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Abstract. We define a method to statically bound the size of values
computed during the execution of a program as a function of the size
of its parameters. More precisely, we consider bytecode programs that
should be executed on a simple stack machine with support for alge-
braic data types, pattern-matching and tail-recursion. Our size verifi-
cation method is expressed as a static analysis, performed at the level
of the bytecode, that relies on machine-checkable certificates. We follow
here the usual assumption that code and certificates may be forged and
should be checked before execution.

Our approach extends a system of static analyses based on the notion
of quasi-interpretations that has already been used to enforce resource
bounds on first-order functional programs. This paper makes two ad-
ditional contributions. First, we are able to check optimized programs,
containing instructions for unconditional jumps and tail-recursive calls,
and remove restrictions on the structure of the bytecode that was im-
posed in previous works. Second, we propose a direct algorithm that
depends only on solving a set of arithmetical constraints.

1 Introduction

Bytecode programs are a form of intermediate code commonly used by language
implementors when programs should be distributed and run on multiple plat-
forms. Because of its advantages on performance and portability, many program-
ming languages are actually compiled into bytecode. Java and Microsoft C# are
representative examples, but bytecode compilers can also be found for less con-
ventional languages, such as O’Caml, Perl or PHP. On the downside, bytecode
typically stands at an abstraction level in between (high-level) source code and
machine code: it is usually more compact and closer to the computer architec-
ture than program code that is intended for “human consumption”. Therefore,
it is necessary to devise specific verification methods to guarantee properties at
the bytecode level. For instance, to ensure the safety of executing newly loaded
code, virtual machines generally rely on machine-checkable certificates that the
program will comply with user-specific requirements. The interest of verifica-
tion of such properties at the bytecode level is now well understood, see for
example [T4[T7].
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As networked and mobile applications become more and more pervasive, and
with the lack of third parties in control of trust management (like e.g. frameworks
based on code signing), security appears as a major issue. Initial proposals for
securing bytecode applications have focused on the integrity of the execution
environment, such as the absence of memory faults and access violations. In
this paper, we consider another important property, namely certifying bounds
on the resources needed for the execution of the code. This problem naturally
occurs when dealing with mobile code, for example to prevent denial of service
attacks, in which the virtual machine is starved of memory by the execution
of a malicious program. More precisely, we define a method to statically bound
the size of values computed during the execution of a program. The size-bound
obtained by this method is expressed as a function of the size of the parameters
of the program (actually as a polynomial expression) and has several uses. For
instance, together with an analysis that bounds the maximal number of stacks
in the evaluation of a program, it gives an overall bound on the memory space
needed by the virtual machine. This size-bound can also be used with automatic
memory management techniques, e.g. to bound the physical size of regions in
region-based systems [I§].

We consider bytecode programs that should be executed on a simple stack
machine with support for algebraic data types, pattern-matching and tail-recur-
sion. The bytecode language can be the target of the compilation of a simply-
typed, first-order functional language. We hint at this functional source language
in several places but, since all our results are stated on the bytecode, we do not
need to define it formally here (see [I] for a definition). Our size verification
algorithm is expressed as a static analysis relying on certificates that can be
verified at load time. We follow here the usual assumption that code and cer-
tificates may be forged by a malicious party. In particular, they do not have to
result from the compilation of legit programs. Standard bytecode verification al-
gorithms build for each instruction an abstract representation of the stack. This
information typically consists of the types of the values on the stack when the
instruction is executed. In a nutshell, the size verification algorithm builds for
each instruction an abstract bound on the size of the values in the stack. In our
case the bound is a polynomial expression. It also builds proof obligations that
the bounds decrease throughout program execution.

Our method generalizes (and lift some of the restrictions) an approach de-
signed for first-order functional languages [I] that relies on a combination of stan-
dard techniques for term rewriting systems with a static analysis based on the
notion of quasi-interpretation. Similar analyses were also used to deal with sys-
tems of concurrent, interactive threads communicating via a shared memory [2].
This paper makes two additional contributions. First, we are able to check pro-
grams containing instructions for unconditional jumps and tail-recursive calls,
and remove restrictions on the structure of the bytecode that was imposed in
these two initial works. These two instructions are essential in the optimization
of codes obtained from the compilation of functional programs. They are also
required if we need to compile procedural languages. Second, we propose a di-
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rect algorithm that depends only on solving a set of arithmetical constraints.
Indeed, the size verifications defined in [IJ2] are based on a preliminary shape
analysis which builds, for each bytecode instruction, a sequence of first-order ex-
pressions representing the shape of the values in the stack (e.g. it may give the
top-most constructors). While the shape verification is well-suited to the analy-
sis of “functional code”, it does not scale to programs containing tail recursive
calls.

Another result of this work is educational: we present a minimal but still
relevant scenario in which problems connected to bytecode verification can be
effectively studied. For instance, our virtual machine is based on a set of 8
instructions, a number that has to be compared with the almost 200 opcodes
used in the Java Virtual Machine (JVM). We believe that the simplicity of
the virtual machine and the bytecode verifiers defined in this paper make them
suitable for teaching purposes. (Actually, we have already used them for projects
in compiler design classes.)

The paper is organized as follows. Section [2 defines a simple virtual machine
and a bytecode language built from a minimal set of instructions. In Section [3]
we introduce the notion of quasi-interpretations and define our size verification
method. This verification assumes that constructors and function symbols in the
bytecode are annotated with suitable functions to bound the size of the values on
the stack. Before concluding, we study the complexity of checking the constraints
generated during the size analysis. In particular, we show that their satisfiability
can be reduced to checking the sign of a polynomial expression.

2 Virtual Machine

We define a simple set of bytecode instructions and a related stack machine. A
program is composed of a list of mutually recursive type definitions followed by
a list of function definitions. In our setting, a function is a sequence of bytecode
instructions. Unlike traditional virtual machines that operate on literal values,
such as bytes or floating point numbers, we consider values taken from an arbi-
trary set of inductive types.

A value v is a term built from a finite set of constructors, ranged over by

¢, d,... The size of v, denoted |v|, is 0 if v is a constant (a constructor of arity
0) and 1+ X1 n|vs] if v is of the form c(v,...,v,).

We consider a fixed set of type identifiers ¢,t,... where each identifier is
associated to a unique type definition of the form ¢t = ... | cof ty*---xt, | ...

For instance, we can define the type nat of natural numbers in unary format
and the type bw of binary words:

nat = z | sof nat , bw =E | Oof bw | |of bw .

For instance, the values s(s(z)) of type nat and O(1( O(E))) of type bw stand for
the number 2. We will often use the type nat in our examples since functions
manipulating natural numbers can be interpreted as an abstraction of functions
manipulating finite lists (e.g. addition is related to list catenation).
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For the sake of simplicity, we suppose that the code and type of functions is
fixed and known in advance. Hence we consider a fixed set of constructor and
function names. We suppose that every constructor is declared with its functional
type (t1,...,tn,) — t and we denote ar(c) the arity of the constructor c. Similar
types can be either assigned or inferred for functions. We adopt the notation
¢ for the empty sequence and ¢ - ¢’ for the catenation of two sequences. The
expression |¢| denotes the length of £ and £[i] denotes the i'" element in £. When
the length is given by the context, we will sometimes use the vectorial notation
¥ to represent the sequence (v1,...,v,). In the following, we equate a function
identifier f with the sequence of instructions of its body code and thus write f][i]
for the 7*" instruction in f.

The virtual machine is built around three components: (1) a configuration M
that is a stack of call frames; (2) an association list between function identifier
and code; (3) a bytecode interpreter, modeled as a reduction relation M — M’.
The state of the interpreter, the configuration M, is a sequence of frames and
we write M — M’ if M reduces to M’ using one of the transformation rules
described by the table below.

The most important operation of the virtual machine corresponds to function
calls. The execution of a function call is represented by a frame, that is a triple
(f,pe,£), made of a function identifier f, the value of the program counter pc
(a natural number in 1..|f]) and an evaluation stack €. A stack is a sequence of
values that is used to store both the parameters of the call as well as the “local
values” computed during the life span of the frame. Hence the stack partially
plays the role devoted to registers in traditional architectures. The annotation p
is used to keep trace of the call that initiated the frame and has no operational
meaning (it is only used to validate our size verification method). We refine the
system of annotations in Section 211

We give an informal description of the bytecode language. Let ¢ be the stack
of the current frame, i.e. the frame on the top of the current configuration. The
instruction load i takes a copy of the i*" value of ¢ and puts it on the top of
the stack (i.e. it is equivalent to a register load). New values may be created
using the instruction build c¢ n, where c is a constructor of arity n. When
executed, the n values v1,...,v, on top of £ are replaced by c(v1,...,v,). The
instruction branch ¢ j implements a conditional jump on the shape of the value
v found on top of £. If v is of the form c(v1,...,v,) then the top of the stack is
replaced by the n values v1,...,v, (rule BranchThen). Otherwise, the stack is
left unchanged and the execution jumps to position j in the code, with j € 1..| f|
(rule BranchElse).

Function calls are implemented by the instruction call f n, where n is the
arity of f. Upon execution, a fresh call frame is created, which is initialized with a
copy of the n values on top of the caller’s stack. The lifetime of the current frame
is controlled by two instructions: return discards the current frame and returns
the value on top of the caller’s stack; stop finishes the execution and returns an
error code. Finally, the instruction jump j n is an unconditional jump, similar
to a goto statement, whereas tcall g m is similar to a call instruction, except
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Bytecode Interpreter: M — M’
I

(Load) (Build)
flpe] =buildcn pc<|f| ar(c)=n
flpc] =1load i pc < |f] L[i]=v =10 (vi,...,0n) Vo=c(V1,...,Vs)
M- (fque)ﬂ — M- (f,pC+ 1,£- v)ﬂ M- (fqué)ﬂ — M- (f,pc+ 17£/ 'vo)ﬂ
(BranchThen) (BranchElse)
flpe] = branch ¢ j pe < | Jlpe] = branch ¢ j 1< <]
=10 c(vi,...,vn) =10-d(...) c#d
M- (fque)ﬂ — M- (f,pC+ 17£, . (vly--'7vn))ﬂ M- (fqué)ﬂ — M- (f7j7£)ﬁ
(Call) (Jump)
flpc]=call gn pe <|f| ar(g)=n flpe] =jump jn 1<j<|f]
L=0-0" "= (v1,...,vn) p =gvi,...,v) =0 0" 0= (v1,...,0)
M - (fque)ﬂ — M - (fvpcyel)ﬂ : (97 17€ll)p’ M- (fqué)ﬂ — M- (fujvgﬂ)ﬂ
(TCall) (Stop)
flpe] = tcall gn pe<|f] ar(g)=n
£=0-0" 0" =(v1,...,0n) flpc] = stop
M- (f,pc, ), — M- (g,1,¢"), M - (f,pc,£), — error
(Return)

flpc] = return £ =1{¢" -,
M - (g7pcl7€l)p’ : (f7 pc7€)p — M - (971)0, + Lgl . Uo)p’

that the current frame is used to evaluate the call to g. These two instructions
are used to share common code between functions and to efficiently compile tail
recursion (when call instructions are immediately followed by a return). This is
essential because many programming idioms depend heavily on recursion. For
example, the Scheme language reference explicitly requires tail recursion to be
recognized and automatically optimized by a compiler.

The reduction relation M — M’ is deterministic and uses a special state of
the memory, error, that denotes the empty configuration €. The empty state
cannot be reached during an execution that does not raise an error (executes
a stop instruction). A “correct” execution starts with a single frame M, =
(f,1,€) 4(r), where £ = (v1,...,v,), and ends with a configuration of the form
M, = (f,pc,t" - vo)f(ey, where 1 < pe < |f] and f[pc] = return. We name the
configuration M, a call to f(v1,...,v,) and M, the result of evaluating M, and
we write M, \, vg. The others cases of blocked configurations are runtime errors.

2.1 Control Flow Graphs and Well-Formedness

Before giving examples of bytecode programs, we define the notions of control
flow graph (CFQG) and checkpoints of a function f. The CFG of f is the smallest
directed graph ({1,...,|f|}, E) such that for all node i € 1..|f] the edge (¢,i+1)
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is in E if f[i] is a load, build, call or branch instruction and (7,7) is in E if
f[i] is branch c j or jump j n. Nodes that are the target of a jump or branch
instruction can have several immediate predecessors. We call such nodes the
checkpoints of f. The first instruction of a function is also a checkpoint.

We associate to every node ¢ of f the node PC; € 1..|f| that is the only
checkpoint dominating the node 7 in the CFG of f: it is the first checkpoint
encountered from ¢ when moving backward in the CFG. We say that PC; is
the checkpoint of ¢ and we have PC; = 7 iff ¢ is a checkpoint. By construction,
every node of a CFG is associated to a unique checkpoint and there is a unique
path between PC; and ¢ without cycles. We also define the predicate Control ;(7)
which is true iff ¢ is a checkpoint of f.

We refine the semantics of the virtual machine to take into account check-
points in frame annotation. We store in the annotations the state of the execution
stack when we pass a new checkpoint (together with the state of the stack when
the frame is initialized). This improvement is needed for our size analysis but
the dynamic semantics of the machine does not need any change. The only dif-
ference is in the frame annotation p that is now of the form (g(¢,),,¢.) where
9(£,) is the “call” used to initialize the frame, i is the last checkpoint encountered
and /. is the state of the execution stack when we passed i. For each transition
M- (f,pc,£), — M"-(f',pc’, '), of the new relation, we have p’ = (..., pc’, ')
if pc’ is a checkpoint of the function f’ and p’ = p otherwise. Note that the
evaluation of a call or tcall instruction (the only case in which f # f') always
leads to a configuration where the program counter of the last frame is equal to
1, i.e. is a checkpoint.

Annotated Semantics

I
(Regular) (Checkpoint)
M - (f7 pc7€)g(€0) — M - (f7 pC e ) (£o) M - (f7 pc7£)g(io) i M/ . (f/7pcl7 6/)h(ﬁl)
Controls(pc') is false  p = (g(lo),i,Lc) Controls(pc') is true  p = (g(£o), 1, £c)
M - (f7 pec, Z)p — M - (f7 pcl7 el)p M - (f7 pec, Z)p - M, : (fl7 pCl7 Zl)(h(zl),pc’,e’a

Examples. Our first example is the function dble : nat — nat, that doubles
its parameter. A possible specification of this function using a functional syntax
could be dble(z) = z and dble(s(xz)) = s(s(dble(z))) (actually, the code given
below is the result of compiling this functional program as in [I]). In the follow-
ing, we display the index of each instruction next to its code and underline the
indices of checkpoints.

dble= 1 : 1loadl 5 branch s 10 9 : return
2 : branchz) 6 : call dblel 10 : stop
3 : buildz0 7 : buildsl
4 : return 8 : buildsl

The evaluation of the call to dble(s(v)) gives the following reductions, where w
stands for the result of the call to dble(v) (we do not write annotations).

(dble, 1, (s(v))) — (dble, 2, (s(v),s(v )) (dble, 5, (s(v),s(v))) — (dble, 6, (s(v),v))
— (dble, 6, (5(v))) - (dble, 1, (v) — - — (dble, 6, (s(v)) - (dble, 9, (w))
— (dble, 7, (s(v), w)) — (dble, 8, (s(v ) s(w))) — (dble, 9, (s(v),s(s(w)))) . s(s(w))
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From this simple example we can already see that first-order functional pro-
grams admit a direct compilation into our bytecode: every function is compiled
into a segment of instructions where pattern matching is represented by a nesting
of branch instructions. In particular the CFG of a compiled program is a tree.
Because our virtual machine does not allow to store code closures, we cannot
directly support subroutines or higher-order functions. We plan to study these
extensions in future works.

We can simplify our first example following two distinct directions. We obtain
an equivalent function by noticing that a natural number that is not of the form
s(...) is necessarily z. Hence we can discard a useless branch instruction. A
better optimization is obtained with the function tdble : nat — nat: we duplicate
the parameter (with a 1load instruction) and use it as an accumulator, giving the
opportunity to use a jump instruction. Finally, the function zdble : nat — nat is
an example of malicious code that loops and computes unbounded values.

inst. # dble zdble tdble CFG of tdble
1 load 1 load 1 load 1 ol
2 branch s 6 builds 1 load 1 —pe2
3 call dble 1 builds 1 branchs 7 o3
4 builds 1 call zdble 1 load 2 ol
5 builds 1 return builds 1 o°
6 return jump 2 2 6
7 load 2 7
8 return 8

Our last example is the function sum : nat — nat such that a call to sum(x)
computes the value of the expression = + (x — 1) 4+ --- + 1. The function sum
is interesting because it is a non trivial example mixing recursive calls and “su-
perlinear” size computations: our size verification can be used to prove that the
size of the result is bound by %|z|(|z| + 1). The definition of sum makes use of
the function add : (nat, nat) — nat that tallies up its two parameters.

sum= 1 : load 1l 3 : call sum 1 5 : return
2 : branchsb 4 : call add 2

add = 1 : branchsb 4 : load 2 7 : return
2 : loadl 5 ¢ jump 12
3 : buildsl 6 : load 1

Well-Typed Programs. We define a type verification that associates to every
bytecode instruction an abstraction of the stack when it is executed. In our case,
an abstract state T' is a sequence of types (f1,...,t,) that matches the types of
the values in the stack. We say that a stack ¢ has type T', and we note £ : T,
if £ = (v1,...,v,) where v; is a value of type t; for all i € 1..n. The type of a
function f is a sequence of length |f| of type stacks and a well-typed function
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Table 1. Type Analysis (wt;(f,T))

I 1

Assume f : (t1,...,tn) — to. Case f[i] of:

(load k) then wt;(f,T) is true iff i < |f|, Ti[k] = tx and Tit1 =T} - tx;

(build ¢ m) let ¢ : (..., t0,) — to, then wt;(f,T) is true iff i < |f|, Ts = T -
(tll, ce 7t;n) and Ti+1 =T- t6;

(branch ¢ j) let ¢ : (t),...,t0,) — tbh, then wt;(f,T) is true iff i < |f], j € 1..|f],
Tzthé,TH_lIT(t/l t;n) ande :Tu

(call gm) let g: (t),...,t0,) — to, then wt;(f, T) is true iff i < |f|, Ty = T-(t} ... th)
and T¢+1 =T- té;

(tcall g m) let g : (t),...,t) — th, then wt;(f,T) is true iff i < |f], to = t§,
T; =T~(tl1,...,t;n) and Ti+1 ZT'to;

jump j m) then wti(f,T) is true iff 1 < j € 1.|f], T = T - (t; ... t,) and Tj =

J

(th o tm);

(return) then wt;(f,T) is true iff T, = T - to;

sto Then wt; ,f is true.

(stop)

is a sequence of well-typed instructions. The notion of well-typed instruction is
formally defined by means of the relation wt;(f, f), defined below. For example,
if f[i] = load k and if the type of f[i] is T; = (t1,...,t,), with n > k, then the
type of f[i+1] should be equal to (¢1,...,tn,tx). (The abstract state T; gives the
type of values in the stack ”before” the execution of instruction i.) A program
is well-typed if all its functions are well-typed: a sequence T is a valid abstract
execution of the function f : (t1,...,t,) — to, denoted wit(f, f), if and only if
Ty = (t ... t,) and wt;(f,T) for all i € 1..|f|. The definition of wt;(f,T) is by
case analysis on the instruction f[i], see Table [T}

We can define from the predicate wt an algorithm that computes a valid type
for a function f if it exists, e.g. using Kildall’s algorithm [16]. (We can view type
verification as a kind of symbolic execution on stacks of types.) Moreover, we can
prove that if the CFG is a connected graph then there is at most one valid type.
Then we can assign to every instruction of f the size of its stack, and to every
element of that stack a single type. As an example, we give the type inferred for
the function tdble : nat — nat.

: load 1 (nat)

: load 1 (nat, nat)

: branch s 7 (nat, nat, nat)
: load 2 (nat, nat, nat)

:builds 1 (nat,nat, nat, nat)
: jump 2 2 (nat, nat, nat, nat)
: load 2 (nat, nat, nat)

: return (nat, nat, nat, nat)

= 0N |
Cco 3 O Ot

We can prove that the execution of a well-typed program never fails. For
example, We can prove a subject reduction property and follow an approach
similar to the one used in Section Blto prove the validity of our size analysis. Due
to the limited amount of space available, we prefer to develop the background
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on size verification, which is the most innovative result of this paper. Most of
the formal details on type verification may be found in [].

The type verification provides a bound on the length of the stacks during
an execution and we note hy; the size of the stack ¢ in a frame (f,4,£), of a
well-typed configuration. In the next section we show how to obtain a bound
on the size of the computed values from our size analysis. Together, these two
information can already be used to reject programs that compute arbitrarily
large values but, to obtain a bound on the size needed for the execution of a
program, we also need to bound the maximal number of frames, which usually
necessitates a termination analysis.

3 Size Verification

We define a size verification based on the notion of quasi-interpretations [12].
This paper makes two additional contributions to our previous works on resource
certification [1I2]. First, we are able to check programs whose CFG contains
cycles, improving what was done in previous work. Second, we propose a direct
algorithm that depends only on solving a set of arithmetical constraints, without
resorting to an auxiliary shape analysis.

Quasi-interpretation. Quasi-interpretations have been defined by Marion et
al. [I2] to reason about the implicit complexity of term rewriting systems. The
idea is close to polynomial interpretation for termination proofs: we assign to
every function and constructor of a program a numerical function bounding the
size of the computed values. More formally, a quasi-interpretation assigns to
every identifier id in a program a function ¢;4 (with arity ar(id)) over the non-
negative rational numbers Q" such that: (1) if c is a constant then g.() = 0;

(2) if ¢ is a constructor with arity n then gc(z1,...,2,) = d + Xic1. n2i, where
d > 1; (3) if f is a function with arity n then g; : (QT)" — Q" is monotonic
and for all ¢ € 1..n we have gf(x1,...,2n) = ;.

An assignment can be easily extended to functional expressions as follows:
Qe = T Qeler,en) = c(Gers -1 Ge,); and Gf(er,en) = 4f(Qeys- - -5 e, ). Then
an assignment is a valid quasi-interpretation for a system of recursive func-
tion definitions if for all declarations f(pi,...,pn) = e in the program, the
inequality qf(p,,...p.) = ¢e holds. For instance, if we choose ¢ = 1 + = for
the quasi-interpretation of the constructor in nat (by definition, ¢, = 0) then
gapie(x) = 2z is a valid quasi-interpretation for the function dble defined in
our examples: we have qapie(g:()) = ¢:() and gapie(gs(x)) = ¢s(gs(qavie(x))). In
general, a quasi-interpretation provides a bound on the size of the computed
values as a function of the size of the input data. If f(vi,...,v,) \, v then
|U| < Qo < Qf(|vl|7 AR |vn|)

The problem of synthesizing quasi-interpretations (from a set of functional
declarations) is connected to the synthesis of polynomial interpretations for ter-
mination but it is generally easier because inequalities do not need to be strict
and small degree polynomials are often enough. For instance, Amadio [3/4] has
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considered the problem of automatically inferring quasi-interpretations in the
space of multi-variate max-plus polynomials.

In this paper, we define a similar notion of quasi-interpretation for byte-
code programs. Assume a function f of the bytecode program. An assignment
associates to every checkpoint ¢ of f a polynomial expression qr; with hy; vari-
ables. We also use the notation g to denote the function g7 assigned to the
entry point of f. Like in the functional case, we require that each polynomial
gy, satisfies the hypotheses for quasi-interpretations (properties (1)-(3) listed
above). The machine-checkable certificates used in our size verification are quasi-
interpretations, that is assignment of numerical functions, in our case polynomial
expressions, to instructions in the program. An advantage of this approach is that
quasi-interpretation can be synthesized at the source-code level and verified at
the bytecode level. We will not address synthesis issues in this paper and we
suppose that the bytecode comes with all the necessary types and size annota-
tions. For example the function ¢dble has two checkpoints, the nodes 1 and 2,
with respective types (nat) and (nat, nat), which means that hygpe,1 = 1 and
hidpie,2 = 2. In the following we assume that the assignment is qigpie,1 (1) = 221
and qiapie,2(yY1,Y2) = Y1 + Y.

Size Analysis. We show how to check the validity of an assignment and to
obtain a size bound from a quasi-interpretation. Like the type verification, our
size verification associates to every bytecode instruction an abstraction of the
stack at the time it is executed. In this case, the abstraction is a combination
of a sequence of size wvariables, which stands for the best size bounds we can
obtain, together with arithmetic constraints between these variables. Contrary
to the size verification defined in [I]], we directly infer a size bound, without using
an auxiliary “shape verification” (that is a static analysis which provides partial
informations on the structure of the elements in the stack). The advantage of a
direct approach is to get rid of the restrictions imposed by the shape analysis,
especially: (1) that the CFG of functions must be a tree and (2) that along each
execution path, we must not have a branch instruction after a call instruction.

We suppose that the bytecode is well-typed, which means that we know
the number hy,; of elements on the stack before executing the instruction f[i].
We associate to each checkpoint ¢ of the function f: (1) a sequence of fresh
(size) variables Tf; =get (%1,...,%n;,) and (2) a polynomial expression gy ;
with variables Z¢; and coefficients in Q.

The size analysis is formally defined by the predicate wsz;(f, S , Q_;) given in
Table[2l The definition of wsz;(f, S, &) is by case analysis on the instruction f [i]
and expresses that (1) the size of every element on the stack at instruction i
is bounded by the expression ¢s pc,(Zs pc,), and (2) the quasi-interpretations
decrease every time we pass a new checkpoint. We say that the size analysis is
successful if there are two sequences § = (S1,...,85)¢) and b = (D1, D)y)

such that wszi(f,g,ﬁ) for all ¢ € 1..|f], and S; = Zy; and &; = 0 if i is a
checkpoint of f. We note this relation wsz(f, S, 5)
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Table 2. Size Analysis (wsz;(f, S, ®))

Let j = PC; be the checkpoint of i. Case f[i] of:

(load k) let zj be the k™ variable of S;, and z a fresh size variable. If Control(i+1) then
wszi(f, S, ®P) iff the formula Ysuce =def (@i ANx = xk) = (q‘f’j (Zr.5) = q7,i+1(S: - a:))
is a tautology. Otherwise wsz;(f, S", qﬁ') iff (Si+1 =5;- x) and (¢i+1 =P, Nz = xk)

(build ¢ n) Assume n = ar(c) and S; = 5" - (z1,...,2x), and let zo be a fresh size
variable. First we check the validity of ¥puiig =det Pi = (qf,j (Zr5) = qe(z1, .- -y xn))
If Control(i + 1) then wsz;(f, S"’ 5) iff the formula Ysuce =def (@¢ A xog =
qe(z1, ..., xn)) = (qr.5(Z1.5) = qri41(S - 0)) is a tautology. Otherwise wsz;(f, S, d)
iff (S¢+1 =5 :Co) and (¢i+1 =P, Nxo = qc(xl, ... ,xn))

(branch c k) Assume n = ar(c) and S; = S’ - zo, and let z1,...,x, be fresh size

variables. The predicate wsz;(f, S , 5) is true iff the following two conditions are true
(one condition for each successor of ¢ in f).

(C1) if Control(i + 1) then Yimen =det (Ps A0 = qe(@1,...,20)) = (q7.;(Ts;) >
af,i+1(S"-(z1...2n))) is a tautology otherwise (Sit1 = 5"-(z1...x,)) and (Piy1 =
D ANzo = qe(T1,...,2T0n)).

(C2) if Control(k) then these =aet ®i = (qr.;(Fr.;) > ar.x(Si)) is a tautology other-
wise (Sk = S»L) and (@k = @z)

(call g n) Assume n = ar(g) and S; = S’ - (%1,...,%,) and let zo be a fresh size
variable. First we check the validity of Ycair =der @i = (qr,;(Z1.5) = qg1(w1,. .., 30)).
If Control(i + 1) then wsz;(f, 5"7 5) iff the formula Ysuce =def (@i A xyg <
Gga(@1, .., wn)) = (qr;(Fr;) = qpi+1(S" - wo)) is a tautology. Otherwise
’LUSZZ'(f7 g, 5) iff (Si+1 = S/ . xo) and (@i-&-l = @i A Xo g qg71(x1, N ,.Tn))

(tcall g n) Assume n = ar(g) and S; = S (z1,...,on) and let zo be a fresh
size variable. The predicate wsz;(f, S, ®) is true iff the formula ¢cqu is valid, where
Vicatt =det Pi = (47,5 (T1.5) = g (21, ..., 20)).

(jump k n) Assume S; = S'-(z1,..., ). If Control(k) then wsz;(f, S, ®) iff the formula
Vsuce =det Pi = (qr.5(T5,5) = apk(x1...x0)) is a tautology. Otherwise wszi(f, S, P)
iff (Sk = (xl, e ,xn)) and (@k = @z)

(stop or return) Then the predicate wsz;(f, S, ®) is true.
L ]

The size analysis is compositional (we only need to analyze each functions
separately) and always terminates (since every instruction is visited at most
once). The size analysis for a function f associates to every instruction ¢ of f a
sequence of variables of size hy;, denoted S;, and a set of constraints between
linear combinations of these variables, denoted ®;. Intuitively, the k" variable
of S; is a bound on the size of the k'™ element of the execution stack when
the instruction f[i] is executed, while @; contains valid constraints between the
bounds. For example, if f[i] = load k and S; = (x1,...,2,) we impose that
Sit1 = S; - « and that ®;;1 implies © = x}, meaning that we add a value on
top of the stack ¢, whose size is bounded by zj, our best known bound on the
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size of the k*" value in ¢. The analysis generates also a set of proof obligations,
Vsuces Weall, - - - Which are arithmetic formulas that should be checked in order to
prove the validity of the size certificates (i.e. the quasi-interpretation). We say
that the formula ¢ = p(¥) > ¢(¥) with free size variables ¥ is a tautology if for
all valuation ¢ from ¥ to positive natural numbers such that o(®) is true then
the inequality o(p(Z) > o(q(¥)) is true.

We show the result of the size analysis for our running example, tdble. We
give in front of each instruction the size stack S; and the constraint @; such that
wsz(f, S , 5) Then we check the validity of the various auxiliary conditions: there
is one condition to prove each time the successor of an instruction is a checkpoint
and one condition to prove for each build, call and tcall instruction.

1:1load 1 T 0

2 :1oad 1 Y1 Y2 0

3:branchs 7| y1 y2 z1 (z1 =11)

4 :load 2 Y1 Y2 22 (zr1=y1)AN(z1=22+1)

5:builds 1 | w1 y2 22 23 (z1=y1)A(z1 =22+ 1) A (23 =y2)

6 : jump 2 2 Y1 Y2 22 24 (sr=y )N (zi=22+ 1) A(z3=y2) AN (za =23+ 1)
7 : load 2 Y1 Y2 21 (z1 =11)

8 : return Y1 Y2 21 25 (z1=y1) A (25 = y2)

We need to check three proof obligations in the size verification of tdble. The
first formula corresponds to the build instruction 5 = @5 = (qtdbleyg(yl, Yya2) =
q5(23)). The two others formulas correspond to the possible transitions to check-
point 2 (from instructions 1 and 6) which gives 11 =gt P1 = (qtdble’l(:cl) >
Gravie,2(x1, 1)) and Vs =def s = (Gravie,2(Y1,Y2) = qrdvie,2(22, 24)). Once sim-
plified, we can easily show that these constraints are valid: 5 is equivalent to
(21 = yl)/\(zl = ZQ-‘rl)/\(Zg = y2) =y1+y2 = 23+1, while ’(ﬂl =21 2 x1+11
and s = (1 =22 + 1) A (za =y2 +1) = (y1 +y2 = 20+ 24).

Next, we show the result of the size analysis for the function sum. We assume
that the quasi-interpretations of sum and add are the functions gsum(z) =
1x(z + 1) and geaa(z,y) = x + y.Instruction 5 of sum is a checkpoint and we
assume that gsym.5(x) = .

1:1oad 1 1 0

2 : branch s 5 T1 T2 (2 = x1)

3:call sum 1| 1 11 (z2=z1)A(x2 =91+ 1)

4:call add 2| z1 y2 (z2=z1) AMz2 =y1 + 1) A (y2 < Gsum(y1))
5 : return 21 1]

The analysis of sum (note that the functions add and sum may be analysed
separately) gives only two non-trivial proof obligations that are related to the
two call instructions in the code. These formulas are 93 = @3 = (qsum (1) >
Gsum (y1)) and 4 = P4 = (qoum(@1) = qada(z1,y2)). Once simplified, we can
easily show that these constraints are valid: i3 is equivalent to qgum(y1 + 1) =
qsum (yl)a while 1/14 isa consequence of qsum (yl + ]-) P qsum (yl) + Y1 + 1.
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Finally, we can check that the function xdble, our example of malicious code,
does not succeed the size analysis. Let us consider the proof obligations generated
in the analysis of the function zdble:

1:1oad 1 x1 0

2 :builds 1 1 To To = X1

3:builds 1 1 T3 rxo=x1 ANx3 =22+ 1

4 : call zdble 1 T1 T4 To=T1 AN ANxg=x3+1

5 : return Tr1 Ts o =1 N - Nx5 < qwdble’l(:m)

The condition corresponding to instruction 4, the only call instruction,
is P[4] = qudavte,1(T1) = Gzdbie,1(z4), that is equivalent to z4 = 21 +2 =
Qzdbie,1(T1) = Qzdbie,1(x4), which is obviously not satisfiable since gzapie,1(z) is
monotone.

Deriving Size Bounds from the Size Analysis. We prove that if the size
analysis returns a solution for all the functions of a program, then we can extract
a bound on the size of the values computed during the execution. In order to
prove this property, we extend the predicate wsz to frames and then configura-
tions of the virtual machine.

Assume wsz(f, S, @) and let p be the annotation (g(£,), k, (v1 ... v,)). We say
that the frame (f,¢,¢), is well-sized if g5 1(gv,, - - - , ¢v, ) bounds the size of all the
values in ¢ and if the constraint @; is verified when we replace the variables of S;
by the quasi interpretation of the corresponding values in £ and the variables of
Zyx by the values gy, ..., qy,. We denote this last property (f,i,€), = (S,®).
Then we say that the configuration M is well-sized if all the frames in M are well-
sized and if the quasi-interpretations of the checkpoints decrease, see the table
below which defines the relation wsz (M ). We introduce some auxiliary notations
to help us define the relation wsz formally. Assume wsz(f, S , 5) and let (f,4,0),
be a frame such that p is the annotation (g(¢,), k, £c). Assume ¢, = (u1,...,Uy)

/

and £, = (uf,...,u,,). We define the two expressions ¢(p) and ¢(f, p) as follows:
Q(p) =def QQ,I(qula s 7qun) and Q(f7 P) =def Qf,k(qwl yee 7qu;ﬂ) The value of Q(p)
denotes the best size bound known when the frame is initialized, while ¢(f, p)
denotes the best size bound known when we reached the last checkpoint. Let
¢ = (v1,...,v,) be a sequence of values and & = (z1,..., ) a sequence of vari-
ables of the same length. We write [*/z] I the substitution (71 /g] - [T ]
The constraint @ is true for the frame (f,4,2),, denoted (f,4,£), = (5, 5) if and
only if the constraint &;[*/s,]/! R is valid.

Well-Sized Configurations: wsz(M)

M= (flvihel)ﬂl s (fm,im7£m)pm

wsz(f7s7¢) ZZ: arg(M,kJrl) wsz(fkvikvek'ZZ)Pk
(f,pe,€)p = (S,®8) L= (v1,...,00) wz(fmyim,lm)pn  a(fisp5) = a(fit1, pj+1)
q(p) = q(f,p) = |vi i€l.n kelom—1 jel.m—1

wsz(f7 pC,E)p wsz(M)
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We can show that the predicate wsz is preserved by reduction.
Theorem 1 (Preservation). If wsz(M) and M — M’ then wsz(M').
Proof. By induction on the derivation of M — M’, see [§] for a detailed proof.

A corollary of this result is that for every program succeeding the size analy-
sis, if the initial configuration (f,1, (v1...vy)) is well-sized then the values com-
puted during the execution are bounded by qf(gu,,-- - qv,)-

Theorem 2 (Size Bound). Assume f is a function in a program that succeeds
the size analysis. If the initial configuration (f,1,(v1...v,)) reduces to M then
for all value v occurring in a frame of M we have |v| < qf(Quys- -, Gu,)-

Proof. Let ¢beastack of the form (v1, ..., vn). By hypothesis we have (f,1,¢), —*
M with p = (f(€),1,£) and M = (f1,i1,41)p, -+ (fms¥m>€m)p,,, Where py is
of the form (f(¢), PC,,¢). By Theorem [0l we have that M is well-sized, that
is wsz(M). Hence (1) q(fj,p;) = q(fj+1,pj+1) for all j € 1.m — 1 and (2)
wsZ(fo, ik, U - £3)p, for all k € 1.m — 1 and wsz(fm, tm,lm)p,.- By property
(2) and definition of the predicate wsz on frames, |v| < q(fr,pr) < §(px) for

all value v occurring in the k" frame of M and by property (1) we obtain that
vl < q(fi,p1) < d(p1) = ar(quys- - -+ Qu, ), as needed.

4 Solving Size Constraints

Size verification generates a system of auxiliary arithmetical constraints that we
need to solve. On the whole, each constraint is of the form @ = p(Z) < ¢(¥),
where @ is a conjunction of equality and inequality constraints (see the discussion
below) and p, ¢ are polynomial expressions with coefficients in Q. A constraint
is generated for each build, call and tcall instruction and for each transition
from an instruction to a checkpoint. In this section we study the problem of
checking the validity of these constraints and show that we can always reduce
to the problem of checking the sign of a polynomial expression.

We start by partitioning the set V of all size variables used in the size verifi-
cation. We define the sets Vioaq, Vouita, Vorancn and Veai1 of variables that were
introduced respectively when checking a load, build, branch and a call or a
tcall instruction. We also define the set V, of all variables associated to check-
points. To simplify our result, we assume that branch instructions never act on
variables in Viui14 (and transitively on variables introduced by a load instruction
that corresponds to a variable of Viyi1a). Intuitively, this corresponds to forbid
cases where a branch instruction is applied to a value whose head constructor is
known at compile time (indeed it is possible to trace back the build instruction
that created it). A consequence of this assumption is to avoid “dead-code”, i.e.
a part of the code that cannot be reached during an execution.

A brief inspection of the definition of wsz shows that the proof obliga-
tions generated during the size analysis are all of the form & = ¢f(Zy) >
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q9(Y1,...,yn), where &y is a vector of fresh variables and ¢ is a conjunction
of atoms of the form:

(Load) y== where y € Vigaa

(Build) y=>,c;2i+d wherey € Viyig, and d > 1

(Branch) > .., yi+d =1  where y; € Vizanen for alli € I and d > 1

(Call)  y<q(z1,...,2,) wherey € Va1 and ¢ is a polynomial expression
with the properties of quasi-interpretations.

We can solve this kind of constraints using the following simple steps:

— first, we eliminate the variables of V1,44 and Viui1q by substitution. This step
eliminates the constraints of type (Load) and (Build). The system resulting
after this step is made up of (Branch) and (Call) constraints and all the
remaining variables are in V' \ (Vioaq U Vouitda) ;

— then we use the hypothesis that we never apply a branch instruction on a
value introduced by a build. So we can replace every (Branch) constraint
by a simple substitution. Hence all the constraints of the resulting system
are of type (Call) with variables in V,, U Va1 ;

— finally we are left to check an inequality of the form o(g(y1,...,¥yn)) <
o(f(Zy)) where o is the substitution obtained after the first two steps. By
construction there are no variables of Vea1y in o(f(Zy)). Let Ch,...,Ch, be
the remaining (Call) constraints. For every ¢ € 1..m the constraint C; is
of the kind z; < p(d;). Since there are no variables of Veain in o(f(Z5))
we can simply check the inequality after replacing the occurrences of z; by
the expression p(a;) (since we work with quasi-interpretation the function p
is monotone). Hence it is equivalent to check the sign of the (polynomial)

expression: (f(Zf) — g(y1,...,yn))(0 0 [p(aqi)/zi]iel“m).

5 Conclusion and Related Work

Ensuring bounds on the resources needed for executing a program is a critical
safety property. In this paper, we define a new “size analysis” and show how to
derive a bound on the size of the values computed by a program. This method has
several advantages. The size-bound obtained with our approach is a polynomial
expression on the size of the input parameters of the program. Also, programs
can be analyzed incrementally (each function is analyzed separately), at the
level of the bytecode. These features are particularly interesting in the context
of mobile code applications, in which programs can be dynamically loaded from
untrusted, possibly malicious sites.

The problem of bounding computational resources has already attracted con-
siderable attention. Many works have focused on (first-order) functional lan-
guages starting from Cobham’s characterization of polynomial time functions
by bounded recursion on notation [6]. Following works, see e.g. [BJ9/10], have de-
veloped various inference techniques that allow for efficient analyses while cap-
turing a sufficiently large range of practical algorithms. None of these works have
been applied to bytecode languages. Actually, most of the researches on bytecode
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verification tends to concentrate on the integrity of the execution environment.
We have presented in [I] a virtual machine and a corresponding bytecode for a
first-order functional language and shown how size and termination annotations
can be formulated and verified at the level of the bytecode. In this paper, we
extend this language with instructions for “tail recursive” calls and uncondi-
tional jumps, which are vital to implement common program optimizations. In
particular, we can analyze bytecode sequences whose control flow graph includes
cycles, whereas the size analysis defined in [I] can only handle tree shaped con-
trol flow graphs. Work on resource bounds for “Java-like” bytecode languages
is carried out in the MRG project [I5]. One main technical difference is that
they rely on a general proof carrying code approach while we follow a Typed
Assembly Language (TAL) approach. Also, their analysis focuses on the size of
the heap while we only consider stack allocated values. Crary and Weirich [7]
define a TAL for resource bound certification. Their approach is based on a de-
pendent type-system where types include a “resource skeleton”, that is a set of
functions (expressed in a ML-like language) computing the resource behavior
of the program. Resource skeleton cannot be inferred and should be written by
the programmer. Another related work is due to Marion and Moyen [13] who
define a resource analysis for counter machines by reduction to a certain type of
termination in Petri Nets. Their virtual machine is much more restricted than
the one studied here: natural numbers is the only data type and the stack can
only contain return addresses.

We are currently experimenting with the automatic derivation of quasi-
interpretation at the bytecode level. At the moment, we only have methods to
infer quasi-interpretations (with max-plus polynomials) from functional code [4].
Plans for future works also include extending our approach to a more complicated
virtual machine, e.g. with support for objects (as in the Java Virtual Machine),
heap references or subroutines.
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