Skip to main content

D3DPR: A Direct3D-Based Large-Scale Display Parallel Rendering System Architecture for Clusters

  • Conference paper
Advances in Computer Systems Architecture (ACSAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3740))

Included in the following conference series:

Abstract

The current trend in hardware for parallel rendering is to use clusters instead of high-end super computer. We describe a novel parallel rendering system that allows application to render to a large-scale display. Our system, called D3DPR, uses a cluster of PCs with high-performance graphics accelerators to drive an array of projectors. D3DPR consists of two types of logical nodes, Geometry Distributing Node and Geometry Rendering Node. It allows existing Direct3D9 application to run on our parallel system without any modification. The advantage of high-resolution and high-performance can be obtained in our system, especially when the triangle number of the application becomes very large. Moreover, the details of interconnecting network architecture, data distribution, communication and synchronization, etc. are hidden from the users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yang, J., Shi, J., Jin, Z., Zhang, H.: Design and Implementation of A Large-scale Hybrid Distributed Graphics System. In: Eurographics Workshop on Parallel Graphics and Visualization, Saarbruecken, Germany (2002)

    Google Scholar 

  2. Li, C., Jin, Z., Shi, J.: MSPR: A Retained-Mode Based Multi-screen Parallel Rendering System. In: The the 4th International Conference on Virtual Reality and its Application in Industry, Tianjin, P.R.China (2003)

    Google Scholar 

  3. Staadt, O.G., Walker, J., Nuber, C., Hamann, B.: A Survey and Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering. In: 7th International Workshop on Immersive Projection Technology, 9 the Eurographics Workshop on Virtual Enviroments, Zurich, Switzerland (2003)

    Google Scholar 

  4. Humphreys, G., Hanrahan, P.: A Distributed Graphics System for Large Tiled Displays. In: IEEE Visualization 1999, pp. 215–224 (October 1999)

    Google Scholar 

  5. Humphreys, G., Buck, I., Eldridge, M., Hanrahan, P.: Distributed Rendering for Scalable Displays. In: Proceedings of Supercomputing (2000)

    Google Scholar 

  6. Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Matthew, Hanrahan, P.: WireGL: A Scalable Graphics System for Clusters. In: Proceedings of ACM SIGGRAPH 2001 (2001)

    Google Scholar 

  7. Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D.: Chromium: A Stream-Processing Framework for Interactive Rendering on Clusters. ACM Transactions on Graphics 21(3), 693–702 (2002); Proceedings of ACM SIGGRAPH 2002 (2002)

    Article  Google Scholar 

  8. Chen, Y., Chen, H., Clark, D.W., Liu, Z., Wallace, G., Li, K.: Software Environments for Cluster-based Display Systems (2001). In: The First IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2001), Brisbane, Australia, May 15-18 (2001)

    Google Scholar 

  9. Brown, M.S., Brent Seales, W.: A Practical and Flexible Tiled Display System. In: Proceeding of the 10th Pacific Conference on Computer Graphics and Applications (2002)

    Google Scholar 

  10. Bartz, D., Schneider, B.-O., Silva, C.: Rendering and Visualization in Parallel Environments. In: Course on Rendering and Visualization in Parallel Environments of ACM SIGGRAPH 1999 (1999)

    Google Scholar 

  11. van der Schaaf, T., Renambot, L., Germans, D., Spoelder, H., Whitlock, H.: Retained Mode Parallel Rendering for Scalable Tiled Displays. In: Immersive Projection Technologies Symposium (2002)

    Google Scholar 

  12. Gotz, D.: Design Considerations for a Multi-Projector Display Rendering Cluster. University of North Carolina at Chapel Hill Department of Computer Science Integrative Paper (2001)

    Google Scholar 

  13. Microsoft DirectX 9.0 Update (Summer 2003), http://www.microsoft.com/ (downloads)

  14. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A Sorting Classification of Parallel Rendering. IEEE Computer Graphics and Applications, 23–32 (1994)

    Google Scholar 

  15. Akeley, K.: Realityengine graphics. In: Computer Graphics In: Proceedings, ACM SIGGRAPH, Annual Conference Series, Anaheim, CA, pp. 109–116 (1993)

    Google Scholar 

  16. Fuchs, H., Poulton, J., et al.: Pixel Plane 5: A Heterogeneous Multiprocessor Graphics System using Processor Enhanced Memories. Computer Graphics Proceedings 23(3), 79–88 (1989)

    Article  Google Scholar 

  17. Eyles, J., Molnar, S., Poulton, J., Greer, T., Lastra, A., En-gland, N., Westover, L.: PixelFlow: The Realization. In: Proceedings of the 1997 Siggraph/Eurographics Workshop on Graphics Hardware, Los Angles, CA, August 3-4, pp. 57–68 (1997)

    Google Scholar 

  18. Eldridge, M., Igehy, H., Hanrahan, P.: Pomegranate: a fully scalable graphics architecture. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New Orleans, Louisiana, pp. 443–454 (2000)

    Google Scholar 

  19. Chen, H., Chen, Y., Finkelstein, A., Funkhouser, T., Li, K., Liu, Z., Samanta, R., Wallace, G.: Data Distribution Strategies for High Resolution Displays. Computer and Graphics 25, 811–818 (2001)

    Article  Google Scholar 

  20. University of Minnesota, PowerWall homepage, http://www.lcse.umn.edu/research/powerwall/powerwall.html

  21. Czernuszenko, M., Pape, D., Sandin, D., DeFanti, T., Dawe, G., Brown, M.: The ImmersaDesk and Infinity Wall Projection-Based Virtual Reality Displays. Computer Graphics (May 1997)

    Google Scholar 

  22. Samanta, R., Zheng, J., Funkhouser, T., Li, K., Singh, J.P.: Load Balancing for Multi-Projector Rendering Systems. In: Proceedings of the SIGGRAPH/ Eurographics Workshop on Graphics Hardware (August 1999)

    Google Scholar 

  23. Voss, G., Behr, J., Reiners, D., Roth, M.: A Multi-thread Safe Foundation for Scene Graphs and its Extension to Clusters. In: Eurographics Workshop on Parallel Graphics and Visualization, pp. 33–38 (2002)

    Google Scholar 

  24. The Message Passing Interface (MPI) standard, http://www-unix.mcs.anl.gov/mpi/

  25. Message Passing Interface Forum, http://www.mpi-forum.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Z., Shi, J., Peng, H., Xiong, H. (2005). D3DPR: A Direct3D-Based Large-Scale Display Parallel Rendering System Architecture for Clusters. In: Srikanthan, T., Xue, J., Chang, CH. (eds) Advances in Computer Systems Architecture. ACSAC 2005. Lecture Notes in Computer Science, vol 3740. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11572961_44

Download citation

  • DOI: https://doi.org/10.1007/11572961_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29643-0

  • Online ISBN: 978-3-540-32108-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics