Skip to main content

Detection of Hydrophobic Clusters in Molecular Dynamics Protein Unfolding Simulations Using Association Rules

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3745))

Abstract

One way of exploring protein unfolding events associated with the development of Amyloid diseases is through the use of multiple Molecular Dynamics Protein Unfolding Simulations. The analysis of the huge amount of data generated in these simulations is not a trivial task. In the present report, we demonstrate the use of Association Rules applied to the analysis of the variation profiles of the Solvent Accessible Surface Area of the 127 amino-acid residues of the protein Transthyretin, along multiple simulations. This allowed us to identify a set of 28 hydrophobic residues forming a hydrophobic cluster that might be essential in the unfolding and folding processes of Transthyretin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quintas, A., Vaz, D.C., Cardoso, I., Saraiva, M.J.M., Brito, R.M.M.: Tetramer Dissociation and Monomer Partial Unfolding Precedes Protofibril Formation in Amyloidogenic Transthyretin Variants. J. Biol. Chem. 276, 27207–27213 (2001)

    Article  Google Scholar 

  2. Brito, R.M.M., Damas, A.M., Saraiva, M.J.S.: Amyloid Formation by Transthyretin: From Protein Stability to Protein Aggregation. Current Medicinal Chemistry - Immun. Endoc. & Metab. Agents 3, 349–360 (2003)

    Article  Google Scholar 

  3. Rodrigues, J.R., Brito, R.M.M.: How important is the role of compact denatured states on amyloid formation by transthyretin? In: Grateau, G., Kyle, R.A., Skinner, M. (eds.) Amyloid and Amyloidosis, pp. 323–325. CRC Press, Boca Raton (2004)

    Chapter  Google Scholar 

  4. Daggett, V.: Molecular Dynamics Simulations of the Protein Unfolding/Folding Reaction. Acc. Chem. Res. 35 (2002)

    Google Scholar 

  5. Pande, V.S., Baker, I., Chapman, J., Elmer, S.P., Khaliq, S., Larson, S.M., Rhee, Y.M., Shirts, M.R., Snow, C.D., Sorin, E.J., Zagrovic, B.: Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers 68, 91–109 (2003)

    Article  Google Scholar 

  6. Beck, D.A.C., Daggett, V.: Methods for molecular dynamics simulations of protein folding/ unfolding in solution. Methods 34, 112–120 (2004)

    Article  Google Scholar 

  7. Brito, R.M.M., Dubitzky, W., Rodrigues, J.R.: Protein Folding and Unfolding Simulations: A New Challenge for Data Mining. OMICS A Journal of Integrative Biology 8, 153–166 (2004)

    Article  Google Scholar 

  8. Hamilton, J.A., Steinrauf, L.K., Braden, B.C., Liepnieks, J., Benson, M.D., Holmgren, G., Sandgren, O., Steen, L.: The X-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30-Met variant to 1.7 Å resolution. J. Biol. Chem. 268, 2416–2424 (2003)

    Google Scholar 

  9. Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., Schulten, K.: NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Physics 151, 283–312 (1999)

    Article  MATH  Google Scholar 

  10. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., et al.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102 (1998) 3586-3616

    Google Scholar 

  11. Zhang, L., Hermans, J.: Hydrophilicity of cavities in proteins. Proteins: Struct. Func. Gen. 24, 433–438 (1996)

    Article  Google Scholar 

  12. Hubbard, S.J., Thornton, J.M.: NACCESS, Computer Program, Department of Biochemistry and Molecular Biology. University College London, London (1993)

    Google Scholar 

  13. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proceedings of the 20th International Conference on Very Large Databases, Chile (1994)

    Google Scholar 

  14. Azevedo, P.J.: The Caren System, http://www.di.uminho.pt/~pja/class/caren.html

  15. Azevedo, P.J., Jorge, A.M.: The CLASS project, http://www.niaad.liacc.up.pt/~amjorge/Projectos/Class/

  16. Azevedo, P.J.: CAREN – A java based Apriori implementation for classification purposes. Research Report – Departamento de Informática, Universidade do Minho (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azevedo, P.J., Silva, C.G., Rodrigues, J.R., Loureiro-Ferreira, N., Brito, R.M.M. (2005). Detection of Hydrophobic Clusters in Molecular Dynamics Protein Unfolding Simulations Using Association Rules. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds) Biological and Medical Data Analysis. ISBMDA 2005. Lecture Notes in Computer Science(), vol 3745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573067_33

Download citation

  • DOI: https://doi.org/10.1007/11573067_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29674-4

  • Online ISBN: 978-3-540-31658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics