
Peer-to-Peer Semantic Integration of
XML and RDF Data Sources

Isabel F. Cruz, Huiyong Xiao, and Feihong Hsu

Department of Computer Science
University of Illinois at Chicago, USA
{ifc, hxiao, fhsu}@cs.uic.edu

Abstract. Peer-to-Peer (P2P) data management systems combine tra-
ditional schema-based integration techniques with the P2P infrastruc-
ture. In this paper, we propose a P2P data management framework
named PEPSINT that semantically integrates heterogeneous XML and
RDF data sources, using a hybrid architecture and a global-as-view ap-
proach. Our focus is on the query processing techniques over heteroge-
neous data. Queries in PEPSINT are expressed in XQuery and in RDQL.
We consider two types of queries, depending on whether the query is first
posed on the super peer or on one of the peers.

1 Introduction

The Semantic Web has been proposed to add semantics to web content and
to enable interoperability among heterogeneous data sources. Both Extensible
Markup Language (XML) and Resource Description Framework (RDF) can be
used to represent information on the Web. However, there exists a wide gap
between the two languages, since RDF data has domain structure (the concepts
and the relationships between concepts) while XML data has document structure
(the hierarchy of elements) [11].

An example is shown in Figure 1, in which the RDF schema R explicitly spec-
ifies two concepts, Book and Publisher, as well as the publishedBy relationship.
Figure 1 also shows two XML schemas S1 and S2. Each of these XML schemas
contains two concepts: book and author (equivalently denoted by article and
writer in S2). Conceptually, these two XML schemas are quite similar. Struc-
turally speaking, however, they are very different: S1 (book-centric schema) has
the author element nested under the book element, whereas S2 (author-centric
schema) has the article element nested under the writer element.

Furthermore, the wide diversity of possible XML schemas for a single con-
ceptual model also results in wide diversity for the XML queries. For instance,
a user who wants to “List all the publications” from two data sources corre-
sponding to S1 and S2 may write the XML path expressions, respectively, as
/books/book/@booktitle and /writers/writer/article/@title. We notice
that although the two XML path expressions refer to semantically equivalent
concepts, they follow two distinct XML paths. In contrast, schemas defined on

books

book *

author *
@booktitle

@name

writers

article *

@title
@fullname

writer *

books

book

author

"b1"

book

author

"b2"

"a1" "a3"

writers

writer

article

"a1" "a2"

"b1""a2"

A local XML schema S1 XML document D1

"books.xml"

writer writer

articlearticle

"b2"

"a3"

"b2"

A local XML schema S2 XML document D2

"writers.xml"

author

Book Publisher

Literal

ISBN

Literal

pulishedBy

booktitle

A local RDF schema R

Literal

name

local RDF data

Book Publisher

"b3"

ISBN

"0123456789"

pulishedBy

booktitle

"p1"

name

(Defined in namespace: http://examples.org/local#)

Fig. 1. An example of heterogeneous XML and RDF data sources.

the conceptual level (known as conceptual schemas or ontologies) are flat in doc-
ument structure, and therefore the user can formulate a query without consider-
ing the structure of the source (we refer to such queries as conceptual queries).
RDF Schema (RDFS), DAML+OIL, and OWL are examples of languages used
to create conceptual schemas.

There are currently several attempts to use conceptual schemas [1, 2, 8, 9] and
conceptual queries [6, 7] to overcome the problem of structural heterogeneities
among XML sources. In this paper, we propose a framework called PEPSINT
(PEer-to-Peer Semantic INTegration framework) to semantically integrate het-
erogeneous XML and RDF data sources in a P2P environment. We discuss the
architecture of PEPSINT, and present a solution for semantic integration and
query processing in the P2P heterogeneous environment. In brief, we make the
following contributions in this paper:

– We propose a P2P schema-based data management framework, PEPSINT,
built on a hybrid P2P architecture, in which the global RDF ontology (con-
structed using the global-as-view approach [13]) in the super peer behaves
not only as a central control point over the peers but also as a mediator for
query translation from peer to peer.

– For the purpose of semantic integration, we propose an approach that pre-
serves the domain structure of RDF and the document structure of XML.
Specifically, the semantic integration of XML and RDF data sources is im-
plemented at the schema level (through the schema matching process) and
at the instance level (through the query answering process).

– We also provide a set of query rewriting algorithms that can propagate a
user’s query across the heterogeneous XML or RDF data sources in PEPSINT.
In our framework, mappings connect the peer to the super peer, thus making
query processing within the network transparent to a user in any peer.

The paper is organized as follows. Section 2 gives a review of related work.
In Section 3 we describe the architecture of PEPSINT and its main components.
Section 4 discusses schema-based integration of RDF sources and (structurally

2

dissimilar) XML sources. Query processing in PEPSINT is covered in Section 5.
Finally, we draw conclusions and discuss future work in Section 6.

2 Related Work

The research community has, to date, produced several P2P data management
systems that aim to enable interoperability among distributed heterogeneous
data sources.

The Edutella project [15] provides an RDF-based metadata infrastructure
for P2P networks based on the JXTA framework [10]. In Edutella, connections
between peers are encoded into a network topology known as the Edutella super-
peer topology, which is similar to the hybrid architecture used in PEPSINT. A
Datalog-based query exchange language called RDF-QEL is proposed to serve
as a common query interchange format. Thus a wrapper translates local query
languages such as SQL and XPath into RDF-QEL. Edutella does not support
XML sources directly, though the RDF data sources may be serialized in XML
format.

PeerDB [16] is an agent-based P2P data management system where each
peer holds a relational database. The metadata for relations that are sharable
with other peers is specified in a local export dictionary. Unlike PEPSINT, there
are no established mappings between peers. Thus, query reformulation between
peers in PeerDB is assisted by agents through a relation-matching strategy ; this
is a process of matching the metadata between relations in different peers. XML
and RDF data are not considered in the current implementation of PeerDB.

SEWASIE [4] is another agent-based P2P system that aims to integrate
Information Nodes (SINodes), where each node acts as an autonomous mediator-
based system. It contains two types of agents: query agents that are responsible
for query processing and answering; and brokering agents (peers) that handle
the mappings between nodes. Each brokering agent directly controls at least
one SINode and handles the creation and maintenance of semantic relationships
among concepts from different information nodes in the system. SEWASIE does
not currently support RDF data sources.

Hyperion [3] proposes an architecture for a P2P data management system
for relational databases (one stored at each peer). Similarly to PEPSINT, map-
ping tables and mapping expressions (mapping tables that allow variables) are
used to store connections between local schemas in peers. A query manager uses
the mapping tables and mapping expressions to rewrite a query posed in terms
of the local schema; the rewriting process produces a query that is run over the
schema of acquainted peers. Unlike PEPSINT, only relational data sources and
relational queries are supported by Hyperion.

The Piazza system [11] is a P2P data management system that, like PEPSINT,
supports interoperation of both XML and RDF data sources. Furthermore, both
systems preserve document structure of XML sources during interoperation of
these sources. The differences from PEPSINT are: (1) Piazza is based on the
pure P2P architecture in which peers are connected directly, whereas PEPSINT

3

is built on top of a hybrid architecture with a super peer containing the global
ontology. This is a tradeoff between efficiency and autonomy [4]. (2) Piazza uses
a (declarative) XQuery-based mapping language for mediating between nodes,
whereas PEPSINT utilizes mapping tables to store schema correspondences,
which we believe results in easier construction and maintenance of mappings.
(3) The Piazza system achieves its interoperability in a low-level (syntactic) way,
i.e., through the interoperability of XML and the XML serialization of RDF. For
this reason, the user has to write an RDF query in terms of an XQuery. The
query rewriting in Piazza is based on pattern matching between an XQuery ex-
pression and the mappings. In contrast, PEPSINT supports RDF queries at the
conceptual level (RDQL), as well as XQuery. Query translation is realized by a
collection of query rewriting algorithms.

3 The PEPSINT Architecture

There are two types of P2P architectures [14]: the pure P2P architecture, in
which no central point of control exists and peers are autonomous but can com-
municate directly with each other; and the hybrid P2P architecture that contains
at least one central point of control. The global control point(s) maintain either
network control or the references to the remaining peers. Based on the hybrid
P2P architecture, PEPSINT contains two types of peers: the super peer, con-
taining the global RDF ontology, and the peers, containing local schemas and
local data sources. Each peer represents an autonomous information system and
connects with the super peer by establishing P2P mappings. As shown in Figure
2, the PEPSINT architecture has four main components.

XML to RDF wrapper. Since XML is characterized by having a hierar-
chical document structure while RDF has a flat document structure, it is hard
for the user to directly map a local XML schema to the global RDF ontology.
To solve this problem, an XML to RDF wrapper is used to transform the XML
schema into a local RDF schema, which is then mapped to the global ontology.
This is a process that conceptualizes the XML elements into RDF concepts while
keeping their nesting information (by using a specialized RDF property).

Local XML and RDF schemas. The local XML and RDF schemas re-
siding in peers contain both data and metadata. For the purpose of semantic
integration, we represent a local RDF schema as a labeled digraph (from now
on referred to as RDF schema graph). The domain structure is explicitly rep-
resented by labeled vertices (concepts) and labeled arcs (relationships between
concepts). Likewise, a local XML schema is represented as a labeled tree (from
now on referred to as XML schema tree) that specifies nesting relationships
between labeled vertices (elements).

Global RDF ontology. The global RDF ontology in the super peer is a
virtual mediated schema integrated from distributed local RDF schemas (using
the global-as-view approach [13]). In PEPSINT, the global ontology has two
roles: (1) It provides the user with a uniform and complete view of data sources
in the distributed peers; and (2) it serves as a mediator for query translation from

4

mapping table
local
XML

schema

Global RDF
ontology

peer 1 super peer

mapping
table

local RDF
schema

mapping table

peer n

XML to
RDF

wrapper

local
XML

schema

peer i

mapping
table

XML to
RDF

wrapper

Query processing in
data-integration fashion

Query processing in
hybrid P2P fashion

Mapping process

Q1

Q2n'

Q2i'

Q2

Q11'

Q1i'

Q1n'

Fig. 2. The PEPSINT architecture.

one peer to other peers. The global RDF ontology is a fairly simple ontology—it
does not contain high-level axioms, such as those available to DAML+OIL or
OWL.

Mapping table. A mapping table stores mappings between local schemas
and the global ontology. We use XML path expressions to represent the ele-
ments contained in an XML schema, and RDF path expressions to represent the
concepts and relationships in an RDF schema.

The operation of PEPSINT can be divided into two phases: mapping (or
design) phase and query (or runtime) phase, as respectively indicated by the
hollow arrowed lines and the solid and dashed arrowed lines in Figure 2. To
realize semantic integration of XML and RDF data sources, domain structure
and document structure must be preserved in both phases.

1. Mapping phase. Whenever a new peer joins the PEPSINT network, the
peer gets registered and indexed in the super peer by establishing mappings from
its local schema to the global ontology. The mappings are established through a
process of schema matching 1 and stored in the mapping table of the peer. During
the process of schema matching, the global ontology is extended by integration of
the local schemas. As previously mentioned, the domain structure and document
structure of local schemas are encoded in the mappings.

2. Query phase. PEPSINT provides two query processing modes. (1) In
the data-integration mode, the user poses a query (source query) on the global
ontology in the super peer, which is then reformulated into multiple subqueries
(target queries) over the XML and RDF sources in the peers (one subquery for
each source). By executing the target queries and integrating their results, the
system returns an answer to the user at the site of the super peer. (2) In the
hybrid P2P mode, the user can pose a source query on the local XML or RDF

1 Schema matching is a basic problem in many database application domains, and
currently it must be performed manually. A taxonomy covering most of the existing
approaches to schema matching has been devised [17].

5

source in some peer. Locally, the query will be executed on the local source to get
a local answer. Meanwhile, the source query is reformulated into a target query
over every other peer through transitive mappings (compositions of mappings
from the original peer to the super peer and mappings from the super peer to the
other target peers). By executing the target query, each peer returns an answer
to the original peer, called the remote answer. The local and remote answers are
integrated and returned to the user at the site of the originating peer.

Query translation is achieved by using the mappings in conjunction with
a collection of query rewriting algorithms. We discuss the mapping and query
phases in greater detail in Section 4 and Section 5, respectively. Running exam-
ples based on the schemas in Figure 1 will be used for illustration.

4 Mapping Process

In PEPSINT, the data sources residing at the peers may be either XML data
modeled by an XML schema language (e.g., XML Schema) or else RDF data
whose classes and properties are described using RDF Schema (RDFS). As pre-
viously mentioned, mappings between local schemas and the global ontology are
established by the schema matching process during the registration of a peer to
the super peer. The key operation in this process is the preservation of the do-
main structure of RDF sources and the document structure of the XML sources.

4.1 Mapping a local RDF schema to the global RDF ontology

Schema matching takes the global RDF ontology G (in the super peer) and a
local RDF schema R (in the peer) as the inputs and returns a set of mappings
M between the elements of G and the elements of R as the output. Meanwhile,
the global ontology is updated by merging or adding metadata from the local
RDF schema.

Elements in an RDF schema include concepts and roles (also known as classes
and properties in RDFS terminology). When matching the local RDF schema
with the global RDF ontology, for each element pL in the local RDF schema, if
there already exists in the global ontology a semantically equivalent element pG,
the two elements will be merged and a correspondence such as (pL, pG) will be
generated. Otherwise, the element pL will be copied into the global ontology as
pG, and a correspondence (pL, pG) will be generated as well. We define a group

Book Author
rdfx:contains

Books
rdfx:contains

Literal

booktitle

Literal

name

WriterArticle
rdfx:contains

Writers
rdfx:contains

Literal

title

Literal

fullname

local RDF schema R1 local RDF schema R2

Fig. 3. RDF schemas transformed from the local XML schemas in Figure 1

6

Book AuthorBooks Authors
rdfx:contains

Literal

title

name

Literal

rdfx:contains

rdfx:contains

rdfx:contains

Publisher

ISBN

pulishedBy

Literal

Literal
name

Global RDF ontology G (defined in namespace: http://examples.org/global#)

RDF path RDF path XML path expressions XML path expressions

expressions in G expressions in R in S1 in S2

Books – /books –

Book Book /books/book /writers/writer/article

Book.title Book.booktitle /books/book/@booktitle /writers/writer/article/@title

Book.ISBN Book.ISBN – –

Book.publishedBy Book.publishedBy – –

Publisher Publisher – –

Publisher.name Publisher.name – –

Authors – – /writers

Author – /books/book/author /writers/writer

Author.name – /books/book/author/@name /writers/writer/@fullname

Fig. 4. The global RDF ontology and its mapping table.

of operations on the ontology to implement schema matching between two RDF
schemas, e.g., merging of classes, merging of properties, merging of relationships
between classes, and copying a class and/or its properties. A concrete example
is given in our previous work [9].

4.2 Mapping a local XML schema to the global RDF ontology

By transforming the participating local XML schema into a local RDF schema,
we can convert the problem of matching an XML schema with the global ontology
into the problem of matching an RDF schema with the global ontology, which
is discussed in Section 4.1.

The schema transformation is carried out by the XML to RDF wrapper.
The XML to RDF wrapper converts XML attributes and simple elements to
RDF properties; it converts XML complex elements to RDF classes. The wrap-
per also encodes the element-attribute relationship and the element-subelement
relationship in XML schema respectively as the class-to-literal relationship and
the class-to-class relationship in the resulting RDF schema.

We choose to define a new, specialized RDF property rdfx:contains (the prefix
rdfx stands for the new name space “http://pepsint.org/rdfx#”) to explicitly
denote nesting relationships. In particular, given that two XML elements ei

(parent element) and ej (child element) are respectively converted into two RDF
classes, ci and cj , the property rdfx:contains of ci is then generated to connect
ci to cj . Figure 3 shows the resulting local RDF schemas R1 and R2 that are
respectively converted from the two XML schemas S1 and S2 shown in Figure 1.
Finally, the global ontology G integrated from S1, S2 and R (in Figure 1) and its
mapping table are shown in Figure 4. The grayed concepts or roles are the ones
merged from local sources. We notice that both the rdfx:contains property in G

7

and the mappings in the mapping table encode the document structure of XML
sources, so that either of them can be exploited for tracking XML document
structure in future query translations.

5 Query Processing

5.1 Assumptions

For the simplicity of discussion, we make the following assumptions.
1. We assume the mappings from a local schema to the global ontology are

total, one-to-one mappings. On the other hand, the mappings from the global
ontology to the whole set of local schemas are total but not one-to-one mappings,
since a concept in the global ontology might be merged from multiple concepts
of different local schemas (as a result of schema matching). The mappings from
the global ontology to a single local schema are one-to-one but they may be
partial mappings, which means a query run at a local source may result in an
incomplete answer.

2. We also assume that XML queries conform to a subset of XQuery [5], which
we call PXQuery (Partial XQuery) in this paper. PXQuery consists of a non-
nested FLWR expression that includes four clauses: for, let, where, and return;
the where clause may only contain comparison operators. Other limitations of
PXQuery include: (1) Only a single XML document is involved in the query; (2)
No new XML fragments are introduced in the query; (3) The path expressions
contained in the clauses only use child axes; (4) No type declarations, functions,
order clauses, and predicate filters are used.

3. To represent RDF queries, we use RDQL, which uses an SQL-like syntax
[12]. RDQL consists of the following clauses: SELECT, FROM, WHERE, AND, and
USING. We assume only comparison operators are used in the AND clause of the
RDQL query. The FROM and USING clauses are not the focus of our attention
since they are not involved in query translation.

For the sake of convenience, we associate a PXQuery query Q with
(VQR , VQW , CQ), where VQR and VQW are the two sets that respectively con-
tain all XML path expressions in the return clause and in the where clause,
and CQ contains the constraints whose items are in the form of vRc, where
v ∈ VQW , c stands for a constant, and R is a comparison operator (e.g., =, <,
>, ≤, ≥, and �=). Likewise, we also associate an RDQL query Q with a triple
(PQS , PQW , CQ), where PQS and PQW respectively contain all RDF path ex-
pressions in the SELECT clause and in the WHERE clause, and CQ contains the
constraints whose items are in the form of pRc, where p ∈ PQW , c stands for a
constant, and R is a comparison operator.

5.2 Query answering in data integration mode

Query answering in data integration mode includes the following steps. We use
a running example for illustration.

8

1. Analyzing the source RDQL query to convert it from a string to a
triple Qin : (PQS

in
, PQW

in
, CQin

). In order to get the RDF path expressions in PQS
in

and PQW
in

, we have to match the triple patterns (specified in the WHERE clause)
with the RDF graph corresponding to the local RDF schema. CQin

contains
all the constraints specified in both the triple patterns of the WHERE clause and
the AND clause. Because of space limitations, we ignore the detailed process of
pattern matching in this paper.

Example 1. To “find the publications written by a1”, the user poses a query
over the global ontology as shown below on the left hand side (the prefix go
stands for the name space “http://examples.org/global#”, where the global
ontology is defined). The resulting Qin elements are listed on the right hand
side.

SELECT ?title PQS
in

={Book.title}
WHERE (?book, <go:title>, ?title), PQW

in
={Book, Book.title, Author,

(?book, <rdfx:contains>, ?author), Author.name}
(?author, <go:name>, ?name) CQin={(Author.name, eq, "a1")}

AND (?name eq "a1")

2. Rewriting the source query into target subqueries over the RDF
or XML sources, by applying the query rewriting algorithm: RDQL2RDQL or
RDQL2PXQuery (once for each source), which utilizes mapping information stored
in the mapping table of Figure 4. The output Qout of a query rewriting in
algorithm is a triple of the form (PQS

out
, PQW

out
, CQout

) for the RDF source or
(VQR

out
, VQW

out
, CQout

) for the XML source. From Qout, we can compose the tar-
get query that is executable over the local source. Below is the result of this step
for Example 1.

For the local RDF source R:
PQS

out
={Book.booktitle}, PQW

out
={Book, Book.booktitle}, CQout={}.

The target RDF query is: SELECT ?booktitle

WHERE (?book, <lo:booktitle>, ?booktitle)

For the local XML source S1:
VQR

out
={/books/book/@booktitle}, VQW

out
={/books/book, /books/book/@booktitle,

/books/book/author, /books/book/author/@name},
CQout={/books/book/author/@name, =, "a1"}.
The target XML query is: for $book in doc("books.xml")/books/book

where $book/author/@name = "a1"

return $book/@booktitle

For the local XML source S2:
VQR

out
={/writers/writer/article/@title}, VQW

out
={/writers/writer/article,

/writers/writer/article/@title, /writers/writer, /writers/writer/@fullname},
CQout={/writers/writer/@fullname, =, "a1"}.
The target XML query is: for $writer in doc("writers.xml")/writers/writer

where $writer/@fullname = "a1"

return $writer/article/@title

3. Building an answer to the source query (on the global ontology G)
by assembling the fragment results returned from local sources. We need to

9

not only union the fragments (returned from different sources) while removing
identical records, but also join the records based on some common key attribute.
In addition, null values will be filled into the records that just partially cover
queried attributes. The result of an RDQL query is a table containing URIs or
string constants corresponding to the path expressions in the SELECT clause. For
example, the answer to the query of Example 1 is a table containing a single
tuple ("b1"), which is the union of results from S1 and S2. The record ("b3")
returned from R is filtered out since the target query over R loses the query
constraints in query rewriting, caused by the partial mappings from G to R (i.e.,
R has no correspondence for the class Author in G).

5.3 Query answering in hybrid P2P mode

We only focus on the case of translating a source query in PXQuery from a peer
to all the other peers, since the translation of a source RDQL query is similar
to what is done in data integration mode (except for the transitive mappings).
Query answering in hybrid P2P mode includes the following steps.

1. Analyzing the source PXQuery query to convert it from a string to
a triple Qin : (VQR

in
, VQW

in
, CQin

).

Example 2. To “list all the publications”, the user poses a query (over the local
source S1) as shown below on the left hand side. The resulting Qin components
are listed on the right hand side.

for $book in doc("books.xml")/books/book VQR
in

={/books/book}
return $book VQW

in
={}, CQin={}

2. Rewriting the source query into a target query over all the other
connected RDF or XML sources, by utilizing the query rewriting algorithm:
PXQuery2RDQL or PXQuery2PXQuery (once for each source) and the transitive
mappings between the original data source and the target data source. The
output of the query rewriting algorithm is a triple Qout : (VQR

out
, VQW

out
, CQout

)
for the target XML data source or (PQS

out
, PQW

out
, CQout

) for the target RDF data
source.

An XML query must take into account the document structure of the XML
source. The answer to an XML query is returned as a set of subtrees, each of
which is rooted from one of the queried nodes (i.e., vertices in VQR). For instance,
the answer to the XML query in Example 2 is the subtree rooted from book in
S1 (see Figure 1). Therefore, the query rewriting algorithm also outputs a tree
T with its children being the resulting subtrees of the answer. The result of this
step by following Example 2 is shown below.
For the local RDF source R:

PQS
out

={Book}, PQW
out

={}, CQout={}.
The target RDF query is:

SELECT ?book, ?title

WHERE (?book, <lo:booktitle>, ?title)

Book Publisher

Literal

ISBN

Literal

pulishedBy

booktitle

Literal

name

T

10

For the local XML source S2:
VQR

out
={/writers/writer/article},VQW

out
={}, CQout={}.

The target XML query is:
for $writer in doc("writers.xml")/writers/writer

for $article in $writer/article

return

<book booktitle="{$article/@title}">
<author name="{$writer/@fullname}"/>

</book>

writers

@title
@fullname

writer *
T

article *

3. Building an answer to the source query (against the original data
source) by computing the union of the local answer (returned from the orig-
inal queried peer) and the remote answers (returned from remote peers). To
construct the remote answers, different methods are used for queries that target
XML sources versus queries that target RDF sources. In the former case, be-
cause RDQL cannot represent document structure, the remote answer is built
by organizing (based on the structure specified by T) the instances returned
from executing the target RDQL query. Whereas in the latter case, the remote
answer is formed by simply executing the target PXQuery query that already
represents the same structure as specified by T . For Example 2, the final answer
to the source query is shown below, where the three resulting lines come from
the local sources S1, S2, and R, respectively.

<book booktitle="b1"> <author name="a1"> </book>
<book booktitle="b2"> <author name="a2"> <author name="a3"> </book>
<book booktitle="b4"> </book>

6 Conclusions and Future Work

In this paper, we propose a P2P schema-based data management framework
called PEPSINT. This framework aims to semantically integrate distributed het-
erogeneous XML and RDF data sources. We discuss the construction of the ar-
chitecture, maintenance of mappings, and query processing in PEPSINT. In par-
ticular, semantic integration is implemented at schema-level through the schema
matching process and at instance-level through the query answering process. A
key aspect in these two processes is the preservation of domain and document
structure, which is realized by extending the RDF metadata space and provid-
ing a set of query rewriting algorithms. Because of this preservation, the user
query can be correctly propagated across the heterogeneous XML and RDF data
sources in PEPSINT, so that information access within the network is transpar-
ent to the user.

As for future work, we will: (1) Develop a proof of correctness for the query
process. (2) Design and implement a semantic web application (e.g., for bibli-
ographic data exchange) in PEPSINT to validate and evaluate the system. (3)
Do a performance comparison of PEPSINT with other P2P data management
systems.

11

References

1. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration
of XML Web Resources. In Proceedings of the 1st International Semantic Web
Conference (ISWC 2002), pages 117–131, 2002.

2. B. Amann, I. Fundulaki, M. Scholl, C. Beeri, and A. Vercoustre. Mapping XML
Fragments to Community Web Ontologies. In Proceedings of the 4th International
Workshop on the Web and Databases (WebDB 2001), pages 97–102, 2001.

3. M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and J. My-
lopoulos. The Hyperion Project: From Data Integration to Data Coordination.
SIGMOD Record, 32(3):53–38, 2003.

4. S. Bergamaschi, F. Guerra, and M. Vincini. A Peer-to-Peer Information System
for the Semantic Web. In Proceedings of the International Workshop on Agents
and Peer-to-Peer Computing (AP2PC2003), July 2003.

5. S. Boag, D. Chamberlin, M. F. Fernández, J. R. D. Florescu, and J. Siméon.
XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery, W3C
Working Draft, August 2003.

6. S. D. Camillo, C. A. Heuser, and R. S. Mello. Querying Heterogeneous XML
Sources through a Conceptual Schema. In Proceedings of the 22nd International
Conference on Conceptual Modeling (ER2003), pages 186–199, 2003.

7. Y. Chen and P. Revesz. CXQuery: A Novel XML Query Language. In Proceedings
of International Conference on Advances in Infrastructure for Electronic Business,
Science, and Medicine on the Internet (SSGRR 2002w), 2002.

8. I. F. Cruz and H. Xiao. Using a Layered Approach for Interoperability on the
Semantic Web. In Fourth International Conference on Web Information Systems
Engineering (WISE’03), pages 221–232, Rome, Italy, December 2003.

9. I. F. Cruz, H. Xiao, and F. Hsu. An Ontology-based Framework for Semantic Inter-
operability between XML Sources. In Eighth International Database Engineering
& Applications Symposium (IDEAS 2004), July 2004. (To appear).

10. L. Gong. JXTA: A Network Programming Environment. IEEE Internet Comput-
ing, 5(3):88–95, May 2001.

11. A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management
Infrastructure for Semantic Web Applications. In Proceedings of the 12th Interna-
tional World Wide Web Conference (WWW2003), pages 556–567, 2003.

12. HP Labs. RDQL - RDF Data Query Language. http://www.hpl.hp.com/semweb/
rdql.htm.

13. M. Lenzerini. Data Integration: A Theoretical Perspective. In Proceedings of
the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS 2002), pages 233–246, Madison, Wisconsin, June 2002. ACM.

14. G. Moro, A. M. Ouksel, and C. Sartori. Agents and Peer-to-Peer Computing:
A Promising Combination of Paradigms. In Proceedings of the 1st International
Workshop of Agents and Peer-to-Peer Computing (AP2PC2002), pages 1–14, 2002.

15. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: A P2P Networking Infrastructure Based on RDF. In
Proceedings of the 11th International World Wide Web Conference (WWW2002),
2002.

16. W. S. Ng, B. C. Ooi, K. Tan, and A. Zhou. PeerDB: A P2P-based System for
Distributed Data Sharing. In Proceedings of the 19th International Conference on
Data Engineering (ICDE 2003), pages 633–644, 2003.

17. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB J., 10(4):334–350, 2001.

12

