!=0) {
567 fprintf (OUTPUT, "%s", line);
568 }
569 fprintf (OUTPUT, "end arch;\n\n");
570 if (pipeDepth) {
571 fprintf (OUTPUT, "\n-- used %i levels of latches\n\n", latchCnt);
572 }
573
574 fprintf (OUTPUT, "-------------------------------------------------------------------------------\n");
575
576 /* close the temp files */
577 fclose (DECLARE);
578 fclose (USE);
579 remove (DECLARE_FILE_NAME);
580 remove (USE_FILE_NAME);
581
582 return 0;
583 }
584
585
586 /*
587 * Check the option ‘c’. If it is set to INT_MIN, the user didn’t set it.
588 */
589 int checkDefined (char c, int val) {
590 if (val==INT_MIN) {
591 fprintf (stderr, "Error: Undefined input ‘%c’.\n", c);
592 return 0;
593 } else {
594 return 1;
595 }
596 }
597
598
599 /*
600 * Find the maximum element in the one dimensional int array.
601 */
602 int intArrayMax (int *array, int len) {
603 int i, max=INT_MIN;
604 for ( i=0 ; i<len ; i++) {
605 if (max<array[i]) {
606 max = array[i];
607 }
608 }
609 return max;
610 }
611
612
613 /*
614 * Check that the integer is low <= x <= high
615 */

313



Chapter B: Source Code

616 int checkRange (char c, int x, int low, int high) {
617 if (low > x ) {
618 fprintf (stderr, "Error: ‘%c’ < %i.\n", c, low);
619 return 0;
620 }
621 if (high < x) {
622 fprintf (stderr, "Error: ‘%c’ > %i.\n", c, high);
623 return 0;
624 }
625 return 1;
626 }
627
628
629 /*
630 * Print the partial names array to STDOUT. A debugging routine.
631 */
632 int printPNames (char ***array, int x, int y) {
633 int i, j;
634 for ( i=0 ; i<x ; i++ ) {
635 for ( j=y-1 ; j>=0 ; j-- ) {
636 printf ("%12s ", array[i][j]);
637 }
638 printf ("\n");
639 }
640 printf ("\n");
641 return 0;
642 }
643
644
645 /*
646 * Print an array of integers to STDOUT. A debugging routine.
647 */
648 int printPCnt (int *array, int len) {
649 printf ("pCnt = [ ");
650 int i;
651 for ( i=len-1; i>=0; i--) {
652 printf ("%i ", array[i]);
653 }
654 printf ("]\n");
655 return 0;
656 }
657
658
659 /*
660 * Print the VHDL header for operands of width ‘a’ and ‘b’.
661 */
662 int printHeader (FILE *file, char *name, int a, int b, int n, int m, int p,
663 int signMult) {
664 time_t systime;
665 fprintf (file, "-------------------------------------------------------------------------------\n");
666 fprintf (file, "-- File : %s.vhd\n", entityName);
667 fprintf (file, "-- Author : This file was generated with %s, by Dan Kelly\n",
668 name);
669 fprintf (file, "-- Company : University of Adelaide\n");
670 time(&systime); /* get time since epoch */
671 fprintf (file, "-- Date : %s\n", ctime(&systime) /* time to str */ );
672 fprintf (file, "-------------------------------------------------------------------------------\n");
673 fprintf (file, "-- Copyright (c) 2008 University of Adelaide, AUSTRALIA\n");
674 fprintf (file, "-------------------------------------------------------------------------------\n");
675 fprintf (file, "-- Description :\n");
676 fprintf (file, "-- An ");
677 if (signMult) {
678 fprintf (file, "signed ");
679 } else {
680 fprintf (file, "unsigned ");
681 }
682 fprintf (file, "%i bit by %i bit multiplier, based on %i:%i compressors\n",
683 a, b, n, m);
684 fprintf (file, "-------------------------------------------------------------------------------\n");
685 fprintf (file, "\n");
686 fprintf (file, "library IEEE;\n");
687 fprintf (file, "use IEEE.std_logic_1164.all;\n");
688 fprintf (file, "use IEEE.numeric_std.all;\n");
689 fprintf (file, "\n");
690 fprintf (file, "library compressorLib;\n");
691 fprintf (file, "use compressorLib.compressorLib.all;\n");
692 fprintf (file, "\n");
693 fprintf (file, "library arith_lib;\n");
694 fprintf (file, "use arith_lib.arith_lib.all;\n");
695 fprintf (file, "\n");
696 if (p>0) {
697 fprintf (file, "library dfflib;\n");
698 fprintf (file, "use dfflib.dfflib.all;\n");
699 fprintf (file, "\n");
700 }
701 fprintf (file, "-------------------------------------------------------------------------------\n");
702 fprintf (file, "\n");
703 fprintf (file, "entity mult is\n");
704 fprintf (file, "\n");
705 fprintf (file, " port (\n");
706 fprintf (file, " multA : in std_logic_vector (%i downto 0);\n", a-1);
707 fprintf (file, " multB : in std_logic_vector (%i downto 0);\n", b-1);
708 if (p>0) {
709 fprintf (file, " CLK : in std_logic;\n");
710 fprintf (file, " RESET : in std_logic;\n");

314



VHDLmultiplier generator

711 }
712 fprintf (file, " PROD : out std_logic_vector (%i downto 0)\n", a+b-1);
713 fprintf (file, " );\n");
714 fprintf (file, "\n");
715 fprintf (file, "end mult;\n");
716 fprintf (file, "\n");
717 fprintf (file, "-------------------------------------------------------------------------------\n");
718 fprintf (file, "\n");
719 fprintf (file, "architecture arch of mult is\n");
720 return 0;
721 }
722
723
724 /*
725 * Loop through the srting matrix, and free all char pointers
726 */
727 int freeStrPtrMatrix (char *** matrix, int x, int y) {
728 int i, j;
729 for ( i=0; i<x ; i++ ) {
730 for ( j=0 ; j<y ; j++ ) {
731 free(matrix[i][j]);
732 }
733 }
734 return 0;
735 }
736
737
738 /*
739 * Tell the user what the program is for and how to use it.
740 */
741 int printUsage (char *name) {
742 fprintf (stderr,
743 "usage: %s -a <num> -b <num> -n <num> -m <num> [-u] [-s]\n", name);
744 fprintf (stderr,
745 "\nPerform multiplication on inputs A, B, with n:m compressors.\n"
746 "A and B have width a, b respectively.\n");
747 fprintf (stderr, "\ta: width of the operand A\n");
748 fprintf (stderr, "\tb: width of the operand B\n");
749 fprintf (stderr, "\tn: input bits in the n:m compressors\n");
750 fprintf (stderr, "\tm: output bits in the n:m compressors\n");
751 fprintf (stderr, "\ts: multiplier is for signed numbers\n");
752 fprintf (stderr, "\tu: multiplier is for unsigned numbers\n");
753 fprintf (stderr, "\tp: insert pipelining registers every p levels\n");
754 return 0;
755 }
756
757
758 /*
759 * Determine the most significant bit asserted in the integer NUM.
760 * Returns -1 if num == 0.
761 */
762 int mostSigBit (int num) {
763 int i=0;
764 int msb=-1;
765 for (i=0; i<sizeof(int)*8; i++) {
766 if ((1<<i) & num) {
767 msb = i;
768 }
769 }
770 return msb;
771 }

315



Chapter B: Source Code

316



Appendix C

���������� 	
����
�

“I wish to God these calculations had been executed by steam.”

Charles Babbage (1791–1871)



Chapter C: Arithmetic Operands

C.1 Arithmetic operands in benchmark programs

This appendix list the number of arithmetic operations observed in all benchmarks, and shows

them as a total fraction of all instructions in the benchmarks.

318



Arithmetic operands in benchmark programs

T
a
b
le

C
.1
:
N
um

be
ro

fr
et
ire

d
in
te
ge

ri
ns
tr
uc
tio

ns
in

th
e
ar
ith

m
et
ic
be

nc
hm

ar
k.

B
en
ch
m
ar
k

a
d
d

a
d
d
i

s
u
b

m
u
l
t

d
i
v

a
d
d
u

a
d
d
i
u

s
u
b
u

m
u
l
t
u

d
i
v
u

ca
lc

pi
0

0
0

28
4,
72
4

28
1,4
00

1,1
68
,0
18

1,1
57
,31
0

28
8,
86
8

0
3,1
24

liv
er
m
or
e

0
0

0
1,8
68
,15
3

0
29
0,
26
4,
23
2

15
6,
54
4,
59
6

6,
73
8,
48
2

0
31
8

dh
ry
st
on

e
0

0
0

10
,0
22

10
,0
00

38
0,
82
2

1,0
51
,9
67

30
,0
81

0
21

lin
pa

ck
0

0
0

3,4
89

0
1,5
77
,2
64

12
,16

0,
95
0

17
8,
88
1

0
6

m
at
rix

m
ul
t

0
0

0
2,
14
6,
68
9

0
4,
42
7,4
68

8,
65
5,5
18

23
0

0
w
he
ts
to
ne

0
0

0
12
6,
00
8

0
86
6,
63
6

1,0
36
,9
24

72
,39

7
0

7

319



Chapter C: Arithmetic Operands

T
a
b
le

C
.2
:

N
um

be
ro

fr
et
ire

d
in
te
ge

ri
ns
tr
uc
tio

ns
in

th
e
M
ed
ia
be
nc
h
be

nc
hm

ar
ks
.

B
en
ch
m
ar
k

a
d
d

a
d
d
i

s
u
b

m
u
l
t

d
i
v

a
d
d
u

a
d
d
i
u

s
u
b
u

m
u
l
t
u

d
i
v
u

AD
PC

M
0

0
0

28
0

1,5
22
,6
96

82
7,6
25

46
3,9

17
0

28
EP
IC

0
0

0
99
,7
98

32
,58

2
7,9
33
,35
6

9,
88
9,
78
8

40
,36

7
19
5

28
8

G
.7
21

0
0

0
2,
97
9,
13
1

0
35
,9
67
,35
8

98
,9
15
,4
32

11
,2
40
,14

1
0

22
1,2
83

gh
os
ts
cr
ip
t

0
0

0
14
,6
13
,36

9
91
,56

6
21
2,
84
8,
32
6

14
7,0

43
,56

0
35
,7
10
,9
06

1,6
52

14
,53
5,5
77

JP
EG

0
0

0
53
,4
25

7,1
71

4,
11
6,
43
5

2,
20
7,8
98

69
8,
50
3

0
27
0

M
es
a

0
0

0
1,2
04
,30

9
59
,54

6
14
,6
13
,8
15

11
,2
50
,9
39

29
6,
88
9

0
7

m
pe
g2
pl
ay

0
0

0
2,
69
8,
25
1

1,0
81
,53
5

22
8,
03
3,9

17
13
9,
70
7,1
25

16
6,
61
2,
69
8

4,
05
0

8,
86
8

PE
G
W
IT

0
0

0
14
7

0
10
,54

6,
14
2

3,6
33
,4
09

85
,6
77

0
52

RA
ST
A

0
0

0
60
,8
47

13
,9
14

5,0
82
,8
05

4,
46
0,
39
1

65
8,
71
8

12
8,
08
3

44
,8
11

320



Arithmetic operands in benchmark programs

T
a
b
le

C
.3
:
N
um

be
ro

fr
et
ire

d
in
te
ge

ri
ns
tr
uc
tio

ns
in

th
e
SP
EC

CI
N
T2
00

0
be

nc
hm

ar
ks
.

B
en
ch
m
ar
k

a
d
d

a
d
d
i

s
u
b

m
u
l
t

d
i
v

a
d
d
u

a
d
d
i
u

s
u
b
u

m
u
l
t
u

d
i
v
u

16
4.
gz
ip

0
0

7,4
17
,18
5

0
10
,74

8,
51
9,
29
1

9,
71
1,8
75
,4
48

98
7,6
92
,2
52

0
59
0

16
8.
w
up

w
is
e

0
0

25
6,
76
8,
20
4

57
9,
37
7

1,7
99
,8
19
,18
5

99
8,
32
8,
20
7

17
2,
16
1,2
85

31
3

14
8

17
1.s
w
im

0
0

2,
32
7

76
13
6,
74
4,
72
0

52
,8
89
,9
58

2,
82
6,
74
1

4,
41
7

1,7
09

17
2.
m
gr
id

0
0

36
1,4
24
,36

9
1,8
42

7,2
46
,4
81
,4
24

75
1,4
70
,7
72

40
1,5
07

15
4,
31
7

42
,6
35

17
3.
ap

pl
u

0
0

4,
63
4,
84
6

75
2

14
6,
83
5,2

80
32
,6
89
,74

5
1,6
45
,2
07

38
,50

5
14
,9
88

17
5.
vp
r

0
0

16
7,1
84

13
8,
47
5

11
7,6
57
,4
15

44
,19
8,
41
3

70
1,5
87

4,
03
5

10
4,
59
1

17
6.
gc
c

0
0

1,8
99
,6
89

24
,56

9
17
6,
27
9,
38
6

25
5,0

38
,0
87

7,4
21
,9
87

46
1,2
89

24
8,
38
4

17
7.
m
es
a

0
0

49
,4
23
,74

7
3,5
85
,35
7

35
8,
39
5,4

91
46
9,
72
4,
68
4

37
,4
00
,31
5

0
8,
61
4,
86
4

17
9.
ar
t

0
0

30
7,2
22

0
14
2,
39
3,6

92
35
6,
94
4,
30
8

62
,0
46

0
8

18
1.m

cf
0

0
37
,9
29

0
25
,8
05
,6
73

29
,9
85
,12
4

3,8
49
,2
55

19
4

17
,18
3

18
3.
eq
ua

ke
0

0
1,1
28
,33
1

43
12
8,
96
9,
60
6

13
6,
89
8,
64
6

1,3
26
,0
91

1,7
00

28
7,4
61

18
8.
am

m
p

0
0

7,0
66
,9
24

0
15
5,7

80
,18
6

52
8,
57
8,
79
5

7,2
29
,74

2
2,
05
9

11
9,
40
8

19
7.
pa

rs
er

0
0

1,1
78
,6
03

2,
69
9,
92
0

44
4,
95
7,1
19

48
4,
90
0,
43
6

49
,14
6,
93
2

0
15
,4
58

20
0.
si
xt
ra
ck

0
0

0
0

9,
72
1,0

40
2,
65
5,6

07
89
6,
00
2

0
0

25
5.
vo
rt
ex

0
0

1,2
47
,8
49

0
1,3
38
,19
3,4

11
1,0

06
,0
57
,52

5
5,7

66
,2
85

17
5,7

50
4,
34
2,
09
1

25
6.
bz
ip
2

0
0

19
3

15
6

1,3
25
,55
2,
59
8

2,
33
1,9
43
,4
14

24
,30

8,
36
1

0
15
7

30
1.a

ps
i

0
0

48
4,
88
2,
74
0

1,9
84
,30

3
1,8
44
,6
20
,39

5
54
7,3
90
,6
82

43
,7
10
,53
8

14
7,4
86

58
,8
69

321



Chapter C: Arithmetic Operands

T
a
b
le

C
.4
:
N
um

be
ro

fr
et
ire

d
in
te
ge

ri
ns
tr
uc
tio

ns
fr
om

ea
ch

te
st
be

nc
hm

ar
k.

B
en
ch
m
ar
k

a
d
d

a
d
d
i

s
u
b

m
u
l
t

d
i
v

a
d
d
u

a
d
d
i
u

s
u
b
u

m
u
l
t
u

d
i
v
u

fb
en
ch

0
0

38
5

0
17
7,5
46

71
9,
69
9

3,3
52

1,0
19

38
5

ffb
en
ch

0
0

40
9

72
0

10
1,7
96
,8
61

4,
20
3,0

97
2,
47
8,
05
2

0
9

m
ill
er
-r
ab

in
0

0
7,2
29

39
4,
30
9,
26
2

2,
66
2,
08
2

19
8,
22
9

0
0

ar
ith

-t
hr
ou

gh
pu

t
0

0
1,2
51
,7
50

25
0,
00
0

8,
72
7,4
67

4,
59
7,3
58

2,
94
1,8
81

50
1,1
29

50
1,7
30

322



Arithmetic operands in benchmark programs

T
a
b
le

C
.5
:

Pr
op

or
tio

n
of

in
te
ge

ri
ns
tr
uc
tio

ns
in

th
e
ar
ith

m
et
ic
be

nc
hm

ar
ks

as
a
pe

rc
en

ta
ge

of
re
tir
ed

in
st
ru
ct
io
ns
.

Be
nc
hm

ar
k

a
d
d

a
d
d
i

s
u
b

m
u
l
t

d
i
v

a
d
d
u

a
d
d
i
u

s
u
b
u

m
u
l
t
u

d
i
v
u

ca
lc

pi
0.
00
0

0.
00
0

0.
00
0

4.
21
0

4.
16
0

17
.2
50

17
.10

0
4.
27
0

0.
00
0

0.
05
0

liv
er
m
or
e

0.
00
0

0.
00
0

0.
00
0

0.
14
0

0.
00
0

21
.5
10

11
.6
00

0.
50
0

0.
00
0

0.
00
0

dh
ry
st
on

e
0.
00
0

0.
00
0

0.
00
0

0.
19
0

0.
19
0

7.2
70

20
.0
70

0.
57
0

0.
00
0

0.
00
0

lin
pa

ck
0.
00
0

0.
00
0

0.
00
0

0.
01
0

0.
00
0

3.4
60

26
.6
50

0.
39
0

0.
00
0

0.
00
0

m
at
rix

m
ul
t

0.
00
0

0.
00
0

0.
00
0

7.0
70

0.
00
0

14
.58

0
28
.5
10

0.
00
0

0.
00
0

0.
00
0

w
he
ts
to
ne

0.
00
0

0.
00
0

0.
00
0

0.
73
0

0.
00
0

5.0
20

6.
01
0

0.
42
0

0.
00
0

0.
00
0

A
ve
ra
ge

0.
00

0
0.
00

0
0.
00

0
2.
05
8

2.
17
5

10
.4
56

18
.4
10

1.0
68

0.
00

0
0.
05
0

323



Chapter C: Arithmetic Operands

T
a
b
le

C
.6
:

Pr
op

or
tio

n
in
te
ge

ri
ns
tr
uc
tio

ns
in

th
e
M
ed
ia
be
nc
h
be

nc
hm

ar
ks

as
a
pe

rc
en

ta
ge

of
re
tir
ed

in
st
ru
ct
io
ns
.

Be
nc
hm

ar
k

a
d
d

a
d
d
i

s
u
b

m
u
l
t

d
i
v

a
d
d
u

a
d
d
i
u

s
u
b
u

m
u
l
t
u

d
i
v
u

AD
PC

M
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

25
.19
0

13
.7
00

7.2
30

0.
00
0

0.
00
0

EP
IC

0.
00
0

0.
00
0

0.
00
0

0.
19
0

0.
06
0

15
.0
20

18
.7
30

0.
08
0

0.
00
0

0.
00
0

G
.7
21

0.
00
0

0.
00
0

0.
00
0

1.1
00

0.
00
0

13
.2
30

36
.4
00

4.
13
0

0.
00
0

0.
08
0

gh
os
ts
cr
ip
t

0.
00
0

0.
00
0

0.
00
0

1.1
30

0.
01
0

16
.4
80

11
.39

0
2.
77
0

0.
00
0

1.1
30

JP
EG

0.
00
0

0.
00
0

0.
00
0

0.
82
0

0.
05
0

46
.18
0

21
.7
00

8.
12
0

0.
00
0

0.
00
0

M
es
a

0.
00
0

0.
00
0

0.
00
0

1.6
90

0.
08
0

32
.8
00

25
.18
0

0.
89
0

0.
00
0

0.
00
0

m
pe
g2
pl
ay

0.
00
0

0.
00
0

0.
00
0

0.
29
0

0.
10
0

34
.0
10

28
.2
80

14
.8
30

0.
00
0

0.
00
0

PE
G
W
IT

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

41
.7
60

14
.4
00

0.
34
0

0.
00
0

0.
00
0

RA
ST
A

0.
00
0

0.
00
0

0.
00
0

0.
15
0

0.
03
0

12
.6
90

11
.14
0

1.6
40

0.
32
0

0.
11
0

A
ve
ra
ge

0.
00

0
0.
00

0
0.
00

0
0.
49

0
0.
03
3

14
.7
30

13
.7
53

1.4
97

0.
32
0

0.
62
0

324



Arithmetic operands in benchmark programs

T
a
b
le

C
.7
:

Pr
op

or
tio

n
in
te
ge

ri
ns
tr
uc
tio

ns
re
tir
ed

fr
om

ea
ch

SP
EC

CP
U
20
00

be
nc

hm
ar
k
as

a
pe

rc
en

ta
ge

.

Be
nc
hm

ar
k

a
d
d

a
d
d
i

s
u
b

m
u
l
t

d
i
v

a
d
d
u

a
d
d
i
u

s
u
b
u

m
u
l
t
u

d
i
v
u

16
4.
gz
ip

0.
00
0

0.
00
0

0.
00
0

0.
01
0

0.
00
0

12
.7
20

11
.4
90

1.1
70

0.
00
0

0.
00
0

16
8.
w
up

w
is
e

0.
00
0

0.
00
0

0.
00
0

1.4
20

0.
00
0

9.
97
0

5.5
30

0.
95
0

0.
00
0

0.
00
0

17
1.s
w
im

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

14
.6
00

5.6
50

0.
30
0

0.
00
0

0.
00
0

17
2.
m
gr
id

0.
00
0

0.
00
0

0.
00
0

1.0
00

0.
00
0

20
.11
0

2.
09
0

0.
00
0

0.
00
0

0.
00
0

17
3.
ap

pl
u

0.
00
0

0.
00
0

0.
00
0

0.
74
0

0.
00
0

23
.4
80

5.2
30

0.
26
0

0.
01
0

0.
00
0

17
5.
vp
r

0.
00
0

0.
00
0

0.
00
0

0.
02
0

0.
02
0

16
.55
0

6.
22
0

0.
10
0

0.
00
0

0.
01
0

17
6.
gc
c

0.
00
0

0.
00
0

0.
00
0

0.
12
0

0.
00
0

10
.7
50

15
.56

0
0.
45
0

0.
03
0

0.
02
0

17
7.
m
es
a

0.
00
0

0.
00
0

0.
00
0

1.5
80

0.
11
0

11
.4
40

14
.9
90

1.1
90

0.
00
0

0.
27
0

17
9.
ar
t

0.
00
0

0.
00
0

0.
00
0

0.
02
0

0.
00
0

7.0
10

17
.58

0
0.
00
0

0.
00
0

0.
00
0

18
1.m

cf
0.
00
0

0.
00
0

0.
00
0

0.
02
0

0.
00
0

12
.7
70

14
.8
40

1.9
00

0.
00
0

0.
01
0

18
3.
eq
ua

ke
0.
00
0

0.
00
0

0.
00
0

0.
08
0

0.
00
0

8.
83
0

9.
38
0

0.
09
0

0.
00
0

0.
02
0

18
8.
am

m
p

0.
00
0

0.
00
0

0.
00
0

0.
13
0

0.
00
0

2.
78
0

9.
43
0

0.
13
0

0.
00
0

0.
00
0

19
7.
pa

rs
er

0.
00
0

0.
00
0

0.
00
0

0.
03
0

0.
08
0

12
.9
80

14
.14
0

1.4
30

0.
00
0

0.
00
0

20
0.
si
xt
ra
ck

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

27
.7
20

7.5
70

2.
56
0

0.
00
0

0.
00
0

25
5.
vo
rt
ex

0.
00
0

0.
00
0

0.
00
0

0.
01
0

0.
00
0

14
.2
30

10
.7
00

0.
06
0

0.
00
0

0.
05
0

25
6.
bz
ip
2

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

14
.6
10

25
.7
00

0.
27
0

0.
00
0

0.
00
0

30
1.a

ps
i

0.
00
0

0.
00
0

0.
00
0

4.
34
0

0.
02
0

16
.5
10

4.
90
0

0.
39
0

0.
00
0

0.
00
0

A
ve
ra
ge

0.
00

0
0.
00

0
0.
00

0
0.
68

0
0.
05
8

13
.9
45

10
.6
47

0.
75
0

0.
02

0
0.
06

3

325



Chapter C: Arithmetic Operands

T
a
b
le

C
.8
:

Pr
op

or
tio

n
in
te
ge

ri
ns
tr
uc
tio

ns
re
tir
ed

fr
om

ea
ch

te
st
be

nc
hm

ar
k
as

a
pe

rc
en

ta
ge

.

Be
nc
hm

ar
k

a
d
d

a
d
d
i

s
u
b

m
u
l
t

d
i
v

a
d
d
u

a
d
d
i
u

s
u
b
u

m
u
l
t
u

d
i
v
u

fb
en
ch

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

1.7
70

7.1
60

0.
03
0

0.
01
0

0.
00
0

ffb
en
ch

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

15
.3
40

0.
63
0

0.
37
0

0.
00
0

0.
00
0

m
ill
er
-r
ab

in
0.
00
0

0.
00
0

0.
00
0

0.
02
0

0.
00
0

14
.54

0
8.
98
0

0.
67
0

0.
00
0

0.
00
0

ar
ith

-t
hr
ou

gh
pu

t
0.
00
0

0.
00
0

0.
00
0

2.
09
0

0.
42
0

14
.58

0
7.6
80

4.
91
0

0.
84
0

0.
84
0

A
ve
ra
ge

0.
00

0
0.
00

0
0.
00

0
1.0

55
0.
42
0

11
.5
57

6.
11
2

1.4
95

0.
42
5

0.
84
0

326



Arithmetic operands in benchmark programs

T
a
b
le

C
.9
:
N
um

be
ro

fr
et
ire

d
flo

at
in
g
po

in
ti
ns
tr
uc
tio

ns
fr
om

ea
ch

ar
ith

m
et
ic
be

nc
hm

ar
k.

B
en
ch
m
ar
k

a
d
d
.
s

s
u
b
.
s

m
u
l
.
s

d
i
v
.
s

s
q
r
t
.
s

a
d
d
.
d

s
u
b
.
d

m
u
l
.
d

d
i
v
.
d

s
q
r
t
.
d

ca
lc

pi
0

0
0

0
0

0
0

0
0

0
liv
er
m
or
e

7,0
50
,9
74

3,8
17
,33
3

6,
46
5,9

84
16
2,
33
7

0
4,
02
6,
50
8

1,5
90
,4
93

3,1
16
,32
5

1,6
54
,7
84

28
,4
55

dh
ry
st
on

e
0

0
0

0
0

0
0

0
0

0
lin
pa

ck
3,8

50
,7
50

0
3,7

85
,2
00

1,1
00

0
0

12
0,
00
0

0
12
1,0

89
0

m
at
rix

m
ul
t

0
0

0
0

0
0

0
0

0
0

w
he
ts
to
ne

43
9,
29
9

87
,9
98

25
3,0

00
98
,30

0
0

49
2,
51
3

15
9,
88
3

54
9,
49
7

66
,2
88

9,
30
0

327



Chapter C: Arithmetic Operands

T
a
b
le

C
.1
0
:

N
um

be
ro

fr
et
ire

d
flo

at
in
g
po

in
ti
ns
tr
uc
tio

ns
fr
om

ea
ch

M
ed
ia
be
nc
h
be

nc
hm

ar
k.

B
en
ch
m
ar
k

a
d
d
.
s

s
u
b
.
s

m
u
l
.
s

d
i
v
.
s

s
q
r
t
.
s

a
d
d
.
d

s
u
b
.
d

m
u
l
.
d

d
i
v
.
d

s
q
r
t
.
d

AD
PC

M
0

0
0

0
0

0
0

0
0

0
EP
IC

9,
72
0

0
2,
67
6,
73
7

2
0

2,
64
4,
32
4

32
,4
27

5
65
,54

0
0

G
.7
21

0
0

0
0

0
0

0
0

0
0

gh
os
ts
cr
ip
t

12
,6
21

5,7
40

18
,7
14

1,0
58

0
51
,17
7

33
,8
91

82
,0
32

13
,11
1

1,2
28

JP
EG

0
0

0
0

0
0

0
0

0
0

M
es
a

3,5
90
,4
65

1,1
53
,9
84

6,
37
5,1
84

23
9,
45
4

0
1,4
67
,2
04

68
2,
11
1

1,7
37
,4
72

23
7,2
18

27
,2
30

m
pe
g2
pl
ay

0
0

0
0

0
20
,54

2,
45
4

1,7
91
,0
71

17
,7
91
,8
49

42
,4
89

1,3
84

PE
G
W
IT

0
0

0
0

0
0

0
0

0
0

RA
ST
A

54
6,
66
5

24
4,
37
3

60
3,9

08
23
,5
71

0
49
8,
13
8

19
7,3
84

56
0,
73
7

50
,52

1
8,
01
8

328



Arithmetic operands in benchmark programs

T
a
b
le

C
.1
1:

N
um

be
ro

fr
et
ire

d
flo

at
in
g
po

in
ti
ns
tr
uc
tio

ns
fr
om

ea
ch

SP
EC

CP
U
20
00

be
nc

hm
ar
k.

B
en
ch
m
ar
k

a
d
d
.
s

s
u
b
.
s

m
u
l
.
s

d
i
v
.
s

s
q
r
t
.
s

a
d
d
.
d

s
u
b
.
d

m
u
l
.
d

d
i
v
.
d

s
q
r
t
.
d

16
4.
gz
ip

0
0

0
0

0
0

0
0

0
0

16
8.
w
up

w
is
e

0
0

0
0

0
77
9,
00
8,
02
6

28
9,
53
6,
03
9

1,1
55
,0
20
,8
53

13
,8
24
,0
15

1,0
24
,0
03

17
1.s
w
im

0
0

0
51
2

0
74
,4
56
,2
97

41
,7
18
,9
68

66
,8
41
,31
1

4,
19
8,
47
8

0
17
2.
m
gr
id

0
0

0
0

0
7,4

10
,4
24
,4
63

72
7,4

10
,7
63

1,2
46
,9
04
,6
88

22
2

17
3.
ap

pl
u

0
0

0
0

0
18
,0
02
,0
32

19
,6
47
,6
84

76
,2
12
,14
8

1,9
79
,31
1

51
0

17
5.
vp
r

3,1
73
,2
24

7
10
6,
38
9

26
0

0
27
,53
2

1,4
12

1,9
30

55
2

1
17
6.
gc
c

0
0

0
0

0
0

0
11
,4
64

11
,4
64

0
17
7.
m
es
a

17
,9
90
,0
84

10
,7
61
,18
3

14
,35
0,
64
9

32
4

0
14
,3
42
,6
02

10
,7
56
,5
14

10
,7
57
,4
72

3,5
89
,55
3

48
17
9.
ar
t

0
0

0
0

0
14
0,
45
0,
54
4

10
,2
00
,12
6

13
1,0

10
,4
70

30
,9
40
,0
56

45
,0
84

18
1.m

cf
0

0
0

0
0

2
0

2
0

0
18
3.
eq
ua

ke
0

0
0

0
0

65
,0
60
,8
19

7,3
22
,6
56

79
,54

9,
39
7

12
,39

7,1
22

5,2
12

18
8.
am

m
p

0
0

0
0

0
33
6,
29
9,
72
7

22
2,
85
6,
35
8

70
1,4

19
,9
72

19
,30

7,5
62

13
,17
4,
62
6

19
7.
pa

rs
er

0
0

0
0

0
0

0
0

0
0

20
0.
si
xt
ra
ck

0
0

0
0

0
14

2
16

2
1

25
5.
vo
rt
ex

0
0

0
0

0
0

0
0

0
0

25
6.
bz
ip
2

0
0

0
0

0
0

0
0

0
0

30
1.a

ps
i

0
0

0
0

0
51
5,0

27
,0
26

41
8,
16
4,
57
0

70
6,
60
1,7
49

14
3,4

07
,6
10

3,0
45
,74

8

329



Chapter C: Arithmetic Operands

T
a
b
le

C
.1
2
:
N
um

be
ro

fr
et
ire

d
flo

at
in
g
po

in
ti
ns
tr
uc
tio

ns
fr
om

ea
ch

te
st
be

nc
hm

ar
k.

B
en
ch
m
ar
k

a
d
d
.
s

s
u
b
.
s

m
u
l
.
s

d
i
v
.
s

s
q
r
t
.
s

a
d
d
.
d

s
u
b
.
d

m
u
l
.
d

d
i
v
.
d

s
q
r
t
.
d

fb
en
ch

0
0

0
0

0
59
6,
00
0

50
6,
00
0

1,0
04
,0
00

40
4,
00
0

0
ffb

en
ch

0
0

0
0

0
62
,9
83
,9
20

63
,0
01
,7
77

84
,0
45
,13
6

1,9
21

0
m
ill
er
-r
ab

in
0

0
0

0
0

30
20

20
20

0
ar
ith

-t
hr
ou

gh
pu

t
0

0
0

0
0

1,6
69
,9
61

54
6,
10
2

72
9,
95
3

30
0,
00
3

10
,0
00

330



Arithmetic operands in benchmark programs

T
a
b
le

C
.1
3
:

Pr
op

or
tio

n
of

flo
at
in
g
po

in
ti
ns
tr
uc
tio

ns
re
tir
ed

fr
om

ea
ch

ar
ith

m
et
ic
be

nc
hm

ar
k
as

a
pe

rc
en

ta
ge

.

Be
nc
hm

ar
k

a
d
d
.
s

s
u
b
.
s

m
u
l
.
s

d
i
v
.
s

s
q
r
t
.
s

a
d
d
.
d

s
u
b
.
d

m
u
l
.
d

d
i
v
.
d

s
q
r
t
.
d

ca
lc

pi
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

liv
er
m
or
e

0.
52
0

0.
28
0

0.
48
0

0.
01
0

0.
00
0

0.
30
0

0.
12
0

0.
23
0

0.
12
0

0.
00
0

dh
ry
st
on

e
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

lin
pa

ck
8.
44
0

0.
00
0

8.
29
0

0.
00
0

0.
00
0

0.
00
0

0.
26
0

0.
00
0

0.
27
0

0.
00
0

m
at
rix

m
ul
t

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

w
he
ts
to
ne

2.
55
0

0.
51
0

1.4
70

0.
57
0

0.
00
0

2.
85
0

0.
93
0

3.1
90

0.
38
0

0.
05
0

A
ve
ra
ge

3.
83
7

0.
39
5

3.
41
3

0.
29
0

0.
00

0
1.5

75
0.
43
7

1.7
10

0.
25
7

0.
05
0

331



Chapter C: Arithmetic Operands

T
a
b
le

C
.1
4
:

Pr
op

or
tio

n
of

flo
at
in
g
po

in
ti
ns
tr
uc
tio

ns
re
tir
ed

fr
om

ea
ch

M
ed
ia
be
nc
h
be

nc
hm

ar
k
as

a
pe

rc
en

ta
ge

.

Be
nc
hm

ar
k

a
d
d
.
s

s
u
b
.
s

m
u
l
.
s

d
i
v
.
s

s
q
r
t
.
s

a
d
d
.
d

s
u
b
.
d

m
u
l
.
d

d
i
v
.
d

s
q
r
t
.
d

AD
PC

M
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

EP
IC

0.
02
0

0.
00
0

5.0
70

0.
00
0

0.
00
0

5.0
10

0.
06
0

0.
00
0

0.
12
0

0.
00
0

G
.7
21

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

gh
os
ts
cr
ip
t

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
01
0

0.
00
0

0.
00
0

JP
EG

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

M
es
a

6.
21
0

2.
12
0

11
.2
00

0.
45
0

0.
00
0

3.6
00

1.4
50

4.
37
0

0.
56
0

0.
04
0

m
pe
g2
pl
ay

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

6.
37
0

0.
45
0

5.5
90

0.
00
0

0.
00
0

PE
G
W
IT

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

RA
ST
A

1.3
60

0.
61
0

1.5
10

0.
06
0

0.
00
0

1.2
40

0.
49
0

1.4
00

0.
13
0

0.
02
0

A
ve
ra
ge

0.
69

0
0.
61
0

3.
29
0

0.
06

0
0.
00

0
3.
12
5

0.
27
5

0.
70

5
0.
12
5

0.
02

0

332



Arithmetic operands in benchmark programs

T
a
b
le

C
.1
5
:

Pr
op

or
tio

n
of

flo
at
in
g
po

in
ti
ns
tr
uc
tio

ns
re
tir
ed

fr
om

ea
ch

SP
EC

CF
P2
00

0
be

nc
hm

ar
k
as

a
pe

rc
en

ta
ge

.

Be
nc
hm

ar
k

a
d
d
.
s

s
u
b
.
s

m
u
l
.
s

d
i
v
.
s

s
q
r
t
.
s

a
d
d
.
d

s
u
b
.
d

m
u
l
.
d

d
i
v
.
d

s
q
r
t
.
d

16
4.
gz
ip

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

16
8.
w
up

w
is
e

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

4.
31
0

1.6
00

6.
40
0

0.
08
0

0.
01
0

17
1.s
w
im

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

7.9
50

4.
45
0

7.1
40

0.
45
0

0.
00
0

17
2.
m
gr
id

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

20
.5
70

2.
02
0

3.4
60

0.
00
0

0.
00
0

17
3.
ap

pl
u

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

2.
88
0

3.1
40

12
.19
0

0.
32
0

0.
00
0

17
5.
vp
r

0.
45
0

0.
00
0

0.
01
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

17
6.
gc
c

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

17
7.
m
es
a

0.
57
0

0.
34
0

0.
46
0

0.
00
0

0.
00
0

0.
46
0

0.
34
0

0.
34
0

0.
11
0

0.
00
0

17
9.
ar
t

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

6.
92
0

0.
50
0

6.
45
0

1.5
20

0.
00
0

18
1.m

cf
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

18
3.
eq
ua

ke
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

4.
46
0

0.
50
0

5.4
50

0.
85
0

0.
00
0

18
8.
am

m
p

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

6.
00
0

3.9
80

12
.52

0
0.
34
0

0.
24
0

19
7.
pa

rs
er

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

20
0.
si
xt
ra
ck

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

25
5.
vo
rt
ex

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

25
6.
bz
ip
2

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

30
1.a

ps
i

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

4.
61
0

3.7
40

6.
33
0

1.2
80

0.
03
0

A
ve
ra
ge

0.
51
0

0.
34
0

0.
23
5

0.
00

0
0.
00

0
6.
46

2
2.
25
2

6.
69

8
0.
61
9

0.
09

3

333



Chapter C: Arithmetic Operands

T
a
b
le

C
.1
6
:

Pr
op

or
tio

n
of

flo
at
in
g
po

in
ti
ns
tr
uc
tio

ns
re
tir
ed

fr
om

ea
ch

te
st
be

nc
hm

ar
k
as

a
pe

rc
en

ta
ge

.

Be
nc
hm

ar
k

a
d
d
.
s

s
u
b
.
s

m
u
l
.
s

d
i
v
.
s

s
q
r
t
.
s

a
d
d
.
d

s
u
b
.
d

m
u
l
.
d

d
i
v
.
d

s
q
r
t
.
d

fb
en
ch

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

5.9
30

5.0
40

9.
99
0

4.
02
0

0.
00
0

ffb
en
ch

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

9.
49
0

9.
50
0

12
.6
70

0.
00
0

0.
00
0

m
ill
er
-r
ab

in
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

ar
ith

-t
hr
ou

gh
pu

t
0.
00
0

0.
00
0

0.
00
0

0.
00
0

0.
00
0

2.
79
0

0.
91
0

1.2
20

0.
50
0

0.
02
0

A
ve
ra
ge

0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
6.
07

0
5.
15
0

7.9
60

2.
26

0
0.
02

0

334



Operand bit-assertion tables

C.2 Operand bit-assertion tables

This appendix lists the operand bits in descending order from the least frequently asserted to the

most frequently asserted. The results are grouped by input and output operands, and separately for

each arithmetic operation.

335



Chapter C: Arithmetic Operands

T
a
b
le

C
.1
7
:

Bi
ta

ss
er
tio

n
pr
ob

ab
ili
tie

s
fo
rs
ig
ne

d
32

bi
ti
nt
eg

er
op

er
an

ds
.

+

A
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
B

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

Z
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

−

A
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
B

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

Z
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

×

A
0

1
3

4
2

7
5

6
8

11
12

9
13

10
15

14
16

19
17

18
20

22
23

25
24

21
26

27
29

28
30

31
B

1
0

3
7

5
4

2
9

6
10

8
17

24
14

12
30

16
20

19
25

15
11

22
23

18
21

31
13

28
29

26
27

Z
3

5
7

8
6

9
4

10
12

11
0

1
2

13
14

16
15

17
18

19
20

21
22

23
24

26
25

28
30

27
29

31
ZH

11
15

6
18

19
10

0
23

12
1

14
13

3
8

4
20

2
5

7
17

9
21

16
22

30
31

29
27

28
25

26
24

÷

A
0

3
2

1
5

4
6

7
8

9
10

11
13

12
14

15
16

17
18

19
20

21
22

23
24

25
26

30
29

27
28

31
B

0
1

2
3

5
4

6
8

7
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

Z
0

1
2

3
4

5
6

7
13

8
9

10
12

11
14

15
16

17
18

19
20

21
22

23
24

25
27

26
28

29
30

31
ZH

1
0

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
20

19
21

22
23

24
25

26
27

28
29

30
31

336



Operand bit-assertion tables

T
a
b
le

C
.1
8
:

Bi
ta

ss
er
tio

n
pr
ob

ab
ili
tie

s
fo
ru

ns
ig
ne

d
32

bi
ti
nt
eg

er
op

er
an

ds
.

+

A
4

28
3

5
6

10
8

7
12

9
13

11
2

14
16

18
17

19
20

1
21

22
23

15
0

24
25

26
27

30
29

31
B

5
0

28
6

4
3

9
7

2
12

11
10

8
13

14
16

18
17

15
1

19
20

23
21

22
24

25
26

27
30

29
31

Z
3

4
28

6
5

12
10

9
7

8
13

11
14

2
16

18
17

1
19

0
20

21
23

22
15

24
25

26
27

30
29

31

−

A
5

0
3

6
4

1
12

14
7

13
2

10
9

11
8

28
16

15
18

17
19

20
21

22
23

24
25

27
26

29
30

31
B

0
1

2
4

3
5

6
7

28
8

13
10

16
12

9
14

18
11

17
24

19
15

23
21

22
25

20
27

26
30

29
31

Z
0

2
3

4
1

5
12

6
13

8
7

9
11

10
14

15
16

17
19

18
20

21
30

29
27

22
26

25
28

23
24

31

×

A
11

7
5

13
10

9
12

0
8

6
4

3
2

14
1

15
16

19
17

20
18

22
23

21
29

27
28

30
31

25
24

26
B

3
1

0
31

7
15

27
11

4
28

12
8

23
22

16
29

19
20

24
17

2
10

6
14

21
25

30
13

18
26

5
9

Z
5

6
12

8
11

21
17

22
4

14
31

29
30

9
10

19
13

18
16

20
7

15
28

1
23

3
24

2
27

25
26

0
ZH

7
8

0
1

3
9

2
10

11
4

6
5

15
12

18
16

17
13

19
14

22
20

21
23

27
28

24
26

25
30

29
31

÷

A
1

5
0

12
2

4
3

14
13

15
29

16
30

17
18

7
9

6
19

20
21

8
22

10
25

11
23

24
28

27
26

31
B

13
15

0
1

3
2

6
4

5
14

9
11

8
7

12
10

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

Z
1

5
0

12
2

4
3

14
13

15
29

16
30

17
18

7
9

6
19

20
21

8
22

10
25

11
23

24
28

27
26

31
ZH

0
2

14
13

12
1

4
3

5
6

15
7

9
8

10
11

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

337



Chapter C: Arithmetic Operands

T
a
b
le

C
.1
9
:

Bi
ta

ss
er
tio

n
pr
ob

ab
ili
tie

s
fo
rs
in
gl
e
pr
ec
is
io
n
flo

at
in
g
po

in
tn

um
be

rs
.

+

A
26

27
29

28
24

17
14

16
15

25
23

10
21

19
11

3
18

2
22

4
5

1
7

8
9

20
6

0
30

13
12

31
B

27
29

28
26

25
15

14
23

18
17

16
24

10
19

2
9

5
3

11
8

1
21

4
13

7
6

12
22

20
0

30
31

Z
26

27
29

28
23

24
25

18
21

17
16

15
14

10
9

7
11

19
2

3
20

6
12

5
8

13
22

30
4

1
0

31

−

A
24

26
23

30
25

19
22

15
18

27
14

10
29

28
3

9
7

2
5

8
17

16
11

6
4

1
0

20
12

21
13

31
B

26
27

29
28

25
23

24
15

18
14

19
16

17
30

10
11

7
3

22
2

5
1

4
6

8
9

20
0

13
21

12
31

Z
24

26
30

25
29

28
21

23
18

27
11

19
17

20
14

15
16

10
12

7
13

8
22

31
6

9
3

5
4

2
1

0

×

A
26

27
29

28
24

23
14

19
18

22
15

25
10

4
6

8
2

9
7

5
20

17
3

21
1

16
11

13
30

12
0

31
B

26
29

28
23

27
24

25
18

10
15

14
19

9
22

2
3

4
1

0
17

21
30

6
5

8
16

13
12

7
20

11
31

Z
26

27
29

28
10

11
14

16
15

21
17

25
3

4
2

24
5

30
7

1
6

23
0

18
13

20
8

9
12

19
22

31

÷

A
24

23
30

26
25

19
22

28
29

18
27

14
10

15
20

9
4

8
17

21
2

16
6

7
12

1
3

5
13

11
0

31
B

30
24

22
19

23
26

25
21

16
18

20
17

10
14

27
8

28
29

15
9

12
2

3
1

13
6

7
11

5
4

0
31

Z
28

29
27

26
25

24
0

7
15

2
3

19
6

4
23

1
12

14
10

11
13

9
18

21
5

16
22

17
20

8
30

31

338



Operand bit-assertion tables

T
a
b
le

C
.2
0
:

Bi
ta

ss
er
tio

n
pr
ob

ab
ili
tie

s
fo
rd

ou
bl
e
pr
ec
is
io
n
flo

at
in
g
po

in
tn

um
be

rs
.

+

A
54

60
61

59
58

55
53

56
52

48
45

57
39

43
47

62
51

41
44

40
49

46
35

37
36

38
50

33
32

42
34

29
⋯

B
57

60
61

59
58

56
55

53
54

52
40

48
38

44
46

32
20

49
37

43
35

50
39

36
24

47
45

28
42

30
34

51
⋯

Z
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
⋯

−

A
53

55
57

52
56

54
59

60
61

58
62

40
51

39
48

43
45

49
37

47
42

46
36

32
41

44
50

38
33

31
35

34
⋯

B
57

53
56

54
55

60
61

59
58

52
62

43
39

45
40

49
30

33
44

34
48

31
37

51
38

50
28

36
35

27
47

32
⋯

Z
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
⋯

×

A
55

60
61

59
58

54
57

56
53

52
51

48
62

47
49

50
46

45
44

43
42

39
38

40
41

37
30

29
33

31
35

36
⋯

B
59

60
61

58
57

56
55

53
54

52
48

43
32

44
35

29
36

47
30

37
51

39
50

40
28

49
31

34
21

33
23

15
⋯

Z
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
⋯

÷

A
52

55
54

53
56

62
57

58
60

61
59

48
45

40
39

51
38

35
33

47
37

49
36

41
43

32
50

44
46

42
30

18
⋯

B
62

54
52

55
53

50
48

51
49

44
56

39
43

35
45

32
40

29
31

36
57

58
59

60
61

42
47

46
37

38
33

41
⋯

Z
41

45
48

51
44

40
32

35
37

30
18

26
28

22
11

10
8

31
13

29
24

25
17

27
21

23
14

15
16

12
20

19
⋯

339



Chapter C: Arithmetic Operands

T
a
b
le

C
.2
1:

Bi
ta

ss
er
tio

n
pr
ob

ab
ili
tie

s
fo
rd

ou
bl
e
pr
ec
is
io
n
flo

at
in
g
po

in
tn

um
be

rs
(c
on

tin
ue
d.

..
).

+

A
⋯

30
28

26
31

27
24

20
22

11
25

19
13

21
23

18
16

10
17

12
8

4
7

14
6

15
9

3
5

2
1

0
63

B
⋯

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

Z
⋯

29
30

28
22

10
27

11
24

16
26

18
23

8
13

25
14

20
21

4
12

5
19

15
3

1
63

7
17

6
9

2
0

−

A
⋯

33
26

18
31

62
41

22
14

10
16

23
29

19
7

8
27

25
4

12
15

1
21

17
11

3
63

0
5

2
6

9
13

B
⋯

18
29

19
46

20
23

26
8

41
42

11
10

24
22

21
14

16
7

4
9

12
25

17
63

13
15

1
3

2
6

5
0

Z
⋯

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

×

A
⋯

34
25

20
32

23
17

21
26

18
13

11
28

8
15

10
24

19
27

7
6

16
14

22
12

2
1

9
5

4
0

3
63

B
⋯

16
1

38
20

10
8

17
41

19
27

46
4

7
42

45
26

24
3

25
12

11
22

6
2

9
13

14
18

5
0

62
63

Z
⋯

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

÷

A
⋯

8
22

26
10

4
3

11
28

13
34

31
29

24
15

25
14

9
16

19
7

17
12

21
0

2
1

23
27

6
5

20
63

B
⋯

34
26

23
25

30
24

22
16

19
27

15
1

13
11

20
12

4
14

28
9

3
21

17
18

2
5

6
10

7
0

8
63

Z
⋯

9
7

36
38

39
42

43
0

1
2

3
4

5
6

33
34

46
47

49
50

52
53

54
55

56
57

58
59

60
61

62
63

340



Appendix D

�������� ��	
���
�

���

�����	�

“Let’s say the docs present a simplified view of reality... :-)”

Larry Wall (1954 —)



Chapter D: Detailed benchmark descriptions

D.1 Mediabench benchmarks

The following are extended descriptions of each Mediabench benchmark from the website [Fritts,

1997].

JPEG is a standardized compressionmethod for full-color and gray-scale images. The

benchmark implements JPEG image compression and decompression. JPEG is

lossy. This package contains C software to implement JPEG image compression

and decompression. JPEG (pronounced "jay-peg") is a standardized compres-

sion method for full-color and gray-scale images. JPEG is intended for com-

pressing "real-world" scenes; line drawings, cartoons and other non-realistic

images are not its strong suit. JPEG is lossy, meaning that the output image is

not exactly identical to the input image.

mpeg2play mpeg2play is a player for MPEG-1 andMPEG-2 video bitstreams. It is based on

mpeg2decode by the MPEG Software Simulation Group. In mpeg2decode the

emphasis is on correct implementation of theMPEG standard and comprehen-

sive code structure. The latter is not always easy to combine with high execution

speed. Therefore a version has been derived which is optimized for higher de-

coding and display speed at the cost of a less straightforward implementation

and slightly non-compliant decoding. In addition all conformance checks and

some fault recovery procedures have been omitted from mpeg2play.

GSM is an implementation of the European GSM 06.10 provisional standard for full-

rate speech transcoding which uses RPE/LTP (residual pulse excitation/long

termprediction) coding at 13 kbit/s. The quality of the algorithm is good enough

for reliable speaker recognition given the bandwidth limitations of 8 kHz sam-

pling rate. As part of this effort we are publishing an implementation of the

EuropeanGSM06.10 provisional standard for full-rate speech transcoding, prI-

ETS 300 036, which uses RPE/LTP (residual pulse excitation/long term predic-

tion) coding at 13 kbit/s. GSM 06.10 compresses frames of 160 13-bit samples (8

kHz sampling rate, i.e. a frame rate of 50Hz) into 260 bits; for compatibilitywith

typical UNIX applications, our implementation turns frames of 160 16 bit linear

342



Mediabench benchmarks

samples into 33-byte frames (1650 Bytes/s). The quality of the algorithm is good

enough for reliable speaker recognition; even music often survives transcoding

in recognizable form (given the bandwidth limitations of 8 kHz sampling rate).

ADPCM (Adaptive Differential Pulse Code Modulation) is a family of speech compres-

sion and decompression algorithms. The ADPCM code used is the Intel/DVI

ADPCM code which is being recommended by the IMADigital Audio Techni-

calWorkingGroup. ADPCM stands for AdaptiveDifferential Pulse CodeMod-

ulation. It is a family of speech compression and decompression algorithms. A

common implementation takes 16-bit linear PCM samples and converts them

to 4-bit samples, yielding a compression rate of 4:1. The ADPCM code used is

the Intel/DVI ADPCM code which is being recommended by the IMA Digital

Audio Technical Working Group. Note that this is NOT a CCITT G722 coder.

The CCITT ADPCM standard is much more complicated, probably resulting

in better quality sound but also in much more computational overhead.

G.721 is the CCITT (International Telegraph and Telephone Consultative Commit-

tee) implementation of G.721 voice compression. The files in this package com-

prise ANSI-C language reference implementations of the CCITT (International

Telegraph andTelephoneConsultativeCommittee)G.711, G.721 andG.723 voice

compressions. They have been tested on Sun SPARCstations and passed 82 out

of 84 test vectors published by CCITT (Dec. 20, 1988) for G.721 and G.723. [The

two remaining test vectors, which the G.721 decoder implementation for u-law

samples did not pass, may be in error because they are identical to two other

vectors for G.723_40.]

PGP (Pretty Good Privacy) uses “message digests” to form signatures. Amessage di-

gest is a 128-bit cryptographically strong one-way hash function of the message

(MD5). To encrypt data, it uses a block-cipher IDEA, RSA for key management

and digital signatures. A session key is generated for an individual message

and the message is encrypted by IDEA using the session key and the session

key is encrypted using RSA. PGP uses "message digests" to form signatures. A

message digest is a 128-bit cryptographically strong one-way hash function of

the message (MD5). To encrypt data, it uses a block-cipher IDEA, RSA for key

management and digital signatures. A session key is generated for an individual

message and the message is encrypted by IDEA using the session key and the

session key is encrypted using RSA.

343



Chapter D: Detailed benchmark descriptions

PEGWIT Pegwit is a program for performing public key encryption and authentication.

It uses an elliptic curve over GF(), SHA1 for hashing, and the symmetric

block cipher square.

ghostscript Ghostscript is the name of a set of software that provides:

1. An interpreter for the PostScript (TM) language.

2. A set of C procedures (the Ghostscript library) that implement the graph-

ics capabilities that appear as primitive operations in the PostScript lan-

guage.

3. An interpreter for Portable Document Format (PDF) files.

Ghostscript is the name of a set of software that provides: (1) An interpreter for

the PostScript (TM) language, and (2) A set of C procedures (the Ghostscript

library) that implement the graphics capabilities that appear as primitive opera-

tions in the PostScript language, and (3) An interpreter for Portable Document

Format (PDF) files.

Mesa Mesa is a 3-D graphics library with an API which is very similar to that of

OpenGL.

SPHERE (SPeech HEader REsources) is a set of library functions and command-level

programs which can be used to read and modify NIST-formatted speech wave-

form files. SPeech HEader REsources (SPHERE) is a set of library functions

and command-level programs which can be used to read and modify NIST-

formatted speech waveform files.

RASTA is a program for the rasta-plp processing and it supports the following front-

end techniques: PLP, RASTA, and Jah-RASTA with fixed Jah-value. The Jah-

Rasta technique simultaneously handles additive noise and spectral distortion.

RASTA is a program for the rasta-plp processing and it supports the following

front-end techniques: PLP, RASTA, and Jah-RASTA with fixed Jah-value. The

Jah-Rasta technique handles two different types of harmful effects for speech

recognition systems, namely additive noise and spectral distortion, simultane-

ously, by bandpass filtering the temporal trajectories of a non-linearly trans-

formed critical band spectrum.

EPIC (Efficient Pyramid Image Coder) is an experimental image data compression

utility. The filters have been designed to allow extremely fast decoding on non-

344



SPEC benchmarks

floating point hardware, at the expense of slower encoding and a slight degra-

dation in compression quality (as compared to a good orthogonal wavelet de-

composition). EPIC (Efficient Pyramid Image Coder) is an experimental image

data compression utility written in the C programming language. The compres-

sion algorithms are based on a biorthogonal critically-sampled dyadic wavelet

decomposition and a combined run-length/Huffman entropy coder. The fil-

ters have been designed to allow extremely fast decoding on conventional (ie,

non-floating point) hardware, at the expense of slower encoding and a slight

degradation in compression quality (as compared to a good orthogonal wavelet

decomposition).

D.2 SPEC benchmarks

The following are descriptions for each benchmark are modified from descriptions provided on the

SPEC website [Corporation, 2000b,a].

D.2.1 SPEC CINT2000

164.gzip(GNU zip) is a popular data compressionprogramwritten by Jean-LoupGailly <gzip@gnu.org>

for the GNU project. ‘gzip’ uses Lempel-Ziv coding (LZ77) as its compression

algorithm.

SPEC’s version of gzip performs no file I/O other than reading the input. All

compression and decompression happens entirely in memory. This is to help

isolate the work done to just the CPU and the memory subsystem.

175.vpr VPR is a placement and routing program; it automatically implements a technology-

mapped circuit (i.e. a netlist, or hypergraph, composed of FPGA logic blocks

and I/O pads and their required connections) in a Field-Programmable Gate

Array (FPGA) chip. VPR is an example of an integrated circuit computer-aided

design program, and algorithmically it belongs to the combinatorial optimiza-

tion class of programs.

Placement consists of determining which logic block and which I/O pad within

the FPGA should implement each of the functions required by the circuit. The

345



Chapter D: Detailed benchmark descriptions

goal is to place pieces of logic which are connected (i.e. must communicate)

close together in order to minimize the amount of wiring required and to max-

imize the circuit speed. This is basically a slot assignment problem – assign

every logic block function required by the circuit and every I/O function re-

quired by the circuit to a logic block or I/O pad in the FPGA, such that speed

and wire-minimization goals are met. VPR uses simulated annealing to place

the circuit. An initial random placement is repeatedly modified through local

perturbations in order to increase the quality of the placement, in a method

similar to the way metals are slowly cooled to produce strong objects.

Routing (in an FPGA) consists of determining which programmable switches

should be turned on in order to connect the pre-fabricated wires in the FPGA

to the logic block inputs and outputs, and to other wires, such that all the con-

nections required by the circuit are completed and such that the circuit speed

is maximized. The connections required by the circuit are represented as a hy-

pergraph, and the possible connections of wire segments to other wires and to

logic block inputs and outputs are represented by (a different) directed graph,

which is often called a "routing-resource" graph.

VPR uses a variation of Dijkstra’s algorithm in its innermost routing loop in

order to connect the terminals of a net (signal) together. Congestion detection

and avoidance features run "on top" of this innermost algorithm to resolve con-

tention between different circuit signals over the limited interconnect resources

in the FPGA.

gcc 176.gcc is based on gcc Version 2.7.2.2. It generates code for a Motorola 88100

processor. The benchmark runs as a compiler with many of its optimization

flags enabled. 176.gcc has had its inlining heuristics altered slightly, so as to in-

linemore code thanwould be typical on aUnix system in 1997. It is expected that

this effect will be more typical of compiler usage in 2002. This was done so that

176.gcc would spend more time analyzing it’s source code inputs, and use more

memory. Without this effect, 176.gcc would have done less analysis, and needed

more input workloads to achieve the run times required for SPEC CINT2000.

181.mcf A benchmark derived from a program used for single-depot vehicle scheduling

in public mass transportation. The program is written in C, the benchmark

version uses almost exclusively integer arithmetic.

The program is designed for the solution of single-depot vehicle scheduling

346



SPEC benchmarks

(sub-)problems occurring in the planning process of public transportation com-

panies. It considers one single depot and a homogeneous vehicle fleet. Based

on a line plan and service frequenciesd, so-called timetabled trips with fixed de-

parture/arrival locations and times are derived. Each of this timetabled trip has

to be serviced by exactly one vehicle. The links between these trips are so-called

dead-head trips. In addition, there are pull-out and pull-in trips for leaving and

entering the depot.

Cost coefficients are given for all dead-head, pull-out, and pull-in trips. It is the

task to schedule all timetabled trips to so-called blocks such that the number of

necessary vehicles is as small as possible and, subordinate, the operational costs

among all minimal fleet solutions are minimized.

For simplification in the benchmark test, we assume that each pull-out and pull-

in trip is defined implicitly with a duration of 15 minutes and a cost coefficient

of 15.

For the considered single-depot case, the problem can be formulated as a large-

scale minimum-cost flow problem that we solve with a network simplex algo-

rithm acceleratedwith a column generation. The core of the benchmark 181.mcf

is the network simplex code "MCF Version 1.2 – A network simplex implemen-

tation", For this benchmark, MCF is embedded in the column generation pro-

cess.

The network simplex algorithm is a specialized version of the well known sim-

plex algorithm for network flow problems. The linear algebra of the general

algorithm is replaced by simple network operations such as finding cycles or

modifying spanning trees that can be performed very quickly. The main work

of our network simplex implementation is pointer and integer arithmetic.

186.crafty Crafty is a high-performance Computer Chess program that is designed around

a 64-bit word. It runs on 32 bit machines using the “long long” (or similar, as

_int64 in Microsoft C) data type. It is primarily an integer code, with a sig-

nificant number of logical operations such as and, or, exclusive or and shift. It

can be configured to run a reproducible set of searches to compare the inte-

ger/branch prediction/pipe-lining facilities of a processor.

197.parser The Link Grammar Parser is a syntactic parser of English, based on link gram-

mar, an original theory of English syntax. Given a sentence, the system assigns

347



Chapter D: Detailed benchmark descriptions

to it a syntactic structure, which consists of set of labeled links connecting pairs

of words.

Theparser has a dictionary of about 60000word forms. It has coverage of awide

variety of syntactic constructions, includingmany rare and idiomatic ones. The

parser is robust; it is able to skip over portions of the sentence that it cannot

understand, and assign some structure to the rest of the sentence. It is able to

handle unknown vocabulary, and make intelligent guesses from context about

the syntactic categories of unknown words.

252.eon Eon is a probabilistic ray tracer based on Kajiya’s 1986 ACM SIGGRAPH con-

ference paper. It sends a number of 3D lines (rays) into a 3D polygonal model.

Intersections between the lines and the polygons are computed, and new lines

are generated to compute light incident at these intersection points. The final

result of the computation is an image as seen by camera. The computational

demands of the program are much like a traditional deterministic ray tracer as

described in basic computer graphics texts, but it has less memory coherence

because many of the random rays generated in the same part of the code tra-

verse very different parts of 3D space.

253.perlbmk 253.perlbmk is a cut-down version of Perl v5.005_03, the popular scripting lan-

guage. SPEC’s version of Perl has had most of OS-specific features removed. In

addition to the core Perl interpreter, several third-partymodules are used: MD5

v1.7, MHonArc v2.3.3, IO-stringy v1.205, MailTools v1.11, TimeDate v1.08.

254.gap It implements a language and library designed mostly for computing in groups

(GAP is an acronym for Groups, Algorithms and Programming).

255.vortex VORTEx is a single-user object-oriented database transaction benchmarkwhich

exercises a system kernel coded in integer C. The VORTEx benchmark is a

derivative of a fullOODBMS that has been customized to conform to SPEC CINT2000

(component measurement) guidelines.

The benchmark 255.vortex is a subset of a full object oriented database program

called VORTEx. (VORTEx stands for "Virtual Object Runtime EXpository.")

Transactions to and from the database are translated though a schema. (A

schema provides the necessary information to generate the mapping of the in-

ternally stored data block to amodel viewable in the context of the application.)

348



SPEC benchmarks

256.bzip2 256.bzip2 is based on Julian Seward’s bzip2 version 0.1. The only difference be-

tween bzip2 0.1 and 256.bzip2 is that SPEC’s version of bzip2 performs no file

I/O other than reading the input. All compression and decompression happens

entirely in memory. This is to help isolate the work done to only the CPU and

memory subsystem.

twolf TheTimberWolfSC placement and global routing package is used in the process

of creating the lithography artwork needed for the production of microchips.

Specifically, it determines the placement and global connections for groups of

transistors (known as standard cells) which constitute themicrochip. Theplace-

ment problem is a permutation. Therefore, a simple or brute force exploration

of the state space would take an execution time proportional to the factorial of

the input size. For problems as small as 70 cells, a brute force algorithm would

take longer than the age of the universe on the world’s fastest computer. Instead,

the TimberWolfSC program uses simulated annealing as a heuristic to find very

good solutions for the row-based standard cell design style. In this design style,

transistors are grouped together to form standard cells. These standard cells are

placed in rows so that all cells of a rowmay share power and ground connections

by abutment. The simulated annealing algorithm has found the best known so-

lutions to a large group of placement problems. The global router which follows

the placement step interconnects themicrochip design. It utilizes a constructive

algorithm followed by iterative improvement.

The basic simulated annealing algorithm has not changed since its inception in

1983. The version in the SPEC suite is the most numerically intensive version.

Recent versions have reduced runtimes by clever reductions in the search space.

However, the move strategy and cost functions are identical to later versions.

The version of TimberWolfSC that has been submitted to SPEC has been cus-

tomized for SPEC. It has been modified specifically for the benchmark suite so

that it would have a behavior that captures the flavor of many implementations

of simulated annealing. The submitted program spends most of its time in the

inner loop calculations. Therefore this version traverses memory often creating

cache misses. In fact, this version running small jobs looks like later simulated

annealing versions running on large jobs. Thiswas to insure that the benchmark

would be applicable to future versions of the program running large instances.

The submitted version should be a computers worst nightmare, yet realistic for

future problems.

349



Chapter D: Detailed benchmark descriptions

D.2.1.1 SPEC CFP2000

168.wupwise “wupwise” is an acronym for “Wuppertal Wilson Fermion Solver”, a program

in the area of lattice gauge theory (quantum chromodynamics).

Lattice gauge theory is a discretization of quantum chromodynamics which is

generally accepted to be the fundamental physical theory of strong interactions

among the quarks as constituents of matter. The most time-consuming part

of a numerical simulation in lattice gauge theory with Wilson fermions on the

lattice is the computation of quark propagators within a chromodynamic back-

ground gauge field. These computations use up a major part of the world’s high

performance computing power.

Quark propagators are obtained by solving the inhomogeneous lattice-Dirac

equation. The Wuppertal Wilson Fermion Solver (wupwise) solves the inho-

mogeneous lattice-Dirac equation via the BiCGStab iterativemethodwhich has

established itself as a method of choice.

171.swim Benchmarkweather prediction program for comparing the performance of cur-

rent supercomputers. Themodel is based on the paper, "TheDynamics of Finite-

DifferenceModels of the Shallow-Water Equations", byRobert Sadourny, J. ATM.

SCIENCES, VOL 32, NO 4, APRIL 1975.

Adapted by SPEC for use in the SPEC CPU2000 Suites as an example of a compute

intensive floating point program that was once relegated only to "supercomput-

ers" but can now be done on current computer systems.

172.mgrid 172.mgrid demonstrates the capabilities of a very simple multigrid solver in

computing a three dimensional potential field.

Adapted by SPEC from the NAS Parallel Benchmarks with modifications for

portability and a different workload.

173.applu Solution of five coupled nonlinear PDE’s, on a 3-dimensional logically struc-

tured grid, using an implicit psuedo-time marching scheme, based on two-

factor approximate factorization of the sparse Jacobian matrix. This scheme is

functionally equivalent to a nonlinear block SSOR iterative scheme with lexico-

graphic ordering. Spatial discretization of the differential operators are based on

second-order accurate finite volume scheme. Insists on the strict lexicographic

ordering during the solution of the regular sparse lower and upper triangular

matrices. As a result, the degree of exploitable parallelism during this phase is

350



SPEC benchmarks

limited to O(N) as opposed to O(N) in other phases and it’s spatial distri-

bution is non-homogenous. This fact also creates challenges during the loop

re-ordering to enhance the cache locality.

177.mesa Mesa is a free OpenGL work-alike library. Since it supports a generic frame

buffer it can be configured to have no OS or window system dependencies. Any

number of client programs can be written to stress FP, scalar or memory per-

formance (or a mix). Output can be written to image files for verification.

178.galgel This problem is a particular case of the GAMM (Gesellschaft fuer Angewandte

Mathematik undMechanik) benchmark devoted to numerical analysis of oscil-

latory instability of convection in low-Prandtl -number fluids.

The physical problem is the following. There is a rectangular box filled by a

liquid whose Prandtl number is Pr = .. The aspect ratio of the cavity length-

/height is 4. The left and right vertical walls are maintained at higher and lower

temperatures respectively. This causes a convective motion in the liquid. When

the temperature difference is relatively small the convective flow is steady. The

flow looses its stability and become oscillatory when the temperature difference

exceeds a certain value.

The buoyancy force, which causes the convective flow, is characterized by a pa-

rameter called Grashof number. Besides all, the Grashof number (Gr) is pro-

portional to the characteristic temperature difference (difference of the temper-

atures at the vertical walls in this case).

The task of theGAMMbenchmark is to calculate the critical value of theGrashof

number which corresponds to a bifurcation from steady to oscillatory state of

the flow. Together with the critical Gr it is necessary to calculate the critical

frequency (the frequency of the resulting oscillations when Gr is equal to its

critical value).

The critical values (critical Grashof number and critical frequency) depend on

all parameters of the problemand the boundary conditions. TheGAMMbench-

mark considers fixed values of the Prandtl number and the aspect ratio (0.015 and

4 respectively), and varies the boundary conditions. The boundary conditions

used here correspond to the Rigid/adiabatic–Free/adiabatic case.

The numerical method used here is the spectral Galerkinmethod with the basis

functions defined globally in the whole region of the flow.

351



Chapter D: Detailed benchmark descriptions

TheGalerkin method requires large computer memory required to keep all co-

efficients of the resulting dynamic system. To avoid this some coefficients are

recalculated each time when a calculation of rhs of the dynamic system is nec-

essary, leading to a rapid increase of the required memory and cpu time when

the number of the Galerkin basis functions is increased.

A relatively small number of degrees of freedommakes it possible to study linear

stability of steady solutions, requiring solution of an eigenvalue problem, which

is usually impossible for an arbitrary CFD code. It becomes possible with the

use of the global Galerkin method, and it was successfully done for convective

flows and for swirling flows in a closed cylindrical container.

After linear stability analysis is completed and the bifurcation point is calcu-

lated, we calculate an asymptotic approximation of the supercritical flow.

179.art TheAdaptive ResonanceTheory 2 (ART 2) neural network is used to recognize

objects in a thermal image. The objects are a helicopter and an airplane. The

neural network is first trained on the objects. After training is complete, the

learned images are found in the scanfield image. A window corresponding to

the size of the learned objects is scanned across the scanfield image and serves

as input for the neural network. The neural network attempts tomatch the win-

dowed image with one of the images it has learned.

TheART 2 neural networkmodels several characteristics of organic neural pro-

cessing that is not modelled in more traditional Feed Forward Neural Net-

works(FFNN). In brief, ART 2 neural networks offer the following advantages

over traditional FFNN:

• Expectation influences inputs—The past learnings of an ART 2 neural

network influence the matching process.

• Creates own classifications—During training, the ART 2 neural network

does not need explicit output information; it creates its own classification

groups.

• Learns on-the-fly—ART 2 neural networks are capable of learning and

classifying at the same time. The benchmark does not use this feature of

ART 2 neural networks.

• Contrast enhancement—ART 2 neural networks perform constrast en-

hancement through a series of normalizations in the dynamical system.

352



SPEC benchmarks

183.equake The program simulates the propagation of elastic waves in large, highly hetero-

geneous valleys, such as California’s San Fernando Valley, or the Greater Los

Angeles Basin. The goal is to recover the time history of the ground motion

everywhere within the valley due to a specific seismic event. Computations are

performed on an unstructured mesh that locally resolves wavelengths, using a

finite element method.

187.facerec This is an implementation of the face recognition system described byM. Lades

et al.

In this application, an object—here, faces photographed frontally —are repre-

sented as labeled graphs. In the simplest case, used here, the graph is a regular

grid. To each vertex of the grid graph a set of features are attached; they are

computed from the Gabor wavelet transform of the image and represent it in

the surroundings of a vertex. An edge of the graph is labeled with the vec-

tor connecting its two vertices and represents the topographical relationship of

those vertices.

An object represented in this way can now be compared to a new image in a

process called elastic graph matching. This is done by first determining the Ga-

bor wavelet transform for the new image. Then, for a given correspondance

between the graph’s vertices and a set of image points, a function taking into

account both the similarity of the feature vectors at every vertex and its corre-

sponding image point, and the distortion of the graph generated by the set of

image points, measured as the change in the edge labels, can be computed. This

graph similarity function is then the objective function of an optimization pro-

cess that varies the set of corresponding points in the image. This optimization

process is implemented in two steps: The globalmove step keeps the graph rigid

and moves it systematically over all of the image, resulting in a placement that

has the highest similarity to the graph. This step can be considered as finding

the object (face) in the image. The local move step then takes this placement as

the starting position, and visits every vertex in random order. At each vertex,

the similarity function is evaluated on a small subgrid surrounding the current

position. (This is a small change from the algorithm as originally published,

where the trial moves at each node were random as well.) If the similarity func-

tion’s value is improved at one of those positions, the change ismade permanent;

such a move is called a hop. One round visiting each vertex position is called

a sweep. The local move step terminates when a sweep is completed without a

353



Chapter D: Detailed benchmark descriptions

hop having been performed.

The benchmark consists of the following main phases:

• Face Learning: The system has no prior knowledge of the class of object

it is supposed to recognize. It "learns" this by extracting a canonic graph

from one so-called canonic image; that image and the position at which

the graph is to be extracted are specified by the user.

• Graph Generation: For each of the images in the album gallery (see Input

Description, below), the Gabor wavelet transform is computed, and the

global move step is performed using the canonic graph. The resultant

graph is extracted from the transform and stored.

• Recognition: For each of the images in the probe gallery (see Input De-

scription, below), theGaborwavelet transform is computed, and the global

move step is performed using the canonic graph. Then, a local move step

is performed using each of the stored graphs. The resultant vector of sim-

ilarity values is searched for the maximal value; the associated graph (and

image) indicate the person recognized.

The parts that take the most computational time have the following character-

istics:

• GaborWavelet Transform: The transform is performed by computing the

forward fast Fourier transform (FFT) of the image, multiplying it with

a number (here, 40) of kernels, computing the backward FFT for each

of the results, and inserting the absolute value for each pixel into a two-

dimensional array of feature vectors. This last step is similar to perform-

ing a transpose of a large matrix, and stresses a processor’s memory sub-

system. Finally, each feature vector is normalized. Run time is propor-

tional to the sum of the number of entries in the album and probe gal-

leries.

• Global Move: This takes only a smallish part of the total run time. It is

dominated by the computation of the feature similarity function, which

basically is the scalar product of the two feature vectors (one from the

graph, one from the image transform). Again, run time is proportional

to the sum of the number of entries in the album and probe galleries.

354



SPEC benchmarks

• Local Move: The local move step is dominated by the computation of

the similarity function. In addition to the feature similarity function de-

scribed above, now also the distortion of the grid introduced by the hops

has to be taken into account. This is done incrementally, i.e., the contribu-

tion of the vertex currently being considered to the distortion is computed

for both its old and its new position, which entails handling the nine dif-

ferent positions a vertex can be in the graph. The run time of this phase

is proportional to the product of the number of entries in the album and

probe galleries.

The program allocates its memory on reading the run parameters (see below),

and makes use of it while generating the graphs. During each recognition step,

practically all of the code is exercised.

188.ammp The benchmark runs molecular dynamics (i.e. solves the ODE defined by New-

ton’s equations for themotions of the atoms in the system) on a protein-inhibitor

complex which is embedded in water. The energy is approximated by a classi-

cal potential or "force field". The protein is HIV protease complexed with the

inhibitor indinavir. There are 9,582 atoms in the water and protein making this

representative of a typical large simulation. This benchmark is derived from

published work on understanding drug resistance in HIV.

189.lucas Performs the Lucas-Lehmer test to check primality ofMersenne numbers p−,
using arbitrary-precision (array-integer) arithmetic. Accomplishes theMersenne-

mod squaring via the discrete weighted transform technique of Crandall and

Fagin. Uses a data-local, cache-friendly FFT to efficiently perform the large-

integer squaring of the Lucas-Lehmer iterations.

191.fma3d3d (FMA-3D) FMA-3D is a finite elementmethod computer programdesigned to sim-

ulate the inelastic, transient dynamic response of three-dimensional solids and

structures subjected to impulsively or suddenly applied loads. As an explicit

code, the program is appropriate for problems where high rate dynamics or

stress wave propagation effects are important. In contrast to programs using

implicit time integration algorithms, the program uses a large number of rela-

tively small time steps, with the solution for the next configuration of the body

being explicit (and inexpensive) at each step. To further reduce the computa-

tional effort, the programhas a complete implementation ofCourant subcycling

in which each element is integrated with the maximum time step permitted by

355



Chapter D: Detailed benchmark descriptions

local stability criteria. For simulations that have large differences in element

critical time steps over the mesh, very significant savings in execution time are

achieved. There are no inherent limits on the size of an analysis model, and

storage allocation is dynamic within the code.

The programmay be applied to static and quasi-static problems either by using

the dynamic relaxation option or by simply applying the external loads slowly

and integrating the dynamics equations until all significant transients have died

out.

The algorithms and architecture of the program are designed for accuracy and

robustness. The solution portion of the program is in a form suitable for cache-

based computer hardware architectures. The program is written in Fortran-90

and consists of over 50,000 lines of code and comments. The program’s key

features include:

• Innovative techniques for managing large model databases

• A complete library of finite elements including rigid bodies

• An extensive assortment of constraint and loading options

• Practical sliding interfaces for multi-component analyses

• Extensive options for model modification during a simulation

• Transient dynamic analysis using Courant subcycling

• One-, two- and three-dimensional strain gauges.

200.sixtrack The function of the program is to track a variable number of particles for a

variable number of turns round a model of a particle accelerator such as the

Large Hadron Collider (LHC) to check the Dynamic Aperture (DA) i.e. the

long term stability of the beam.

301.apsi Program to solve for the mesoscale and synoptic variations of potential tem-

perature, U AND V wind components, and the mesoscale vertical velocity W

pressure and distribution of pollutants C having sources Q. The synoptic scale

components are in quassi-steady state balance, while the mesoscale pressure

and velocity W are found diagnostically.

The solution of the complete system is performed by using the splitting-up

method. In specific the horizontal advection is carried out by an explicit leapfrog

356



Test benchmarks

scheme, the horizontal diffusion is performed by the method of the eigenval-

ues, or equvalently by verticalmultiplying the fourier coefficients by appropriate

exponentials. The vertical diffusion is treated with a semi-implicit pade-crank-

nickolson, as well as the vertical advection. The pressure derivative terms are

treated with the so-called pressure averaging technique. Finally other terms

will be dubbed in the advection part (coriolis). The model calculates prognos-

tically the potential temperature, U,V wind components and concentrations of

pollutants C (POTT,UX,VY,C). The pressure and the vertical velocity will be

calculated diagnostically (PRES,WZ).The diffusivities are also calculated diag-

nostically using information on UX,VY, POTT.

D.3 Test benchmarks

The test benchmark suite includes two floating-point intensive benchmarks written in C by John

Walker, used to evaluate an ADVS enabled system. Both benchmarks fbench and ffbench are run

with default parameters.

D.3.1 fbench

fbench is a small benchmark written in C by JohnWalker, implementing raytracing [Walker, 1980].

The benchmark is described by the author:

fbench is a complete optical design raytracing algorithm, shorn of its user interface

and recast into portable C. It not only determines execution speed on an extremely

floating point (including trigonometric functions) intensive real-world application, it

checks accuracy on an algorithm that is exquisitely sensitive to errors. The perfor-

mance of this program is typically far more sensitive to changes in the efficiency of

the trigonometric library routines than the average floating point program.

The benchmark may be compiled in two modes. If the symbol INTRIG is defined,

built-in trigonometric and square root routines will be used for all calculations. Tim-

ingsmadewithINTRIG defined reflect themachine’s basic floating point performance

for the arithmetic operators. If INTRIG is not defined, the system library math.h

357



Chapter D: Detailed benchmark descriptions

functions are used. Results with INTRIG not defined reflect the system’s library per-

formance and/or floating point hardware support for trig functions and square root.

Results with INTRIG defined are a good guide to general floating point performance,

while resultswithINTRIGundefined indicate the performance of an applicationwhich

is math function intensive.

D.3.2 ffbench

ffbench is a small benchmark that performs an FFT [Walker, 1989].

Ffbench executes a specified number of passes (default 20) through a loop in

which each iteration performs a fast Fourier transform of a square matrix (default

size  × ) of complex numbers (default precision double), followed by the in-

verse transform. After all loop iterations are performed the results are checked against

known correct values.

This benchmark is intended for use on C implementations which define int as 32

bits or longer and permit allocation and direct addressing of arrays larger than one

megabyte.

358



Appendix E

���������� 	
�� 
�����

����

“It ended up being so slow it could do hardly anything, and we had to abandon it. But at least it was

an aggressive shot—one that we just didn’t target correctly.”

Gordon Moore (1929 —)



Chapter E: Arithmetic VHDL source code

E.1 32 bit (7; 2) unsignedmultiplier

1 -------------------------------------------------------------------------------
2 -- File : unsigned_compressor_mult_32b_by_32b_7_to_2.vhd
3 -- Author : This file was generated with cmultgen, by Dan Kelly
4 -- Company : University of Adelaide
5 -- Date : Fri Feb 20 14:12:43 2009
6
7 -------------------------------------------------------------------------------
8 -- Copyright (c) 2008 University of Adelaide, AUSTRALIA
9 -------------------------------------------------------------------------------
10 -- Description :
11 -- An unsigned 32 bit by 32 bit multiplier, based on 7:2 compessors
12 -------------------------------------------------------------------------------
13
14 library IEEE;
15 use IEEE.std_logic_1164.all;
16 use IEEE.numeric_std.all;
17
18 library compressorLib;
19 use compressorLib.compressorLib.all;
20
21 library arith_lib;
22 use arith_lib.arith_lib.all;
23
24 -------------------------------------------------------------------------------
25
26 entity mult is
27
28 port (
29 multA : in std_logic_vector (31 downto 0);
30 multB : in std_logic_vector (31 downto 0);
31 PROD : out std_logic_vector (63 downto 0)
32 );
33
34 end mult;
35
36 -------------------------------------------------------------------------------
37
38 architecture arch of mult is
39 signal a0_b0 : std_logic; -- partial product
40 signal a1_b0 : std_logic; -- partial product
41 signal a2_b0 : std_logic; -- partial product
42 signal a3_b0 : std_logic; -- partial product
43 signal a4_b0 : std_logic; -- partial product
44 -- ...
45 -- <etc>
46 -- ...
47 signal a30_b31 : std_logic; -- partial product
48 signal a31_b31 : std_logic; -- partial product
49
50 signal c0i : std_logic_vector(6 downto 0); -- compressor 0 input
51 signal c0 : std_logic_vector(1 downto 0); -- compressor 0 output
52 signal c1i : std_logic_vector(6 downto 0); -- compressor 1 input
53 -- ...
54 -- <etc>
55 -- ...
56 signal c291 : std_logic_vector(1 downto 0); -- compressor 291 output
57 signal c292i : std_logic_vector(6 downto 0); -- compressor 292 input
58 signal c292 : std_logic_vector(1 downto 0); -- compressor 292 output
59 signal cpaAdd_A : std_logic_vector(59 downto 0);
60 signal cpaAdd_B : std_logic_vector(59 downto 0);
61 signal cpaAdd_SUM : std_logic_vector(59 downto 0);
62 signal product : std_logic_vector(63 downto 0);
63 begin
64
65 a0_b0 <= multA(0) AND multB(0);
66 a1_b0 <= multA(1) AND multB(0);
67 a2_b0 <= multA(2) AND multB(0);
68 -- ...
69 -- <etc>
70 -- ...
71 a30_b31 <= multA(30) AND multB(31);
72 a31_b31 <= multA(31) AND multB(31);
73
74 c0i <= a1_b0 & a0_b1 & ’0’ & ’0’ & ’0’ & ’0’ & ’0’;
75
76 compressor0 : compressor_7_to_2
77 port map (
78 X => c0i,
79 Y => c0);
80
81 c1i <= a2_b0 & a1_b1 & a0_b2 & ’0’ & ’0’ & ’0’ & ’0’;

360



32 bit approximate DI divider

82
83 -- ...
84 -- <etc>
85 -- ...
86
87 compressor291 : compressor_7_to_2
88 port map (
89 X => c291i,
90 Y => c291);
91
92 c292i <= c231(1) & c232(0) & ’0’ & ’0’ & ’0’ & ’0’ & ’0’;
93
94 compressor292 : compressor_7_to_2
95 port map (
96 X => c292i,
97 Y => c292);
98
99 cpaAdd_A <= c232(1) & c291(1) & c290(1) & c289(1) & c288(1) & c287(1) & c286(1) & c285(1) & c284(1) & c283(1) &

c282(1) & c281(1) & c280(1) & c279(1) & c278(1) & c277(1) & c276(1) & c275(1) & c274(1) & c273(1) & c272
(1) & c271(1) & c270(1) & c269(1) & c268(1) & c267(1) & c266(1) & c265(1) & c264(1) & c263(1) & c262(1) &
c261(1) & c260(1) & c259(1) & c258(1) & c257(1) & c256(1) & c255(1) & c254(1) & c253(1) & c252(1) & c251
(1) & c250(1) & c249(1) & c248(1) & c247(1) & c246(1) & c245(1) & c244(1) & c243(1) & c242(1) & c241(1) &
c240(1) & c239(1) & c238(1) & c237(1) & c236(1) & c235(1) & c234(1) & c233(1);

100 cpaAdd_B <= c292(1) & c292(0) & c291(0) & c290(0) & c289(0) & c288(0) & c287(0) & c286(0) & c285(0) & c284(0) &
c283(0) & c282(0) & c281(0) & c280(0) & c279(0) & c278(0) & c277(0) & c276(0) & c275(0) & c274(0) & c273
(0) & c272(0) & c271(0) & c270(0) & c269(0) & c268(0) & c267(0) & c266(0) & c265(0) & c264(0) & c263(0) &
c262(0) & c261(0) & c260(0) & c259(0) & c258(0) & c257(0) & c256(0) & c255(0) & c254(0) & c253(0) & c252
(0) & c251(0) & c250(0) & c249(0) & c248(0) & c247(0) & c246(0) & c245(0) & c244(0) & c243(0) & c242(0) &
c241(0) & c240(0) & c239(0) & c238(0) & c237(0) & c236(0) & c235(0) & c234(0);

101
102 cpaAdder : Add
103 generic map (
104 width => 60,
105 speed => 2)
106 port map (
107 A => cpaAdd_A,
108 B => cpaAdd_B,
109 S => cpaAdd_SUM);
110
111 product(3 downto 0) <= c233(0) & c165(0) & c0(0) & a0_b0;
112 product(63 downto 4) <= cpaAdd_SUM;
113
114 PROD <= product;
115
116 end arch;
117
118 -------------------------------------------------------------------------------

E.2 32 bit approximate DI divider

1 ------------------------------------------------------------------
2 -- File : dan_div_full
3 -- Author : Dan Kelly <dankelly@ieee.org>
4 -- Company : University of Adelaide
5 -- Date : Aug 26 2008
6 -------------------------------------------------------------------------------
7 -- Copyright (c) 2005 University of Adelaide, AUSTRALIA
8 -------------------------------------------------------------------------------
9 -- Description :
10 -- Perform the approximating division on operands Z and D.
11 -- Produce the 32-bit quotient Q. Does not produce a remainder.
12 -- Signals a division by zero with the divZero line
13 -------------------------------------------------------------------------------
14
15 library IEEE;
16 use IEEE.std_logic_1164.all;
17 use IEEE.numeric_std.all;
18
19 library arith_lib;
20 use arith_lib.arith_lib.all;
21
22 use work.divlib.all;
23
24 -------------------------------------------------------------------------------
25
26 entity dan_div_full is
27
28 port (
29 Z : in std_logic_vector(31 downto 0); -- dividend
30 D : in std_logic_vector(31 downto 0); -- divisor
31 CLK : in std_logic; -- clock signal
32 RESET : in std_logic; -- reset signal
33 Q : out std_logic_vector(31 downto 0); -- quotient

361



Chapter E: Arithmetic VHDL source code

34 -- no remainder
35 divZero : out std_logic -- d == 0 -> ’1’
36 );
37
38 end dan_div_full;
39
40 -------------------------------------------------------------------------------
41
42 architecture structure of dan_div_full is
43 signal initApprox : std_logic_vector(31 downto 0);
44 signal multTerm2 : std_logic_vector(31 downto 0);
45 signal rndShamnt : std_logic_vector( 4 downto 0);
46 signal quo_sum : std_logic_vector(31 downto 0);
47 signal quo_carry : std_logic_vector(31 downto 0);
48 begin
49
50 -----------------------------------------------------------------------------
51 -- INITIALIZATION
52 -----------------------------------------------------------------------------
53
54 init_phase: dan_div_full_init
55 port map (
56 Z => Z,
57 D => D,
58 CLK => CLK,
59 RESET => RESET,
60 initApprox => initApprox,
61 multTerm2 => multTerm2,
62 rndShamnt => rndShamnt,
63 divZero => divZero);
64
65 -----------------------------------------------------------------------------
66 -- DIVISION
67 -----------------------------------------------------------------------------
68
69 div_phase: dan_div_full_div
70 port map (
71 initApprox => initApprox,
72 multTerm2 => multTerm2,
73 rndShamnt => rndShamnt,
74 CLK => CLK,
75 RESET => RESET,
76 quo_sum => quo_sum,
77 quo_carry => quo_carry);
78
79 -----------------------------------------------------------------------------
80 -- ACCUMULATION
81 -----------------------------------------------------------------------------
82
83 accum_phase: dan_div_full_acc
84 port map (
85 quo_sum => quo_sum,
86 quo_carry => quo_carry,
87 CLK => CLK,
88 RESET => RESET,
89 quo => Q);
90
91 end structure;
92 -------------------------------------------------------------------------------

E.2.1 Initialisation stage

1 ------------------------------------------------------------------
2 -- File : dan_div_full_init
3 -- Author : Dan Kelly <dankelly@ieee.org>
4 -- Company : University of Adelaide
5 -- Date : Aug 26 2008
6 -------------------------------------------------------------------------------
7 -- Copyright (c) 2005 University of Adelaide, AUSTRALIA
8 -------------------------------------------------------------------------------
9 -- Description :
10 -- Perform the approximating division on operands Z and D.
11 -- Produce the 32-bit quotient Q. Does not produce a remainder.
12 -- Signals a division by zero with the divZero line
13 -------------------------------------------------------------------------------
14
15 library IEEE;
16 use IEEE.std_logic_1164.all;
17 use IEEE.numeric_std.all;
18
19 library arith_lib;
20 use arith_lib.arith_lib.all;
21
22 use work.divlib.all;
23
24 -------------------------------------------------------------------------------
25
26 entity dan_div_full_init is

362



32 bit approximate DI divider

27
28 port (
29 Z : in std_logic_vector(31 downto 0); -- dividend
30 D : in std_logic_vector(31 downto 0); -- divisor
31 CLK : in std_logic; -- clock signal
32 RESET : in std_logic; -- reset signal
33 initApprox : out std_logic_vector(31 downto 0); -- quotient
34 multTerm2 : out std_logic_vector(31 downto 0);
35 rndShamnt : out std_logic_vector( 4 downto 0);
36 divZero : out std_logic);
37
38 end dan_div_full_init;
39
40 -------------------------------------------------------------------------------
41
42 architecture structure of dan_div_full_init is
43 -- initialization
44 signal lzd_d : std_logic_vector(31 downto 0);
45 signal lzd_dmr1 : std_logic_vector(31 downto 0); -- mask r-shift 1
46 signal lzd_dmr1_and_d : std_logic_vector(31 downto 0);
47 signal initShamnt : std_logic_vector( 4 downto 0);
48 signal initApprox_sig : std_logic_vector(31 downto 0);
49 signal initApprox_sig_lat : std_logic_vector(31 downto 0);
50 signal multTerm2_en : std_logic; -- enable multTerm2
51 signal numTerm_A : std_logic_vector(31 downto 0);
52 signal numTerm_B : std_logic_vector(31 downto 0);
53 signal numTerm_CI : std_logic;
54 signal numTerm_S : std_logic_vector(31 downto 0);
55 signal numTerm_S_lat : std_logic_vector(31 downto 0);
56 signal numTerm_CO : std_logic;
57 signal lzd_numTerm : std_logic_vector(31 downto 0);
58 signal lzd_numTerm_mr1 : std_logic_vector(31 downto 0);
59 signal lzd_nT_mr1_and : std_logic_vector(31 downto 0);
60 signal d_masked : std_logic_vector(31 downto 0);
61 signal d_masked_enc : std_logic_vector( 4 downto 0);
62 signal d_masked_enc_lat: std_logic_vector( 4 downto 0);
63 signal nextLead : std_logic_vector( 4 downto 0);
64 signal rndShamntOut : std_logic_vector( 4 downto 0);
65
66 begin
67
68 -- div by zero ?
69 divZero <= ’1’ when D="00000000000000000000000000000000"
70 else ’0’;
71
72 -----------------------------------------------------------------------------
73 -- INITIALIZATION
74 -----------------------------------------------------------------------------
75
76 lzd_of_d: LeadZeroDetMask
77 generic map (
78 width => 32,
79 speed => 2)
80 port map (
81 A => D,
82 Z => lzd_d,
83 Z_mr1 => lzd_dmr1);
84
85 lzd_dmr1_and_d <= lzd_dmr1 and D;
86
87 numTerm_A <= (lzd_dmr1_and_d(30 downto 0) & ’0’) --(2^B - d)
88 when lzd_dmr1_and_d=(31 downto 0 => ’0’) else
89 D; --(d - 2^A)
90
91 numTerm_B <= not(D) --(2^B - d)
92 when lzd_dmr1_and_d=(31 downto 0 => ’0’) else
93 lzd_d; --(d - 2^A)
94
95 numTerm_CI <= ’1’; -- always a subtraction
96
97 numTerm_add: AddCfast -- or AddC?
98 generic map (
99 width => 32,
100 speed => 2)
101 port map (
102 A => numTerm_A,
103 B => numTerm_B,
104 CI => numTerm_CI,
105 S => numTerm_S,
106 CO => numTerm_CO);
107
108 numTerm_S_latch: for i in 31 downto 0 generate
109 numTerm_S_latches: dFFReset
110 port map (
111 D => numTerm_S(i),
112 R => RESET,
113 CLK => CLK,
114 Q => numTerm_S_lat(i));
115 end generate numTerm_S_latch;
116
117 lzd_of_numTerm: LeadZeroDetMask
118 generic map (
119 width => 32,
120 speed => 2)
121 port map (

363



Chapter E: Arithmetic VHDL source code

122 A => numTerm_S_lat,
123 Z => lzd_numTerm,
124 Z_mr1 => lzd_numTerm_mr1);
125
126 lzd_nT_mr1_and <= lzd_numTerm_mr1 and numTerm_S_lat;
127
128 multTerm2_en <= ’0’ when lzd_nT_mr1_and=(31 downto 0 => ’0’)
129 else ’1’;
130
131 enc_initShamnt: Encode
132 generic map (
133 width => 32)
134 port map (
135 A => lzd_d,
136 Z => initShamnt);
137
138 initApprox_sig <= std_logic_vector(shift_right(unsigned(Z),
139 to_integer(unsigned(initShamnt))));
140
141 initApprox_sig_latch: for i in 31 downto 0 generate
142 initApprox_sig_latches: dFFReset
143 port map (
144 D => initApprox_sig(i),
145 R => RESET,
146 CLK => CLK,
147 Q => initApprox_sig_lat(i));
148 end generate initApprox_sig_latch;
149
150 multTerm2 <= (’0’ & initApprox_sig_lat(30 downto 0)) when multTerm2_en=’1’
151 else
152 (31 downto 0 => ’0’);
153
154 enc_nextLead: Encode
155 generic map (
156 width => 32)
157 port map (
158 A => lzd_numTerm,
159 Z => nextLead);
160
161 d_masked <= lzd_dmr1;
162
163 enc_d_masked: Encode
164 generic map (
165 width => 32)
166 port map (
167 A => d_masked,
168 Z => d_masked_enc);
169
170 d_masked_enc_latch: for i in 4 downto 0 generate
171 d_masked_enc_latches: dFFReset
172 port map (
173 D => d_masked_enc(i),
174 R => RESET,
175 CLK => CLK,
176 Q => d_masked_enc_lat(i));
177 end generate d_masked_enc_latch;
178
179 rndShamnt_sub: Add
180 generic map (
181 width => 5,
182 speed => 2)
183 port map (
184 A => d_masked_enc_lat,
185 B => nextLead,
186 S => rndShamntOut);
187
188 initApprox <= initApprox_sig_lat;
189
190 rndShamnt <= rndShamntOut;
191
192 end structure;
193 -------------------------------------------------------------------------------

E.2.2 Division stage

1 ------------------------------------------------------------------
2 -- File : dan_div_full_div
3 -- Author : Dan Kelly <dankelly@ieee.org>
4 -- Company : University of Adelaide
5 -- Date : Aug 26 2008
6 -------------------------------------------------------------------------------
7 -- Copyright (c) 2005 University of Adelaide, AUSTRALIA
8 -------------------------------------------------------------------------------
9 -- Description :
10 -- Perform the approximating division on operands Z and D.
11 -- Produce the 32-bit quotient Q. Does not produce a remainder.
12 -- Signals a division by zero with the divZero line
13 -------------------------------------------------------------------------------

364



32 bit approximate DI divider

14
15 library IEEE;
16 use IEEE.std_logic_1164.all;
17 use IEEE.numeric_std.all;
18
19 library arith_lib;
20 use arith_lib.arith_lib.all;
21
22 use work.divlib.all;
23
24 -------------------------------------------------------------------------------
25
26 entity dan_div_full_div is
27
28 port (
29 initApprox : in std_logic_vector(31 downto 0);
30 multTerm2 : in std_logic_vector(31 downto 0);
31 rndShamnt : in std_logic_vector( 4 downto 0);
32 CLK : in std_logic;
33 RESET : in std_logic;
34 quo_sum : out std_logic_vector(31 downto 0);
35 quo_carry : out std_logic_vector(31 downto 0));
36
37 end dan_div_full_div;
38
39 -------------------------------------------------------------------------------
40
41 architecture structure of dan_div_full_div is
42 signal x_sum : std_logic_vector(31 downto 0);
43 signal x_carry : std_logic_vector(31 downto 0);
44 signal x_sum_rs : std_logic_vector(31 downto 0);
45 signal x_carry_rs : std_logic_vector(31 downto 0);
46 signal quo_sum_sig : std_logic_vector(31 downto 0);
47 signal quo_carry_sig : std_logic_vector(31 downto 0);
48 signal csa_tree_in : std_logic_vector(127 downto 0);
49 signal csa_sum : std_logic_vector(31 downto 0);
50 signal csa_carry : std_logic_vector(31 downto 0);
51 signal x_sum_latch_in : std_logic_vector(31 downto 0);
52 signal x_car_latch_in : std_logic_vector(31 downto 0);
53 signal q_sum_latch_in : std_logic_vector(31 downto 0);
54 signal q_car_latch_in : std_logic_vector(31 downto 0);
55 signal rndShamnt_lat : std_logic_vector( 4 downto 0);
56
57 begin
58
59 -----------------------------------------------------------------------------
60 -- DIVISION
61 -----------------------------------------------------------------------------
62
63 x_sum_latch_in <= initApprox when RESET=’1’
64 else x_sum_rs;
65
66 -- x_sum
67 x_sum_latch: for i in 31 downto 0 generate
68 x_sum_latch_i: dFFReset
69 port map (
70 D => x_sum_latch_in(i),
71 R => RESET,
72 CLK => CLK,
73 Q => x_sum(i));
74 end generate x_sum_latch;
75
76 x_sum_rs <= std_logic_vector(shift_right(unsigned(x_sum),
77 to_integer(unsigned(rndShamnt))));
78
79 x_car_latch_in <= multTerm2 when RESET=’1’
80 else x_carry_rs;
81 -- x_carry
82 x_carry_latch: for i in 31 downto 0 generate
83 x_carry_latch_i: dFFReset
84 port map (
85 D => x_car_latch_in(i),
86 R => RESET,
87 CLK => CLK,
88 Q => x_carry(i));
89 end generate x_carry_latch;
90
91 -- latch the rndShamnt
92 rndShamnt_latch: for i in 4 downto 0 generate
93 rndShamnt_latch_i: dFFReset
94 port map (
95 D => rndShamnt(i),
96 R => RESET,
97 CLK => CLK,
98 Q => rndShamnt_lat(i));
99 end generate rndShamnt_latch;
100
101 x_carry_rs <= std_logic_vector(shift_right(unsigned(x_carry),
102 to_integer(unsigned(rndShamnt_lat))));
103
104 q_sum_latch_in <= initApprox when RESET=’1’
105 else csa_sum;
106
107 -- quo_sum
108 quo_sum_latch: for i in 31 downto 0 generate

365



Chapter E: Arithmetic VHDL source code

109 quo_sum_latch_i: dFFReset
110 port map (
111 D => q_sum_latch_in(i),
112 R => RESET,
113 CLK => CLK,
114 Q => quo_sum_sig(i));
115 end generate quo_sum_latch;
116
117 q_car_latch_in <= (31 downto 0 => ’0’) when RESET=’1’
118 else csa_carry;
119
120 -- quo_carry
121 quo_carry_latch: for i in 31 downto 0 generate
122 quo_carry_latch_i: dFFReset
123 port map (
124 D => q_car_latch_in(i),
125 R => RESET,
126 CLK => CLK,
127 Q => quo_carry_sig(i));
128 end generate quo_carry_latch;
129
130 -- concatenate all inputs
131 csa_tree_in <= x_sum_rs & x_carry_rs & quo_sum_sig & quo_carry_sig;
132
133 -- CSA
134 csa_tree: AddMopCsv
135 generic map (
136 width => 32,
137 depth => 4,
138 speed => 2)
139 port map (
140 A => csa_tree_in,
141 S => csa_sum,
142 C => csa_carry);
143
144 quo_sum <= quo_sum_sig;
145 quo_carry <= quo_carry_sig;
146
147 end structure;
148
149 -------------------------------------------------------------------------------

E.2.3 Accumulation stage

1 ------------------------------------------------------------------
2 -- File : dan_div_full_acc
3 -- Author : Dan Kelly <dankelly@ieee.org>
4 -- Company : University of Adelaide
5 -- Date : Aug 26 2008
6 -------------------------------------------------------------------------------
7 -- Copyright (c) 2005 University of Adelaide, AUSTRALIA
8 -------------------------------------------------------------------------------
9 -- Description :
10 -------------------------------------------------------------------------------
11
12 library IEEE;
13 use IEEE.std_logic_1164.all;
14 use IEEE.numeric_std.all;
15
16 library arith_lib;
17 use arith_lib.arith_lib.all;
18
19 use work.divlib.all;
20
21 -------------------------------------------------------------------------------
22
23 entity dan_div_full_acc is
24
25 port (
26 quo_sum : in std_logic_vector(31 downto 0);
27 quo_carry : in std_logic_vector(31 downto 0);
28 CLK : in std_logic;
29 RESET : in std_logic;
30 quo : out std_logic_vector(31 downto 0));
31
32 end dan_div_full_acc;
33
34 -------------------------------------------------------------------------------
35
36 architecture structure of dan_div_full_acc is
37 signal cpa_q : std_logic_vector(31 downto 0);
38 begin
39
40 -----------------------------------------------------------------------------
41 -- ACCUMULATION
42 -----------------------------------------------------------------------------
43
44 cpa_add: Add

366



32 bit floating point adder/subtractor

45 generic map (
46 width => 32,
47 speed => 2)
48 port map (
49 A => quo_sum,
50 B => quo_carry,
51 S => cpa_q);
52
53 quo <= cpa_q;
54
55 end structure;
56 -------------------------------------------------------------------------------

E.3 32 bit floating point adder/subtractor

1 -------------------------------------------------------------------------------
2 -- Title : 32-bit IEEE floating point adder
3 -- Project : MIPS R4400
4 -------------------------------------------------------------------------------
5 -- File : fpAdderSng.vhd
6 -- Author : Dan Kelly <dankelly@eleceng.adelaide.edu.au>
7 -- Company : University of Adelaide
8 -- Date : 01/11/2005
9 -------------------------------------------------------------------------------
10 -- Copyright (c) 2005 University of Adelaide, AUSTRALIA
11 -------------------------------------------------------------------------------
12 -- Description :
13 -- An IEEE floating point adder
14 -- Stages are together in one unit, will be pipelined later
15 -- Control bits
16 -- subtract is like Cin bit: 0->add, 1->subtract
17 -- Round bits
18 -- "00"->round towards nearest (default)
19 -- "01"->round towards +infinity
20 -- "10"->round towards -infinity
21 -- "11"->round towards 0
22 -- EOP (effective operation)
23 -- 1->add, 0->subtract
24 -------------------------------------------------------------------------------
25
26 library IEEE;
27 use IEEE.std_logic_1164.all;
28
29 library mips_lib;
30 use mips_lib.EX_comp.all;
31 use mips_lib.GEN_comp.all;
32 use mips_lib.FPU_comp.all;
33 --use mips_lib.mips_utils.all;
34 --use mips_lib.image_pkg.all;
35
36 -------------------------------------------------------------------------------
37
38 entity fpAdderSng is
39
40 port (
41 A : in std_logic_vector(31 downto 0);
42 B : in std_logic_vector(31 downto 0);
43 subtract : in std_logic;
44 round : in std_logic_vector(1 downto 0);
45 Z : out std_logic_vector(31 downto 0);
46 overflow : out std_logic;
47 underflow : out std_logic;
48 -- divZero : out std_logic;
49 inexact : out std_logic;
50 invalid : out std_logic);
51
52 end fpAdderSng;
53
54 -------------------------------------------------------------------------------
55
56 architecture structure of fpAdderSng is
57
58 signal sgnA : std_logic;
59 signal sgnB : std_logic;
60 signal expA : std_logic_vector( 7 downto 0);
61 signal expB : std_logic_vector( 7 downto 0);
62 signal manA : std_logic_vector(23 downto 0); -- inc hidden bit
63 signal manB : std_logic_vector(23 downto 0); -- inc hidden bit
64 signal muxExp : std_logic_vector( 7 downto 0);
65 signal expCmp : std_logic;
66 signal expCmpBar : std_logic;
67 signal zeroD : std_logic;
68 signal ZisSpec : std_logic;

367



Chapter E: Arithmetic VHDL source code

69 signal specZ : std_logic_vector(31 downto 0);
70 signal denormA : std_logic;
71 signal denormB : std_logic;
72 signal zeroA : std_logic;
73 signal zeroB : std_logic;
74 signal zeroes : std_logic;
75 signal invalidOp : std_logic;
76 signal noSft : std_logic;
77 signal expDiffOut : std_logic_vector( 7 downto 0);
78 signal swpAOut : std_logic_vector(26 downto 0);
79 signal swpBOut : std_logic_vector(23 downto 0);
80 signal rShiftOut : std_logic_vector(26 downto 0);
81 signal AInvOut : std_logic_vector(26 downto 0);
82 signal BInvOut : std_logic_vector(26 downto 0);
83 signal eop : std_logic;
84 signal invB : std_logic;
85 signal invA : std_logic;
86 signal Cin : std_logic;
87 signal manGT : std_logic;
88 signal manEq : std_logic;
89 signal manCmp : std_logic;
90 signal manSum : std_logic_vector(26 downto 0);
91 signal manOvf : std_logic;
92 signal normShamnt : std_logic_vector( 4 downto 0);
93 signal manNorm : std_logic_vector(26 downto 0);
94 signal rndOvf : std_logic;
95 signal sgnZ : std_logic;
96 signal rndLoss : std_logic;
97 signal rndOut : std_logic_vector(22 downto 0);
98 signal preSftLoss : std_logic;
99 signal postSftLoss : std_logic;
100 signal result : std_logic_vector(31 downto 0);
101 signal expUpdOut : std_logic_vector( 7 downto 0);
102 signal specOvf : std_logic;
103 signal expOvf : std_logic;
104
105 begin
106
107 inspect : fpSpecCaseDetect
108 port map (
109 subtract => subtract,
110 A => A,
111 B => B,
112 ZisSpec => ZisSpec,
113 invalidOp => invalidOp,
114 specZ => specZ,
115 denormA => denormA,
116 denormB => denormB,
117 zeroA => zeroA,
118 zeroB => zeroB);
119
120 zeroes <= zeroA and zeroB;
121
122 -- reinstate the hidden bit (if not a denormal)
123 manA(23) <= ’1’ when (denormA=’0’ and zeroA=’0’) else
124 ’0’;
125 manB(23) <= ’1’ when (denormB=’0’ and zeroB=’0’) else
126 ’0’;
127
128 -- sign, exp, mantissas
129 manA(22 downto 0) <= A(22 downto 0);
130 manB(22 downto 0) <= B(22 downto 0);
131 expA <= A(30 downto 23);
132 expB <= B(30 downto 23);
133 sgnA <= A(31);
134 sgnB <= B(31);
135
136 swap : fpAddSwap
137 port map (
138 Ain => manA,
139 Bin => manB,
140 swp => expCmpBar,
141 Aout => swpAOut(26 downto 3),
142 Bout => swpBOut);
143
144 manCompare : genGECmp2
145 generic map (
146 n => 24)
147 port map (
148 A => manA,
149 B => manB,
150 GT => manGT,
151 ET => manEq);
152
153 manCmp <= manGT or manEq;
154
155 bitInvCtrl : fpAddBitInvCtrl
156 port map (
157 eop => eop,
158 cmp => manCmp,
159 zero_d => zeroD,
160 inv_a => invA,
161 inv_b => invB,
162 sub => Cin);
163

368



32 bit floating point adder/subtractor

164 expDiff : fpAddExpDiff
165 port map (
166 Ex => expA,
167 Ey => expB,
168 cmp => expCmp,
169 d => expDiffOut);
170
171 zeroDDetect : genEqCmp
172 generic map (
173 n => 8)
174 port map (
175 A => expDiffOut,
176 B => "00000000",
177 Z => zeroD);
178
179 expSelect : fpAddMux
180 port map (
181 A => expA,
182 B => expB,
183 sel => expCmpBar,
184 Z => muxExp);
185
186 expCmpBar <= not(expCmp);
187
188 rShift : fpAddRShift
189 port map (
190 A => swpBOut,
191 shamnt => expDiffOut,
192 Z => rShiftOut,
193 sftLoss => preSftLoss);
194
195 swpAOut(2 downto 0) <= "000";
196
197 AInv : genCondInv
198 generic map (
199 n => 27)
200 port map (
201 A => swpAOut,
202 inv => invA,
203 Z => AInvOut);
204
205 BInv : genCondInv
206 generic map (
207 n => 27)
208 port map (
209 A => rShiftOut,
210 inv => invB,
211 Z => BInvOut);
212
213 eopLogic : fpAddEOPLogic
214 port map (
215 op => subtract,
216 sign_A => sgnA,
217 sign_B => sgnB,
218 EOP => eop);
219
220 manAdd : fpAddManAdd_zim
221 port map (
222 A => AInvOut,
223 B => BInvOut,
224 Cin => Cin,
225 Z => manSum,
226 ovf => manOvf);
227
228 LR1Shift : fpAddLR1Shift
229 port map (
230 A => manSum,
231 rs => manOvf,
232 num => normShamnt,
233 Z => manNorm,
234 postSftLoss => postSftLoss);
235
236 noSft <= (zeroA or denormA) and (zeroB or denormB);
237
238 LOD : fpAddLOD
239 port map (
240 A => manSum,
241 noSft => noSft,
242 Z => normShamnt);
243
244 rounding : fpManRnd
245 port map (
246 A => manNorm,
247 sgn => sgnZ,
248 rnd => round,
249 Z => rndOut,
250 expOvf => rndOvf,
251 rndLoss => rndLoss);
252
253 result(22 downto 0) <= rndOut;
254
255 expUpd : fpAddExpUpd
256 port map (
257 E => muxExp,
258 man_ovf => manOvf,

369



Chapter E: Arithmetic VHDL source code

259 shamnt => normShamnt,
260 rnd_ovf => rndOvf,
261 Z => expUpdOut,
262 ovf => expOvf,
263 undf => underflow);
264
265 result(30 downto 23) <= expUpdOut;
266
267 sign : fpAddSignLogic
268 port map(
269 sgnX => sgnA,
270 sgnY => sgnB,
271 expCmp => expCmp,
272 idExp => zeroD,
273 sub => subtract,
274 manCmp => manCmp,
275 sgnZ => sgnZ);
276
277 -- sign(Z) is needed for rounding module and special case detection
278 result(31) <= sgnZ;
279
280 specialCase : fpAddSpecCase
281 port map (
282 ZCalc => result,
283 ZisSpec => ZisSpec,
284 specZ => specZ,
285 ovf => expOvf,
286 manEq => manEq,
287 expEq => zeroD,
288 eop => eop,
289 round => round,
290 zeroes => zeroes,
291 Zout => Z);
292
293 overflow <= expOvf;
294 inexact <= rndLoss or preSftLoss or postSftLoss;
295 invalid <= invalidOp;
296
297 end structure;
298
299 -------------------------------------------------------------------------------

E.4 32 bit FPmultiplier

1 -------------------------------------------------------------------------------
2 -- Title : 32-bit IEEE floating point multiplier
3 -- Project : MIPS R4400
4 -------------------------------------------------------------------------------
5 -- File : fpMult.vhd
6 -- Author : Dan Kelly <dankelly@eleceng.adelaide.edu.au>
7 -- Company : University of Adelaide
8 -- Date : 01/04/2009
9 -------------------------------------------------------------------------------
10 -- Copyright (c) 2005 University of Adelaide, AUSTRALIA
11 -------------------------------------------------------------------------------
12 -- Description :
13 -- An IEEE floating point adder
14 -- Stages are together in one unit, will be pipelined later
15 -- Control bits
16 -- subtract is like Cin bit: 0->add, 1->subtract
17 -- Round bits
18 -- "00"->round towards nearest (default)
19 -- "01"->round towards +infinity
20 -- "10"->round towards -infinity
21 -- "11"->round towards 0
22 -- EOP (effective operation)
23 -- 1->add, 0->subtract
24 -------------------------------------------------------------------------------
25
26 library IEEE;
27 use IEEE.std_logic_1164.all;
28 use IEEE.numeric_std.all;
29
30 library mips_lib;
31 use mips_lib.EX_comp.all;
32 use mips_lib.GEN_comp.all;
33 use mips_lib.FPU_comp.all;
34
35 library arith_lib;
36 use arith_lib.arith_lib.all;
37
38 -------------------------------------------------------------------------------
39

370



32 bit FPmultiplier

40 entity fpMult is
41
42 port (
43 A : in std_logic_vector(31 downto 0);
44 B : in std_logic_vector(31 downto 0);
45 round : in std_logic_vector(1 downto 0);
46 Z : out std_logic_vector(31 downto 0);
47 overflow : out std_logic;
48 underflow : out std_logic;
49 inexact : out std_logic;
50 invalid : out std_logic);
51
52 end fpMult;
53
54 -------------------------------------------------------------------------------
55
56 architecture structure of fpMult is
57
58 signal sgnA : std_logic;
59 signal sgnB : std_logic;
60 signal expA : std_logic_vector( 7 downto 0);
61 signal expB : std_logic_vector( 7 downto 0);
62 signal manA : std_logic_vector(23 downto 0); -- inc hidden bit
63 signal manB : std_logic_vector(23 downto 0); -- inc hidden bit
64 signal muxExp : std_logic_vector( 7 downto 0);
65 signal expCmp : std_logic;
66 signal expCmpBar : std_logic;
67 signal zeroD : std_logic;
68 signal ZisSpec : std_logic;
69 signal specZ : std_logic_vector(31 downto 0);
70 signal denormA : std_logic;
71 signal denormB : std_logic;
72 signal zeroA : std_logic;
73 signal zeroB : std_logic;
74 signal zeroes : std_logic;
75 signal invalidOp : std_logic;
76 signal noSft : std_logic;
77 signal expDiffOut : std_logic_vector( 7 downto 0);
78 signal swpAOut : std_logic_vector(26 downto 0);
79 signal swpBOut : std_logic_vector(23 downto 0);
80 signal rShiftOut : std_logic_vector(26 downto 0);
81 signal AInvOut : std_logic_vector(26 downto 0);
82 signal BInvOut : std_logic_vector(26 downto 0);
83 signal eop : std_logic;
84 signal invB : std_logic;
85 signal invA : std_logic;
86 signal Cin : std_logic;
87 signal manGT : std_logic;
88 signal manEq : std_logic;
89 signal manCmp : std_logic;
90 signal manSum : std_logic_vector(26 downto 0);
91 signal manOvf : std_logic;
92 signal normShamnt : std_logic_vector( 5 downto 0);
93 signal manNorm : std_logic_vector(26 downto 0);
94 signal rndOvf : std_logic;
95 signal sgnZ : std_logic;
96 signal rndLoss : std_logic;
97 signal rndOut : std_logic_vector(22 downto 0);
98 signal preSftLoss : std_logic;
99 signal postSftLoss : std_logic;
100 signal result : std_logic_vector(31 downto 0);
101 signal expUpdOut : std_logic_vector( 7 downto 0);
102 signal specOvf : std_logic;
103 signal manProd : std_logic_vector(47 downto 0);
104 signal manProdNorm : std_logic_vector(47 downto 0);
105 signal prodLeadOne : std_logic_vector(47 downto 0);
106 signal prodLeadOneRev : std_logic_vector(47 downto 0);
107 signal prodLeadOneEnc : std_logic_vector( 5 downto 0);
108 signal expSum : std_logic_vector( 7 downto 0);
109 signal updExp : std_logic_vector( 7 downto 0);
110 signal manZ : std_logic_vector(22 downto 0);
111 signal undf : std_logic;
112 signal ovf : std_logic;
113 signal expOvf : std_logic;
114 signal expUpdOvf : std_logic;
115 signal expUnd : std_logic;
116 signal normLoss : std_logic;
117
118 begin
119
120 inspect : fpMultSpecCaseDetect
121 port map (
122 fpA => A,
123 fpB => B,
124 ZisSpec => ZisSpec,
125 invalidOp => invalidOp,
126 specZ => specZ,
127 denormA => denormA,
128 denormB => denormB,
129 zeroA => zeroA,
130 zeroB => zeroB);
131
132 zeroes <= zeroA and zeroB;
133
134 sgnZ <= sgnA xnor sgnB;

371



Chapter E: Arithmetic VHDL source code

135
136 -- reinstate the hidden bit (if not a denormal, or a zero)
137 manA(23) <= ’1’ when (denormA=’0’ and zeroA=’0’) else
138 ’0’;
139 manB(23) <= ’1’ when (denormB=’0’ and zeroB=’0’) else
140 ’0’;
141
142 -- sign, exp, mantissas
143 manA(22 downto 0) <= A(22 downto 0);
144 manB(22 downto 0) <= B(22 downto 0);
145 expA <= A(30 downto 23);
146 expB <= B(30 downto 23);
147 sgnA <= A(31);
148 sgnB <= B(31);
149
150 expAdd : fpMultExp
151 port map (
152 Ea => expA,
153 Eb => expB,
154 ovf => expOvf,
155 und => expUnd,
156 Exp => expSum);
157
158 -- multiplier from Zimmerman’s lib
159 manMul : MulUns
160 generic map (
161 widthX => 24,
162 widthY => 24,
163 speed => 2)
164 port map (
165 X => manA,
166 Y => manB,
167 P => manProd);
168
169 -- prods of denormals will need to be shifted left a variable amount
170 prodLeadOneDet : LeadZeroDet
171 generic map (
172 width => 48,
173 speed => 2)
174 port map (
175 A => manProd,
176 Z => prodLeadOne);
177
178 -- reverse the bits to make a L-shamnt
179 prodLeadOneBitRev : for i in 47 downto 0 generate
180 prodLeadOneRev(i) <= prodLeadOne(47-i);
181 end generate prodLeadOneBitRev;
182
183 -- encode the L-shamnt
184 prodLShamntEnc : Encode
185 generic map (
186 width => 48)
187 port map (
188 A => prodLeadOneRev,
189 Z => prodLeadOneEnc);
190
191 -- left-shift mantissa where necessary
192 manProdNorm <= std_logic_vector(shift_left(unsigned(manProd),
193 to_integer(unsigned(prodLeadOneEnc))));
194
195 -- sticky bit formulation, and rounding
196 manRnd : fpMultManRnd
197 port map (
198 manProd => manProdNorm,
199 sgn => sgnZ,
200 rnd => round,
201 Z => manZ,
202 expOvf => rndOvf,
203 rndLoss => normLoss);
204
205 -- update the exponent from shifts and rounding
206 expUpd : fpMultExpUpd
207 port map (
208 exp => expSum,
209 lShamnt=> prodLeadOneEnc,
210 rndOvf => rndOvf,
211 Z => updExp,
212 ovf => expUpdOvf);
213
214 -- sign(Z) is needed for rounding module and special case detection
215 result(31) <= sgnZ;
216 result(30 downto 23) <= updExp;
217 result(22 downto 0) <= manZ;
218
219 -- overflow and underflow conditions
220 ovf <= expOvf or expUpdOvf;
221 undf <= ’1’ when updExp="00000000" and expUnd=’1’
222 else
223 ’0’;
224
225 specialCase : fpMultSpecCase
226 port map (
227 ZCalc => result,
228 ZisSpec => ZisSpec,
229 specZ => specZ,

372



32 bit FP divider

230 ovf => ovf,
231 undf => undf,
232 round => round,
233 Zout => Z);
234
235 overflow <= ovf;
236 inexact <= normLoss;
237 invalid <= invalidOp;
238 underflow <= undf;
239
240 end structure;
241
242 -------------------------------------------------------------------------------

E.5 32 bit FP divider

1 -------------------------------------------------------------------------------
2 -- Title : 32-bit IEEE floating point adder
3 -- Project : MIPS R4400
4 -------------------------------------------------------------------------------
5 -- File : fpDivSng.vhd
6 -- Author : Dan Kelly <dankelly@eleceng.adelaide.edu.au>
7 -- Company : University of Adelaide
8 -- Date : 01/11/2005
9 -------------------------------------------------------------------------------
10 -- Copyright (c) 2005 University of Adelaide, AUSTRALIA
11 -------------------------------------------------------------------------------
12 -- Description :
13 -- An IEEE floating point adder
14 -- Stages are together in one unit, will be pipelined later
15 -- Control bits
16 -- subtract is like Cin bit: 0->add, 1->subtract
17 -- Round bits
18 -- "00"->round towards nearest (default)
19 -- "01"->round towards +infinity
20 -- "10"->round towards -infinity
21 -- "11"->round towards 0
22 -- EOP (effective operation)
23 -- 1->add, 0->subtract
24 -------------------------------------------------------------------------------
25
26 library IEEE;
27 use IEEE.std_logic_1164.all;
28 use IEEE.numeric_std.all;
29
30 library mips_lib;
31 use mips_lib.EX_comp.all;
32 use mips_lib.GEN_comp.all;
33 use mips_lib.FPU_comp.all;
34
35 library arith_lib;
36 use arith_lib.arith_lib.all;
37
38 library divgenlib;
39 use divgenlib.divgenlib.all;
40
41 -------------------------------------------------------------------------------
42
43 entity fpDivSng is
44
45 port (
46 A : in std_logic_vector(31 downto 0);
47 B : in std_logic_vector(31 downto 0);
48 round : in std_logic_vector( 1 downto 0);
49 START : in std_logic;
50 CLK : in std_logic;
51 RESET : in std_logic;
52 Z : out std_logic_vector(31 downto 0);
53 overflow : out std_logic;
54 underflow : out std_logic;
55 divZero : out std_logic;
56 inexact : out std_logic;
57 invalid : out std_logic);
58
59 end fpDivSng;
60
61 -------------------------------------------------------------------------------
62
63 architecture structure of fpDivSng is
64
65 signal sgnA : std_logic;
66 signal sgnB : std_logic;
67 signal expA : std_logic_vector(7 downto 0);

373



Chapter E: Arithmetic VHDL source code

68 signal expB : std_logic_vector(7 downto 0);
69 signal manA : std_logic_vector(23 downto 0); -- inc hidden bit
70 signal manB : std_logic_vector(23 downto 0); -- inc hidden bit
71 signal muxExp : std_logic_vector(7 downto 0);
72 signal expCmp : std_logic;
73 signal expCmpBar : std_logic;
74 signal zeroD : std_logic;
75 signal ZisSpec : std_logic;
76 signal specZ : std_logic_vector(31 downto 0);
77 signal denormA : std_logic;
78 signal denormB : std_logic;
79 signal zeroA : std_logic;
80 signal zeroB : std_logic;
81 signal zeroes : std_logic;
82 signal invalidOp : std_logic;
83 signal noSft : std_logic;
84 signal expDiffOut : std_logic_vector(7 downto 0);
85 signal swpAOut : std_logic_vector(26 downto 0);
86 signal swpBOut : std_logic_vector(23 downto 0);
87 signal rShiftOut : std_logic_vector(26 downto 0);
88 signal AInvOut : std_logic_vector(26 downto 0);
89 signal BInvOut : std_logic_vector(26 downto 0);
90 signal eop : std_logic;
91 signal invB : std_logic;
92 signal invA : std_logic;
93 signal Cin : std_logic;
94 signal manGT : std_logic;
95 signal manEq : std_logic;
96 signal manCmp : std_logic;
97 signal manSum : std_logic_vector(26 downto 0);
98 signal manOvf : std_logic;
99 signal normShamnt : std_logic_vector(5 downto 0);
100 signal manNorm : std_logic_vector(26 downto 0);
101 signal rndOvf : std_logic;
102 signal sgnZ : std_logic;
103 signal rndLoss : std_logic;
104 signal rndOut : std_logic_vector(22 downto 0);
105 signal preSftLoss : std_logic;
106 signal postSftLoss : std_logic;
107 signal result : std_logic_vector(31 downto 0);
108 signal expUpdOut : std_logic_vector(7 downto 0);
109 signal specOvf : std_logic;
110 signal expUpdOvf : std_logic;
111 signal normManA : std_logic_vector(23 downto 0);
112 signal normManB : std_logic_vector(23 downto 0);
113 signal denormLeadOne : std_logic_vector(23 downto 0);
114 signal denormLeadOneRev : std_logic_vector(23 downto 0);
115 signal denormShamnt5 : std_logic_vector(4 downto 0);
116 signal denormShamnt8 : std_logic_vector(7 downto 0);
117 signal divisor : std_logic_vector(26 downto 0);
118 signal dividend : std_logic_vector(26 downto 0);
119 signal quotient : std_logic_vector(26 downto 0);
120 signal quotientRnd : std_logic_vector(22 downto 0);
121 signal quoLeadOne : std_logic_vector(25 downto 0);
122 signal quoLeadOneRev : std_logic_vector(25 downto 0);
123 signal quoLShamnt : std_logic_vector(4 downto 0);
124 signal quoNorm : std_logic_vector(26 downto 0);
125 signal expOvf : std_logic;
126 signal expUnd : std_logic;
127 signal expUpdUnd : std_logic;
128 signal expQuoRndOvf : std_logic;
129 signal expOvfSpecCase : std_logic;
130 signal manUnd : std_logic;
131 signal divEnd : std_logic;
132
133 begin
134
135 inspect : fpDivSpecCaseDetect
136 port map (
137 sngA => A,
138 sngB => B,
139 ZisSpec => ZisSpec,
140 invalidOp => invalidOp,
141 specZ => specZ,
142 denormA => denormA,
143 denormB => denormB,
144 zeroA => zeroA,
145 zeroB => zeroB);
146
147 zeroes <= zeroA and zeroB;
148
149 sgnZ <= sgnA xor sgnB;
150
151 -- reinstate the hidden bit (if not a denormal)
152 manA(23) <= ’1’ when (denormA=’0’ and zeroA=’0’) else
153 ’0’;
154 manB(23) <= ’1’ when (denormB=’0’ and zeroB=’0’) else
155 ’0’;
156
157 -- sign, exp, mantissas
158 manA(22 downto 0) <= A(22 downto 0);
159 manB(22 downto 0) <= B(22 downto 0);
160 expA <= A(30 downto 23);
161 expB <= B(30 downto 23);
162 sgnA <= A(31);

374



32 bit FP divider

163 sgnB <= B(31);
164
165 -- both operands are normalised, unless they are denormals
166 -- shift the (denormal) mantissa B to have a lead one
167
168 denormOneDetect : LeadZeroDet
169 generic map (
170 width => 24,
171 speed => 2)
172 port map (
173 A => manB,
174 Z => denormLeadOne);
175
176 -- swap the bit order of the denormLeadOneRev
177 bitSwap: for i in 22 downto 0 generate
178 denormLeadOneRev(i) <= denormLeadOne(22-i);
179 end generate bitSwap;
180
181 -- encode to 5-bits, then shift to 8-bits to match exponent
182 denormShamntEnc : Encode
183 generic map (
184 width => 24)
185 port map (
186 A => denormLeadOneRev,
187 Z => denormShamnt5);
188
189 denormShamnt8 <= std_logic_vector(resize(unsigned(denormShamnt5),8));
190
191 -- normalisation shift of the (denomal) manB
192 normManB <= std_logic_vector(shift_left(unsigned(manB),to_integer(unsigned(denormShamnt8))));
193
194 -- select the necesary divisor, concat the rounding bits (GRS)
195 divisor <= normManB & "000" when denormB=’1’
196 else
197 manB & "000";
198
199 -- the dividend does not need to be normailsed, but concat trailing zeroes
200 dividend <= manA & "000";
201
202 -- parallel prefix adder
203 divExp : fpDivSngExp
204 port map (
205 Ea => expA,
206 Eb => expB,
207 manBShamnt => denormShamnt8,
208 ovf => expOvf,
209 und => expUnd,
210 Exp => expDiffOut);
211
212 -- division unit, using DIVGEN
213 manDiv : SRT_divider
214 port map (
215 dividend => dividend,
216 divisor => divisor,
217 clock => CLK,
218 reset => RESET,
219 start => START,
220 quotient => quotient,
221 complete => divEnd,
222 overflow => manOvf);
223
224 -- denormals will need to be shifted left a var amount
225 -- division can produce a result in [0,2), so may need to right shift 1
226 quoLeadOneDet : LeadZeroDet
227 generic map (
228 width => 26,
229 speed => 2)
230 port map (
231 A => quotient(25 downto 0),
232 Z => quoLeadOne);
233
234 quoLeadOneBitRev : for i in 25 downto 0 generate
235 quoLeadOneRev(i) <= quoLeadOne(25-i);
236 end generate quoLeadOneBitRev;
237
238 quoLShamntEnc : Encode
239 generic map (
240 width => 26)
241 port map (
242 A => quoLeadOneRev,
243 Z => quoLShamnt);
244
245 -- correctly normalise
246 LR1Shift : fpAddLR1Shift
247 port map (
248 A => quotient,
249 rs => quotient(26),
250 num => quoLShamnt,
251 Z => quoNorm,
252 postSftLoss => postSftLoss);
253
254 QuoRnd: fpDivSngQuoRnd
255 port map (
256 manQuo => quotient,
257 sgn => sgnZ,

375



Chapter E: Arithmetic VHDL source code

258 rnd => round,
259 Z => quotientRnd,
260 manUndf => manUnd,
261 expOvf => expQuoRndOvf,
262 rndLoss => rndLoss);
263
264 expUpd: fpDivExpUpd
265 port map (
266 E => expDiffOut,
267 man_ovf => ’0’,
268 shamnt => quoLShamnt,
269 rnd_ovf => rndOvf,
270 Z => expUpdOut,
271 ovf => expUpdOvf,
272 undf => expUpdUnd);
273
274 -- sign(Z) is needed for rounding module and special case detection
275 result(31) <= sgnZ;
276 result(30 downto 23) <= expUpdOut;
277 result(22 downto 0) <= quotientRnd;
278
279 expOvfSpecCase <= expOvf or expQuoRndOvf;
280
281 specialCase : fpDivSngSpecCase
282 port map (
283 ZCalc => result,
284 ZisSpec => ZisSpec,
285 specZ => specZ,
286 ovf => expOvfSpecCase,
287 undf => expUnd,
288 round => round,
289 Zout => Z);
290
291 overflow <= expOvf or expQuoRndOvf or expUpdOvf or rndOvf;
292 inexact <= rndLoss or preSftLoss or postSftLoss;
293 invalid <= invalidOp;
294 underflow <= expUnd or manUnd or expUpdUnd;
295 divZero <= zeroB;
296
297 end structure;
298
299 -------------------------------------------------------------------------------

376



Appendix F

�����������	 ���
���

���
	��
����

“Low-level programming is good for the programmer’s soul.”

John Carmack (1970 —)



Chapter F: SimpleScalar machine instructions

F.1 SimpleScalar machine instructions

Table F.1: Machine instructions provided in the PISA architecture.

Opcode FIRST Name Type

abs.d absolute value FP doubleword fpALU arithmetic
abs.s absolute value FP fpALU arithmetic
add add iALU arithmetic
add.d add FP doubleword fpALU arithmetic
add.s add FP fpALU arithmetic
addi add immediate iALU arithmetic
addiu add immediate unsigned iALU arithmetic
addu add unsigned iALU arithmetic
and logic AND iALU logic
andi logic AND immediate iALU logic
bc1f branch on FP false iALU
bc1t branch on FP true iALU
beq branch equal iALU
bgez branch greater than or equal to zero iALU
bgtz branch greater than zero iALU
blez branch less than or equal to zero iALU
bltz branch less than zero iALU
bne branch not equal iALU
break unconditional breakpoint exception iALU
c.eq.d compare and set if equal FP doubleword iALU
c.eq.s compare and set if equal FP single iALU
c.le.d compare and set if less than or equal FP doubleword iALU
c.le.s compare and set if less then or equal FP single iALU
c.lt.d compare and set if less than FP doubleword iALU
c.lt.s compare and set if less than FP single iALU
cfc1 copy from FP coprocessor fpALU
ctc1 copy to FP coprocessor fpALU
cvt.d.s convert FP doubleword to FP single fpALU
cvt.d.w convert FP doubleword to integer fpALU
cvt.s.d convert FP single to FP doubleword fpALU
cvt.s.w convert FP single to integer fpALU
cvt.w.d convert integer to FP doubleword fpALU
cvt.w.s convert integer to FP single fpALU
div divide iALU arithmetic
div.d divide FP doubleword fpALU arithmetic
div.s divide FP fpALU arithmetic
divu divide unsigned iALU arithmetic
dlw
dmfc1 move from FP coprocessor doubleword fpALU

378



SimpleScalar machine instructions

Table F.1: continued. . . )

Opcode Name Type

dmtc1 move to FP coprocessor doubleword fpALU
dsw store doubleword memory
dsw store doubleword memory
dsz
j jump iALU
jal jump and link iALU
jalr jump and link (register) iALU
jr jump (register) iALU
l.d load DP doubleword memory
l.s load FP memory
l.s.r2
lb load byte memory
lbu load byte unsigned memory
lh load halfword memory
lhu load halfword unsigned memory
lui load unsigned immediate memory
lw load word memory
lw.r2
lwl load word left memory
lwr load word right memory
mfc1 move from FP coprocessor fpALU
mfhi move from HI iALU
mflo move from LO iALU
mov.d move FP doubleword fpALU
mov.s move FP fpALU
mtc1 move to FP coprocessor fpALU
mthi move to HI iALU
mtlo move to LO iALU
mul.d multiply FP doubleword fpALU arithmetic
mul.s multiply FP fpALU arithmetic
mult multiply iALU arithmetic
multu multiply unsigned iALU arithmetic
neg.d negate FP doubleword fpALU arithmetic
neg.s negate FP fpALU arithmetic
nop no operation iALU
nor logic NOR iALU logic
or logic OR iALU logic
ori logic OR immediate iALU logic
s.d store doubleword memory
s.s store FP fpALU arithmetic
s.s.r2
sb store byte memory
sh store halfword memory
sll shift left logical iALU
sllv shift left logical variable iALU
slt set if less than iALU
slti set if less than immediate iALU

379



Chapter F: SimpleScalar machine instructions

Table F.1: continued. . . )

Opcode Name Type

sltiu set if less the immediate unsigned iALU
sltu set if les than unsigned iALU
sqrt.d square root FP doubleword fpALU arithmetic
sqrt.s square root FP single fpALU arithmetic
sra shift right arithmetic iALU logic
srav shift right arithmetic variable iALU logic
srl shift right logical iALU logic
srlv shift right logical variable iALU logic
sub subtract iALU arithmetic
sub.d subtract FP doubleword fpALU arithmetic
sub.s subtract FP iALU arithmetic
subu subtract unsigned iALU arithmetic
sw store word memory
sw.r2
swl store word left memory
swr store word right memory
syscall system call
xor logic XOR iALU logic
xori logic XOR immediate iALU logic

380



���������	
�

TSMC0.18μmProcess 1.8 Volt SAGE-X™ Standard Cell Library Databook. Artisan Components, Inc.,

Sunnyvale, CA, USA, February 2002.

Author unknown. Calculation of the digits of pi. American Mathematical Monthly, 45, 1938.

Author unknown. Digits of pi calculation. Online: http://www.codecodex.com/wiki/index.php?title=

Digits_of_pi_calculation, 2008.

Author unknown. Miller-rabin primality test (c). Online: http://en.literateprograms.org/Special:

Downloadcode/Miller-Rabin_primality_test_(C), 2009.

C. R. Baugh and B. A. Wooley. A two’s complement parallel array multiplication algorithm. IEEE

Transactions on Computers, C-22:1045–1047, 1973.

R. K. Brayton, G.D.Hachtel, C. T.McCullen, andA. L. Sangiovanni-Vincentelli. LogicMinimization

Algorithms for VLSI Synthesis. Kluwer, 1984.

B. E. Briley. Some new results on average worst case carry. IEEE Transactions On Computers, C–22

(5):459–463, 1973.

D. Brooks and M. Martonosi. Value-based clock gating and operation packing: dynamic strategies

for improving processor power and performance. ACMTrans. Comput. Syst., 18(2):89–126, 2000.

ISSN 0734-2071. http://doi.acm.org/10.1145/350853.350856.

D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. SIGARCH Comput. Archit.

News, 25(3):13–25, 1997. ISSN 0163-5964.

N. Burgess. Prenormalization rounding in IEEE floating-point operations using a flagged prefix

adder. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(2):266–277, 2005.

ISSN 1063-8210.



Bibliography

A. W. Burks, H. H. Goldstein, and J. von Neumann. Preliminiary discussion of the design of an

electronic computing instrument. Inst. Advanced Study, Princeton, N. J., June 1946.

L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K. V. Palem, and B. Seshasayee.

Ultra-efficient (embedded) SOC architectures based on probabilistic CMOS (PCMOS) technol-

ogy. In DATE ’06: Proceedings of the conference on Design, automation and test in Europe, pages

1110–1115, 3001 Leuven, Belgium, Belgium, 2006. European Design and Automation Association.

ISBN 3-9810801-0-6.

A. K. Chandra, S. Fortune, and R. Lipton. Unbounded fan-in circuits and associative functions.

JCSS: Journal of Computer and System Sciences, 30, 1985.

P.-Y. Chang, E. Hao, T.-Y. Yeh, andY.N. Patt. Branch classification: a newmechanism for improving

branch predictor performance. In MICRO 27: Proceedings of the 27th annual international sym-

posium onMicroarchitecture, pages 22–31, New York, NY, USA, 1994. ACM. ISBN 0-89791-707-3.

http://doi.acm.org/10.1145/192724.192727.

P.-Y. Chang, E. Hao, and Y. N. Patt. Target prediction for indirect jumps. SIGARCHComput. Archit.

News, 25(2):274–283, 1997. ISSN 0163-5964. http://doi.acm.org/10.1145/384286.264209.

X. Cheng and M. S. Hsiao. Region-level approximate computation reuse for power reduction in

multimedia applications. In K. Roy and V. Tiwari, editors, Proceedings of the 2005 International

Symposium on Low Power Electronics and Design, 2005, San Diego, California, USA, August 8-10,

2005, pages 119–122. ACM, 2005. ISBN 1-59593-137-6.

Alpha Architecure Handbook. Compaq Computer Corporation, version 4 edition, October 1998.

G. Cornetta and J. Cortadella. Radix-16 SRT division unit with speculation of the quotient digits.

Proceedings of the IEEE Great Lakes Symposium on VLSI, pages 74–77, 1999. ISSN 1066-1395.

S. P. E. Corporation. CFP2000 (floating point component of SPEC CPU2000). Online: http:

//www.spec.org/cpu2000/CFP2000/, 2000a.

S. P. E. Corporation. CINT2000 (integer component of SPEC CPU2000). Online: http://www.spec.

org/cpu2000/CINT2000/, 2000b.

J. Cortadella and T. Lang. High-radix division and square-root with speculation. IEEE Transactions

on Computers, 43(8):919–931, 1994. ISSN 0018-9340.

C. W. Cowell-Shah. Arithmetic throughput benchmark. Online: http://www.ocf.berkeley.edu/

~cowell/research/benchmark/code/Benchmark.c, 2004.

382



Bibliography

H. J. Curnow and B. A. Wichmann. A synthetic benchmark. The Computer Journal, 19(1):43–49,

Feb. 1976.

L. Dadda. Some schemes for parallel multipliers. Alta Frequenza, 34:349–356, 1965.

M. J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. Linpack. Philadelphia, 1986.

P. K. B. E. Zimmermann, P. Pattisapu and G. Fettweis. Reduced complexity LDPC decoding us-

ing forced convergence. In Proceedings of the 7th International Symposium on Wireless Personal

Multimedia Communications (WPMC’04), Abano Terme, Italy, September 2004.

M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann, New York, 2003.

P. Fenwick. High-radix division with approximate quotient-digit estimation. Journal of Universal

Computer Science, 1(1):2–22, January 1995. http://www.jucs.org/jucs_1_1/high_radix_division_with.

M. A. Franklin and T. Pan. Performance comparison of asynchronous adders. In Proceedings of

the International Symposium on Advanced Research in Asynchronous Circuits and Systems, pages

117–125, Salt Lake City, UT, USA, 1994.

Free Software Foundation, Inc. . Gnu multiple precision arithmetic library. Online: http://gmplib.

org/manual/, July 2008.

J. Fritts. Mediabench applications. Online: http://euler.slu.edu/~fritts/mediabench/, 1997.

F. Gabbay. Speculative execution based on value prediction. Technical report, EE Department TR

1080, Technion - Israel Institue of Technology, 1996.

R. G. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory, 8(1):

21–28, Jan. 1962.

J. Garside. ACMOSVLSI implementation of an asynchronousALU. IFIPTransactionsA (Computer

Science and Technology), A-28:181–92, 1993. ISSN 0926-5473.

J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilistic arithmetic and energy efficient em-

bedded signal processing. In S.Hong,W.Wolf, K. Flautner, andT. Kim, editors, Proceedings of the

2006 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems,

CASES 2006, Seoul, Korea, October 22-25, 2006, pages 158–168. ACM, 2006. ISBN 1-59593-543-6.

H. Goldstine and J. von Neumann. On the principles of large-scale computing machines. In Col-

lected Works of John von Neumann, Vol. 5, pages 45–46. Pergamon, 1963.

383



Bibliography

J. Gonzalez and A. Gonzalez. Data value speculation in superscalar processors. Microprocessors-

and-Microsystems, 22(6):293–301, November 1998.

D. L. Harris, S. F. Oberman, and M. A. Horowitz. SRT division architectures and implementations.

Computer Arithmetic, 1997. Proceedings., 13th IEEE Symposium on, pages 18–25, Jul 1997.

H. Hassler and N. Takagi. Function evaluation by table look-up and addition. In Proc. 12th IEEE

Symposium on Computer Arithmetic, pages 10–16. IEEE, 1995.

R. Hegde and N. R. Shanbhag. Energy-efficient signal processing via algorithmic noise-tolerance.

In F. N. Najm, J. Cong, and D. Blaauw, editors, ISLPED Low Power Electronics and Design, 1999,

San Diego, California, USA, August 16-17, 1999, pages 30–35. ACM, 1999. ISBN 1-58113-133-X.

H. Hendrickson. Fast high-accuracy binary parallel addition. IRE – Transactions on Electronic

Computers, EC-9(4):465–469, 1960.

J. L. Henning. SPEC CPU2000: Measuring CPU performance in the new millennium. Computer,

33(7):28–35, 2000. ISSN 0018-9162.

J. L. Henning. SPEC CPU2006 memory footprint. SIGARCH Comput. Archit. News, 35(1):84–89,

2007. ISSN 0163-5964.

C. Howland and A. Blanksby. A 220mW 1 gb/s 1024-bit rate- //2 low density parity check code de-

coder. Online http://gladstone.systems.caltech.edu/~jeremy/other_papers/1GbpsLDPC.pdf, Decem-

ber 2001.

HP labs. Hp labs: cacti. Online: http://www.hpl.hp.com/research/cacti/, 2008.

J. Huang and D. J. Lilja. Extending value reuse to basic blocks with compiler support. IEEE

Trans. Computers, 49(4):331–347, 2000.

Power ISA™. IBM Corporation, version 2.05 edition, October 2007.

Institute of Electrical and Electronics Engineers. IEEE standard for local and metropolitan area

networks — part 16: Air interface for fixed and mobile broadband wireless access systems. IEEE

Std 802.16e-2005, Feb. 2006. http://standards.ieee.org/getieee802/download/802.16e-2005.pdf.

Intel Corp. World’s first 2-billion transistor microprocessor. Online: http://www.intel.com/

technology/architecture-silicon/2billion.htm, 2009.

W.M. Kahan. Paranoia. online: http://www.netlib.org/paranoia/paranoia.c, January 1986. Translated

by D. M. Gay and T. Sumner.

384



Bibliography

D.R.Kelly andB. J. Phillips. Arithmetic data value speculation. In LectureNotes inComputer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

volume 3740 LNCS, pages 353–366, Singapore, Singapore, 2005.

D. R. Kelly, B. J. Phillips, and S. F. Al-Sarawi. Increasing throughput of a RISC system using arith-

metic data value speculation. In Conference Record of the Forty-Third Asilomar Conference on

Signals, Systems, and Computers, 2009, Pacific Grove, California, USA, November 2009.

D. J. Kinniment. An evaluation of asynchronous addition. IEEE Trans. Very Large Scale Integr. Syst.,

4(1):137–140, 1996. ISSN 1063-8210. http://dx.doi.org/10.1109/92.486088.

D. Koes, T. Chelcea, C. Oneyama, and S. C. Goldstein. Adding faster with application specific early

termination. School of Computer Science, CarnegieMellonUniversity, Pittsburgh, USA, January

2005.

R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM, 27(4):831–838,

October 1980.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool for evaluating and syn-

thesizing multimedia and communications systems. In Proceedings of the Annual International

Symposium on Microarchitecture, pages 330–335, Triangle Park, NC, USA, 1997.

T. Lestable and E. Zimmermann. LDPCoptions for next generationwireless systems. InProceedings

of the 14th Wireless World Research Forum (WWRF’05), San Diego, USA, July 2005.

A. Li. An empirical study of the longest carry length in real programs. Master’s thesis, Department

of Computer Science, Princeton University, May 2002.

M. H. Lipasti. Value locality and speculative execution. PhD thesis, Pittsburgh, PA, USA, 1998.

M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction. In Proceedings of the

29th Annual IEEE/ACM Int. Symposium on Microarchitecture, pages 226–237. IEEE, 1996.

M. H. Lipasti and J. P. Shen. Exploiting value locality to exceed the dataflow limit. International

Journal of Parallel Programming (IJPP), 26(4):505–538, Aug. 1998.

T. Liu and S.-L. Lu. Performance improvement with circuit level speculation. In Proceedings of the

33rd Annual International Symposium on Microarchitecture, pages 348–355. IEEE, 2000.

S.-L. Lu. Speeding up processing with approximation circuits. IEEE Computer Magazine, 37(3):

67–73, March 2004.

385



Bibliography

P. Marcuello, J. Tubella, and A. Gonzalez. Value prediction for speculative multithreaded architec-

tures. Proceedings of the Annual International Symposium on Microarchitecture, pages 230–236,

1999. ISSN 1072-4451. http://dx.doi.org/10.1109/MICRO.1999.809461.

F. McMahon. The Livermore fortran kernels: A computer test of the numerical performance range.

Technical Report UCRL-53745, Lawrence Livermore National Laboratory, Livermore, CA, Dec.

1986.

C. Molina, A. Gonzalez, and J. Tubella. Dynamic removal of redundant computations. In Proceed-

ings of the 1999 Conference on Supercomputing, ACM SIGARCH, pages 474–481, N.Y., June 1999.

ACM Press.

A. I. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. Table-based data speculation circuit

for parallel processing computer. U. S. Patent 5,781,752, July 1998.

MOSIS Integrated Circuit Fabrication Service. Mosis. Online: http://www.mosis.com, 2009.

MultiGiG, Inc. IRSIM™. Online: http://opencircuitdesign.com/irsim/, 2006.

H.Murakami, N. Yano, Y. Ootaguro, Y. Sugeno, M. Ueno, Y.Muroya, and T. Aramaki. Amultiplier-

accumulatormacro for a 45MIPS embedded RISC processor. IEEE Journal of Solid-state Circuits,

31(7):1067–1071, JULY 1996.

H. Nakano. Method and apparatus for division using interpolation. U. SṖatent 4,707,798, Nov. 1987.

S.M.Nowick, K. Y. Yun, P.A. Beerel, andA. E.Dooply. Speculative completion for the design of high

performance asynchronous dynamic adders. In International Symposium on Advance Research

in Asynchronous Circuits and Systems, pages 210–223, Eindhoven, The Netherlands, 1997. IEEE

Comput. Soc. Press.

NVIDIA Corp. TESLA c1060 datasheet. Online: http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_

C1060_US_Jun08_FINAL_LowRes.pdf, 2009.

S. F. Oberman and M. J. Flynn. On division and reciprocal caches. Technical report, Stanford, CA,

USA, 1995. http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\&id=oai%3Ancstrlh%

3Astan%3ASTAN%2F%2FCSL-TR-95-666.

S. F. Oberman andM. J. Flynn. Reducing division latency with reciprocal caches. Reliable Comput-

ing, 2(2):147–154, 1996.

S. F. Oberman and M. J. Flynn. Design issues in division and other floating-point operations.

IEEETC: IEEE Transactions on Computers, 46, 1997.

386



Bibliography

T.-H. Pan, H.-S. Kay, Y. Chun, and C.-L.Wey. High-radix SRT division with speculation of quotient

digits. In Proceedings - IEEE International Conference on Computer Design: VLSI in Computers

and Processors, pages 479–484, Austin, TX, USA, 1995.

B. Parhami. Computer Arithmetic: Algorithms andHardware Designs. OxfordUniversity Press, New

York, 2000.

B. J. Phillips, D. R. Kelly, and B.W. Ng. Estimating adders for a low density parity check decoder. In

Proceedings of SPIE—The International Society for Optical Engineering, volume 6313, San Diego,

CA, United States, 2006.

N. Pippenger. Analysis of carry propagation in addition: an elementary approach. Journal of Algo-

rithms, 42(2):317–333, 2002.

C. Price. MIPS IV Instruction Set. MIPS Technologies, Mountain View, California, USA, revision

3.2 edition, September 1995.

J. H. Reif. Probabilistic parallel prefix computation. In Computers &Mathematics with Applications,

volume 26, pages 101–110, 1993.

S. E. Richardson. Caching function results: Faster arithmetic by avoiding unnecessary computation.

Technical report, Mountain View, CA, USA, 1992.

T. Richardson, A. Shokrollahi, and R. Urbanke. Design of capacity-approaching irregular low-

density parity-check codes. IEEETIT: IEEE Transactions on Information Theory, 47, 2001.

Y. Sazeides and J. E. Smith. The predictability of data values. In MICRO 30: Proceedings of the 30th

annual ACM/IEEE international symposium on Microarchitecture, pages 248–258, Washington,

DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-7977-8.

Y. Sazeides and J. E. Smith. Limits of data value predictability. Int. J. Parallel Programning, 27(4):

229–256, 1999. ISSN 0885-7458. http://dx.doi.org/10.1023/A:1018789613517.

B. Shim and N. R. Shanbhag. Energy-efficient soft error-tolerant digital signal processing. IEEE

Trans. VLSI Syst, 14(4):336–348, 2006.

A. Sodani and G. S. Sohi. Dynamic instruction reuse. SIGARCH Comput. Archit. News, 25(2):

194–205, 1997. ISSN 0163-5964.

A. Sodani and G. S. Sohi. Understanding the differences between value prediction and instruc-

tion reuse. In MICRO 31: Proceedings of the 31st annual ACM/IEEE international symposium on

387



Bibliography

Microarchitecture, pages 205–215, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

ISBN 1-58113-016-3.

The SPARC Architecture Manual. SPARC International, Inc., Menlo Park, California, USA, version

8, revision sav080si9308 edition, 1992.

N. R. Srivastava. Radix 4 SRT division with quotient prediction and operand scaling. In Proceedings

Design, Automation and Test in Europe, DATE, pages 195–200, Nice Acropolis, France, 2007.

Standard Performance Evaluation Corporation. SPEC CPU2000 memory footprint. Online: http:

//www.spec.org/cpu2000/analysis/memory/, 2000.

Static Free Software. Electric™. Online: http://www.staticfreesoft.com/electric.html, 2005.

University of California, Berkeley. Espresso. Online: http://embedded.eecs.berkeley.edu/pubs/

downloads/espresso/index.htm, 1994.

G. Varatkar and N. R. Shanbhag. Energy-efficient motion estimation using error-tolerance. In

W. Nebel, M. R. Stan, A. Raghunathan, J. Henkel, and D. Marculescu, editors, Proceedings of the

2006 International Symposium on Low Power Electronics and Design (ISLPED), 2006, Tegernsee,

Bavaria, Germany, October 4-6, 2006, pages 113–118. ACM, 2006. ISBN 1-59593-462-6.

J. Walker. fbench: Trigonometry intense floating point benchmark. Online: http://www.fourmilab.

ch/fbench/fbench.html, December 1980.

J. Walker. ffbench: Fast fourier transform benchmark. Online: http://www.fourmilab.ch/fbench/

ffbench.html, April 1989.

C.Wallace. A suggestion for a fastmultiplier. In IEEE Transactions on Electronic Computers, volume

EC-13, pages 14–17, Feb. 1964.

R. P. Weicker. DHRYSTONE : A synthetic systems programming benchmark. Comm. ACM, 27

(10):1013–1030, 1984.

N. H. E. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Perspective (3rd Edition).

Addison-Wesley, May 2004.

D.Wong andM. Flynn. Fast division using accurate quotient approximations to reduce the number

of iterations. IEEE Transactions on Computers, 41(8):981–995, 1992. ISSN 0018-9340.

T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. In MICRO 24: Proceedings

of the 24th annual international symposium on Microarchitecture, pages 51–61, New York, NY,

USA, 1991. ACM. ISBN 0-89791-460-0. http://doi.acm.org/10.1145/123465.123475.

388



Bibliography

T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch prediction.

SIGARCH Comput. Archit. News, 20(2):124–134, 1992. ISSN 0163-5964. http://doi.acm.org/10.

1145/146628.139709.

T.-Y. Yeh and Y. N. Patt. A comparison of dynamic branch predictors that use two levels of

branch history. In ISCA ’93: Proceedings of the 20th annual international symposium on Com-

puter architecture, pages 257–266, New York, NY, USA, 1993. ACM. ISBN 0-8186-3810-9. http:

//doi.acm.org/10.1145/165123.165161.

C. K. Yuen. Comment on ‘Some new results on average worst case carry’. IEEE Transactions On

Computers, C–23(3):333, 1974.

389



�����

additive white gaussian noise, 224

adjustment (floating point), 180

ADPCM, 31, 331

alignment shift, 180

188.ammp, 343

173.applu, 338

approximate dividers

DI divider, 159

GBP divider, 159

SMT divider, 159

approximate division

initial shift amount, 156

multiplication term, 155

round shift, 157

rounds t, 155

approximate division algorithm, 155

approximate floating point units, 178

301.apsi, 344

arithmetic proportions, 75

179.art, 340

Artisan, 38

average worst-case carry length

Hendrickson’s result, 50

average worst-case carry length

Kinniment’s result, 51

average worst-case carry length

Burks et. al.’s result, 48

Knuth’s result, 49

average worst-case carry length

Garside’s result, 50

Yuen’s result, 52

average worst-case carry length, 48

Briley’s result, 49

Franklin’s result, 50

Li’s result, 51

AWCCL, see average worst-case carry length

AWGN, see additive white gaussian noise

BackCount algorithm, 272

bit assertions

histogram, 84

table, 323

256.bzip2, 336

cache, 25

dCache, 25

iCache, 25

calc pi, 294

carry length, 48

check matrix, 213

186.crafty, 335

dhrystone, 292

division algorithm (signed), see approximate di-

vision algorithm (signed)

division algorithm (unsigned), see approximate

division algorithm (unsigned)

division algorithm (signed), 167

division algorithm (unsigned), 153



Index

Eb/N, 224

252.eon, 336

EPIC, 32, 332

183.equake, 341

187.facerec, 341

fbench, 345

FER, see frame error rate

ffbench, 346

floating point

approximate addition, 183

approximate division, 186

approximate multiplication, 184

approximate subtraction, 183

191.fma3d, 343

frame error rate, 224

function approximation, 274

G.721, 31, 331

178.galgel, 339

254.gap, 336

176.gcc, 334

Ghostscript, 32, 332

GSM, 330

164.gzip, 333

HI, 24

integer

addition, 68

approximate division (signed), 167

approximate division (unsigned), 155

approximate multiplication (signed), 138

approximate multiplication (unsigned), 127

division, 70

multiplication, 70

subtraction, 68

JPEG, 31, 330

LDPC, see low density parity check codes

Liu and Lu adder, 69

LO, 24

logicApprox, 274

low density parity check codes, 213

189.lucas, 343

181.mcf , 334

Mediabench, 31

ADPCM, 31, 331

EPIC, 32, 332

G.721, 31, 331

ghostscript, 32, 332

GSM, 330

JPEG, 31, 330

Mesa, 32, 332

mpeg2play, 31, 330

PEGWIT , 32, 331

PGP, 331

RASTA, 32, 332

Mesa, 32, 332

177.mesa, 339

172.mgrid, 338

MPEG, 31, 330

multgen, 295

no resteering, 86

parser, 335

PEGWIT, 32, 331

253.perlbmk, 336

PGP, 331

probabilistic computing, 68

QPSK, see quadrature phase-shift keying

quadrature phase-shift keying, 224

392



Index

RASTA, 32, 332

resteering, 86

rounding, 180

rounding modes

to nearest, 117

to negative infinity, 117

to positive infinity, 117

to zero, 117

signal-to-noise ratio, see Eb/N

sim-bpred, 23

sim-cache, 23

sim-eio, 24

sim-fast, 24

sim-outorder, 24

sim-profile, 24

sim-safe, 24

SimpleScalar, 23

200.sixtrack, 344

SNR, see Eb/N

SPEC CFP2000, 333, 338

SPEC CPU2000

SPEC CFP2000, 338

188.ammp, 343

173.applu, 338

301.apsi, 344

179.art, 340

183.equake, 341

187.facerec, 341

191.fma3d, 343

178.galgel, 339

189.lucas, 343

177.mesa, 339

172.mgrid, 338

200.sixtrack, 344

171.swim, 338

168.wupwise, 338

SPEC CINT2000, 333

256.bzip2, 336

186.crafty, 335

252.eon, 336

254.gap, 336

176.gcc, 334

164.gzip, 333

181.mcf , 334

197.parser, 335

253.perlbmk, 336

300.twolf , 337

255.vortex, 336

175.vpr, 333

SPEC CPU2000, 333

171.swim, 338

Synopsys

design compiler, 38

VHDL analyser, 38

test benchmarks

fbench, 345

ffbench, 346

TLB

dTLB, 25

iTLB, 25

TLB, 25

300.twolf , 337

unpacking (floating point), 180

255.vortex, 336

175.vpr, 333

worst-case carry length, see average worst-case

carry length

168.wupwise, 338

393


	TITLE: Arithmetic Data Value Speculation
	DECLARATION OF ORIGINALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	PUBLICATIONS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	LIST OF ACRONYMS
	NOMENCLATURE

	Chapter 1 INTRODUCTION
	PART 1 BACKGROUND
	Chapter 2 A BRIEF REVIEW OF COMPUTER ARCHITECTURE AND DIGITAL ARITHMETIC
	Chapter 3 THEORY AND APPLICATIONS OF ARITHMETIC APPROXIMATION
	Chapter 4 CAN ADVS IMPROVE THE PERFORMANCE OF A GENERIC RISC PROCESSOR?
	Chapter 5 PRELIMINARY EXPERIMENTS

	PART II APPROXIMATE ARITHMETIC
	Chapter 6 APPROXIMATE INTERGER MULTIPLICATION
	Chapter 7 APPROXIMATE INTEGER DIVISION
	Chapter 8 APPROXIMATE FLOATING POINT ARITHMETIC

	PART III APPLICATION
	Chapter 9 RESULT CACHING
	Chapter 10 APPROXIMATE ADDERS IN LDPC
	Chapter 11 ADVS SIMULATION
	Chapter 12 CONCLUSIONS

	PART IV APPENDICES
	Appendix A GCC MAN PAGES
	Appendix B SOURCE CODE
	Appendix C ARITHMETIC OPERANDS
	Appendix D DETAILED BENCHMARK DESCRIPTIONS
	Appendix E ARITHMETIC VHDL SOURCE CODE
	Appendix F SIMPLESCALAR MACHINE INSTRUCTIONS

	BIBLIOGRAPHY
	INDEX



