Skip to main content

Dynamic Processor Throttling for Power Efficient Computations

  • Conference paper
Power-Aware Computer Systems (PACS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3471))

Included in the following conference series:

Abstract

We propose a novel hardware-based DVS technique called dynamic processor throttling (DPT) for power efficient computations. DPT focuses on the performance balance between the processor and main memory. When a performance imbalance is detected, DPT tries to redress the imbalance by setting the clock frequency and supply voltage of the processor to a well-balanced point.

This paper describes the micro-architecture mechanisms of DPT and shows the evaluation results on energy saving and performance compared with a conventional cache-miss-driven DVS technique. The results reveal that DPT can reduce 17% of the energy with a 3.4% performance degradation and DPT surpasses the conventional technique in both performance and energy.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11574859_13 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ishihara, T., Yasuura, H.: Voltage Scheduling Problem for Dynamically Variable Voltage Processors. In: Proc. ISLPED 1998, pp. 197–201 (August 1998)

    Google Scholar 

  2. Qu, G.: What is the Limit of Energy Saving by Dynamic Voltage Scaling. In: Proc. ICCAD 2001, pp. 560–563 (November 2001)

    Google Scholar 

  3. Shin, D., Kim, J.: A Profile-Based Energy-Efficient Intra-Task Voltage Scheduling Algorithm for Hard Real-Time Applications. In: Proc. ISLPED 2001, pp. 271–274 (August 2001)

    Google Scholar 

  4. Sasanka, R., Hughes, C.J., Adve, S.V.: Joint Local and Global Hardware Adaptations for Energy. In: Proc. ASPLOS X, pp. 144–155 (October 2002)

    Google Scholar 

  5. Bahar, R.I., Manne, S.: Power and Energy Reduction via Pipeline Balancing. In: Proc. 28th ISCA, pp. 218–229 (July 2001)

    Google Scholar 

  6. Hsu, C.-H., et al.: Compiler-Directed Dynamic Frequency and Voltage Scheduling. In: Proc. Workshop on PACS (November 2000)

    Google Scholar 

  7. Marculescu, D.: On the Use of Microarchitecture-Driven Dynamic Voltage Scaling. In: Proc. of Workshop on Complexity-Effective Design (June 2000)

    Google Scholar 

  8. Li, H., Cher, C.-Y., Vijaykumar, T.N., Roy, K.: VSV: L2-Miss-Driven Variable Supply-Voltage Scaling for Low Power. In: Proc. 36th Micro, pp. 19–28 (December 2003)

    Google Scholar 

  9. S-Marbell, P., et al.: A Hardware Architcture for Dynamic Performance and Energy Adaptation. In: Proc. Workshop on PACS (Febrauary 2002)

    Google Scholar 

  10. Burd, T.D., Brodersen, R.W.: Design Issues for Dynamic Voltage Scaling. In: Proc. ISLPED 2000, pp. 9–14 (August 1998)

    Google Scholar 

  11. Saputra, H., et al.: Energy-Conscious Compilation Based on Voltage Scaling. In: Proc. LCTES/SCOPES 2002, pp. 2–11 (June 2002)

    Google Scholar 

  12. Semeraro, G., et al.: Energy-Efficient Processor Design Using Multiple Clock Domains with Dynamic Voltage and Frequency Scaling. In: Proc. the 8th HPCA, pp. 29–40 (February 2002)

    Google Scholar 

  13. Semeraro, G., et al.: Dynamic Frequency and Voltage Control for a Multiple Clock Domain Microarchitecture. In: Proc. 35th Micro, pp. 356–367 (December 2002)

    Google Scholar 

  14. Magklis, G., et al.: Profile-based Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain Microprocessor. In: Proc. the 30th ISCA, pp. 14–27 (June 2003)

    Google Scholar 

  15. Austin, T., et al.: SimpleScalar: An Infrastructure for Computer System Modeling. IEEE Computer 35(2), 59–67 (2002)

    Google Scholar 

  16. Burger, D., et al.: Memory Hierarchy Extensions to the SimpleScalar Tool Set. Technical Report TR99-25, Department of Computer Science, University of Texas at Austin (April 1999)

    Google Scholar 

  17. Brooks, D., et al.: Wattch: A Framework for Architectural-Level Power Analysis and Optimizations. In: Proc. 27th ISCA, pp. 83–94 (June 2000)

    Google Scholar 

  18. Intel: Intel Pentium M Processor Datasheet (June 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kondo, M., Nakamura, H. (2005). Dynamic Processor Throttling for Power Efficient Computations. In: Falsafi, B., VijayKumar, T.N. (eds) Power-Aware Computer Systems. PACS 2004. Lecture Notes in Computer Science, vol 3471. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11574859_9

Download citation

  • DOI: https://doi.org/10.1007/11574859_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29790-1

  • Online ISBN: 978-3-540-31485-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics