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Abstract. In this paper we propose a new parametric abstract finite
model of Mobile Ambients able to express several properties on processes.
The model can be used for the analysis of these properties by means of
model checking techniques. The precision of the model can be increased
by modifying certain numeric parameters increasingly avoiding thereby
the occurrences of false counterexamples in the analysis.

1 Introduction

The calculus of Mobile Ambients (MA) is meant to model wide area computa-
tions. Introduced in [2], MA has as main characteristic to allow active processes
to move between different sites.

A wide range of work has been recently carried out on the analysis of mobile
ambients [1,8,13,14,18], mostly based on static-analysis techniques and abstract
interpretation [7].

In this paper we propose a parametric finite abstract model to analyse proper-
ties of mobile ambients processes by model checking — as an alternative to static
analysis. Our model is based on techniques introduced first in [11]. Such tech-
niques provide a general framework for modelling and verifying systems whose
computation involves manipulation of pointer structures. The model we define
here is suitable for verifying a wide range of safety properties of systems among
which security properties such as secrecy. It has the following features: (i) It pro-
vides a safe approximation of the concrete transition system of processes. (ii) It
models finitely (by means of abstraction) processes that are in principle infinite
due to replication (i.e., !P ). (iii) The model depends on two (numeric) parame-
ters that can be increased to tune its precision in case false counterexamples are
returned by the model checking algorithm.

The analysis we propose is based on the following strategy. Our models,
called HABA, are special Büchi automata with some typical characteristic of
history-dependent automata [17]. HABA are used to represent the behaviour
of an ambient process P . Properties of interest are expressed in the temporal
logic NTL (introduced in [11]) which is interpreted over HABA runs. Then, the
model checking algorithm defined in [9,12] can be used to verify the validity of
the properties against the model.
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The first contribution of our approach w.r.t. existing analyses of MA lays on
its ability to deal finitely with replication. The model distinguishes between P
and !P at several levels of precision (due to parametricity). Existing techniques
can cope with replication only to a limited extent. They are designed only for
abstraction {0, 1, ω} (i.e., none, one, many). Our abstraction goes beyond this
range by considering a range {0, 1, . . . , M, ω} with M > 1 parameter of the
model. Therefore it is able to detect properties of the kind “a certain number of
copies of ambient n is inside ambient m at the same time”. The second contri-
bution of our approach is that the model introduced here provides a general and
completely automated framework for the verification of properties of MA. This
means that the model is not limited to some specific safety properties (like sta-
tic analysis techniques). Many temporal properties expressible by NTL-formulae
can be automatically checked on the abstract model giving us the possibility to
infer safe answer on ambient processes.

Related work. Our model takes inspiration from the following works. The pa-
per [18] proposes an algorithm detecting process firewalls that are not protective.
The technique is based on a control flow analysis and does not distinguish be-
tween a process P and !P . This technique is enhanced in [13] where the precision
of the analysis is improved by the use of information about the multiplicity of
the number of ambients occurring within another ambient. The distinction is
within the range {0, 1, ω}. Another refinement of the analysis proposed in [18],
for the special case of Safe Ambients [15], is introduced in [8]. However, the
analysis proposed — as the one in [18] — does not distinguish between different
copies of the same ambient. An abstract interpretation framework for MA is
proposed in [14]. Based on [13] and [8] the analysis given in this paper considers
some information about multiplicity of the ambients and contextual informa-
tion. Again, based on [13], the paper [1] defines a more accurate analysis for
capturing boundary crossing. Also in this work no information on multiplicities
is provided.

A parallel stream of work considers model checking for mobile ambients using
spatial logics [5] and in particular ambient logic[3]. In [6] the authors identify a
fragment of mobile ambients (where replication is replaced by recursion) verifi-
able by model-checking. For this fragment, a model-checking algorithm for the
ambient logic is proposed. The paper [4] introduces a spatial logic for synchro-
nous π-calculus and investigate its power. A model-checking algorithm is then
presented for a class of bounded processes. Our contribution stands somehow be-
tween these two independent streams of work in that it applies model checking
in a static analysis oriented fashion.

Organisation of the paper. This paper is organised as follows: Section 2 reviews
some background on the ambient calculus. Section 3 gives an overview of NTL
and HABA. Section 4 defines an operational semantics for MA using HABA.
Section 5 provides some concluding remarks.

Due to space limitation this paper presents the main ideas and results. More
details and proofs are reported in the full version of this paper [10].
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2 An Overview of Mobile Ambients

We consider the pure Mobile Ambients calculus [2] without communication prim-
itives. Let N be a denumerable set of names (ranged over by a, b, n, m). The
set of processes over N is defined according to the following grammar:

N ::= in n
∣
∣
∣ out n

∣
∣
∣ open n (capabilities)

P, Q ::= 0
∣
∣
∣ (νn)P

∣
∣
∣ P |Q

∣
∣
∣ !P

∣
∣
∣ n[P ]

∣
∣
∣ N.P (processes)

For a process P we write n(P ) for its set of names. 0 does not perform any action.
The restriction (νn)P creates a new name called n that is private in the scope of
P . P | Q is the standard parallel composition of processes P and Q. Replication
!P represents an arbitrary number of copies of P and it is used to introduce
recursion as well as iteration. n[P ] represents an ambient with name n enclosing
a running process P . Ambients can be arbitrarily nested. Capabilities provide
ambients with the possibility to interact with other ambients. In particular, in n
has the effect to move the ambient that performs it into a sibling ambient called
n (if there exists one). Symmetrically, by out n, an ambient nested inside n
moves outside; open n dissolves an ambient n nested inside the one performing
this capability.

The standard semantics of Mobile Ambients is given in [2] on the basis of
a structural congruence between processes, denoted by ≡ (see [2]), and a re-
duction relation →. Processes are identified up to α-conversion. Moreover, note
that: n[P ]|n[Q] ≡/ n[P |Q] that is, multiple copies of an ambient n have distinct
identities; and !(νn)P ≡/ (νn)!P that is, the replication operator combined with
restriction creates an infinite number of new names. The reduction relation →
is defined by the rules listed in Table 1.

Table 1. Reduction rules for Mobile ambients

n[in m.P |Q]|m[R] → m[n[P |Q]|R]
P → Q

n[P ] → n[Q]
P → Q

P |R → Q|R
P → Q

(νn)P → (νn)Q

open n.P |n[Q]→P |Q m[n[out m.P |Q]|R]→n[P |Q]|m[R]
P ′ ≡ P P →Q Q ≡ Q′

P ′ → Q′

3 An Overview on NTL and HABA

In this section we summarise the framework for modelling and model checking
systems with pointers introduced in [11].

Navigation Temporal Logic. Let LVar be a countable set of logical variables
ranged over by x, y, z, and Ent be a countable set of entities ranged over by
e, e′, e1 etc. ⊥ �∈ Ent is used to represent “undefined”; we denote E⊥ = E ∪{⊥}
for arbitrary E ⊆ Ent . Navigation Temporal Logic (NTL) is a linear temporal
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logic where quantification ranges over logical variables that can denote entities,
or may be undefined. The syntax is defined by the grammar:

α ::= nil
∣
∣
∣ x

∣
∣
∣ α↑ (navigation expressions)

Φ ::= α = α
∣
∣
∣ α new

∣
∣
∣ α � α

∣
∣
∣ Φ ∧ Φ

∣
∣
∣ ¬Φ

∣
∣
∣ ∃ x. Φ

∣
∣
∣ XΦ

∣
∣
∣ ΦU Φ (formulae)

nil denotes the null reference, x denotes the entity that is the value of x (if any),
and α↑ denotes the entity referred to by (the entity denoted by) α (if any). Let
x↑0 = x and x↑n+1 = (x↑n) ↑ for natural n. The basic proposition α new states
that the entity (referred to by) α is fresh, α = β states that α and β are aliases,
and α � β expresses that (the entity denoted by) β is reachable from (the entity
denoted by) α. The boolean connectives, quantification, and the linear temporal
connectives X (next) and U (until) have the usual temporal interpretation. We
denote α �= β for ¬ (α = β), α �� β for ¬ (α � β) and ∀x. Φ for ¬ (∃ x. ¬Φ).
The other boolean connectives and temporal operators � (eventually) and �

(always) are standard [19]. For example, �(∃x. x �= v ∧ x � v ∧ v � x)
expresses that eventually v will point to a non-empty cycle.

Formulae are interpreted over infinite sequences of triples, called allocation
sequences, (E0, µ0, C0)(E1, µ1, C1)(E2, µ2, C2) . . . where for all i � 0, Ei ⊆ Ent
and µi : E⊥

i → E⊥
i such that µi(⊥) = ⊥; µi encodes the pointer structure of Ei.

Ci is a function on Ei such that Ci(e) ∈ M = {1, . . . , M} ∪ {∗} for some fixed
constant M > 0. The number Ci(e) is called the cardinality of e. Entity e for
which Ci(e) = m � M represents a chain of m “concrete” entities; if Ci(e) = ∗,
e represents a chain that is longer than M . In the latter case, the entity is
called unbounded. (Such entities are similar to summary nodes [20], with the
specific property that they always abstract from chains.) The cardinality of a
set is defined as C({e1, . . . , en}) = C(e1) ⊕ . . . ⊕ C(en) where n ⊕ m = n+m if
n+m � M and ∗ otherwise.

Automata-based models. States in our automata are triples (E, µ, C), called con-
figurations. Let Conf denote the set of all configurations ranged over by γ and
γ′. Configurations that represent the same pointer structure at different abstrac-
tion levels are related by morphisms. For γ, γ′ ∈ Conf, a morphism is surjective
function h : Eγ → Eγ′ which maintains the abstract shape of the pointer depen-
dencies represented by the two related configurations. Moreover, a (pure) chain
may be abstracted to a single entity while keeping the cardinality invariant. That
is, the cardinality of an entity e ∈ γ′ is equal to the sum of the cardinalities of
the entities in h−1(e). Collapsing chains to single entities —provided correspon-
dence of the cardinality— is the mechanism used by morphisms to associate to
a configuration another more abstract configuration.

Although morphisms provide us with a tool for abstraction of pointer struc-
tures, they do not model the dynamic evolution of such structures. To reflect the
execution of pointer-manipulating operations as well as the creation or deletion
of entities we use reallocations. For γ, γ′ ∈ Conf, a reallocation is a multi-set
λ : (E⊥ × E′⊥) → M which redistributes (but preserves) cardinalities on E to
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E′. More precisely, the total cardinality
⊕

e′∈E′ λ(e, e′) allocated by λ to e ∈ E
equals C(e); and the total cardinality

⊕

e∈E λ(e, e′) assigned to e′ ∈ E′ equals
C′(e′). As in the case of morphisms, one entity can be related by a reallocation to
more than one entity only if these form a chain. Note that the identity function
id is a reallocation. We write γ

λ
� γ′ if there is a reallocation (named λ) from γ

to γ′. Reallocations are a generalisation of the idea of identity change as present
in history-dependent automata [17]: besides the possible change of identity of
entities, it allows for the evolution of pointer structures1.

To model the dynamic evolution of a system manipulating (abstract) linked
lists, we use a generalisation of Büchi automata where each state is a configura-
tion and transitions exist between states only if these states can be related by
means of a reallocation reflecting the possible change in the pointer structure.

Definition 3.1. A high-level allocation Büchi automaton (HABA) H is a tuple
〈X, C, →, I, F〉 with: (i) X ⊆ LVar, a finite set of logical variables; (ii) C ⊆
Conf, a set of configurations (also called states); (iii) −→⊆ C×(Ent×Ent×M)×
C, a transition relation, s.t. c −→λ c′ ⇒ c

λ
� c′; (iv) I : C ⇀ 2Ent × (X ⇀ Ent),

an initialisation function such that for all c with I(c) = (N, θ) we have N ⊆ E
and θ : X ⇀ E. (v) F ⊆ 2C a set of sets of accept states.

HABA can be used to model the behaviour of systems at different levels of
abstraction. In particular, when all entities in any state are concrete (i.e., C(e) =
1 for all e), a concrete model is obtained that is very close to the actual system
behaviour.

Model Checking NTL. In [9,12] a model checking algorithm which establishes
whether a formula Φ is valid on a given (finite) HABA H was developed. The
model checking algorithm is based on the construction of a tableau graph GH(Φ)
out of H and Φ as in [16]. We give here a short summary of this construction.

States of GH(Φ) are pairs (q, D) where q is a state of H and D is the col-
lections of sub-formulae of Φ, and their negations, that possibly hold in q. A
transition from (q, D) to (q′, D′) exists in GH(Φ) if q −→λ q′ in H and, moreover,
for each sub-formula XΨ in D there exists a “corresponding” Ψ in D′. Here, the
correspondence is defined modulo the reallocation λ. A fulfilling path in GH(Φ)
is then an infinite sequence of transitions — starting from an initial state —
that also satisfies all the “until” sub-formulae Ψ1 U Ψ2. That is, if Ψ1 U Ψ2 is in
a given state in the sequence, then a corresponding Ψ2 (modulo a sequence of
reallocations) occurs in a later state. Fulfilling path are related with the validity
of Φ. More precisely, Φ is valid in H (written H |= Φ) iff there does not exist
a fulfilling path in GH(¬Φ). The existence of a self-fulfilling strongly connected
sub-component (SCS) in GH(¬Φ) provides us with a necessary criterion for the
existence of a fulfilling path. The tableau graph of a finite HABA is always fi-
nite and its number of SCSs is finite as well. Moreover, since the property of

1 A complete treatment of morphisms and reallocations of pointer structures can be
found in [9,11,12].
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self-fulfilment is decidable, this gives rise to a mechanical procedure for verifying
the validity of formulae.

In [9,12] we also showed that if a formula is valid in an abstract HABA H,
then it is valid in all concrete (infinite-state) automata Hc represented by H.
Therefore it is enough to verify the validity on the finite-state abstract automata
to infer the validity of the property in all its concretizations. As usual in model
checking of infinite-state systems in the presence of abstraction the algorithm is
sound but not complete in the sense that it might return false negatives. This
means that if the algorithm fails to show that Φ is valid in H then it cannot be
concluded that Φ is not satisfiable (by some run of H). However, since such a
failure is always accompanied by a “prospective” counterexample of Φ, further
analysis or testing may be used to come to a more precise conclusion.

4 An Abstract Operational Model for Mobile Ambients

Before defining our model we give two motivating examples.

Example 1. In [8] the following system is considered. Ambient m wants to send
a message to ambient b. Messages are delivered enclosed in a wrapper ambient
that moves inside the receiver which acquires the information by opening it. For
secret messages we want to be sure that they can be opened only by the receiver
b: SYS1 = m[mail [out m.in b.msg[out mail .D]]] | b[open msg] | open msg .

Data D is secret, mail is the pilot ambient that goes out of m to reach b. The
outer-most ambient attempts to access the secret by open msg . Once inside b,
the wrapper mail is opened and b reads the secret D. For the process SYS1 we
want to guarantee that the property (UA): “no untrusted ambients can access
D” holds.

The previous example illustrates the relevance of secrecy in wide-area computa-
tions. However, there are other important properties which are relevant for the
safety of systems. An instance is given in the following.

Example 2. Let us assume that a distributed network of an organisation (e.g.,
a bank) has a server used by a certain number of clients to execute critical
operations (e.g., buying/selling stocks). A rather trivial implementation could
be the following system:

SYS2 = Serv [PORT |PORT |PORT |Exec] | Cl[REQ ] | Cl[REQ ]
PORT = P [in Req.in Exec]
REQ = !Req[out Cl.in Serv .open P.DATA]

A client Cl asks the server to execute an order (buying/selling) by sending a
request. Details of orders are contained in DATA. The ambient Req, implement-
ing a request, leaves the client and goes into the server. Once there, Req uses
one of the available PORT s which are the data structures used by the server
to execute the requests. The port P moves the request to some process Exec
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which executes the order in DATA (and then it gives back P to Serv). As any
other real-life server, the bank’s server can accept a limited amount of requests
at the same time. The risk is that its finite number of internal data structures
(ports P s) are consumed in pending requests not yet completed. This can result
in an overflow and the server must be rebooted while — in the meanwhile —
the bank may be loosing millions. Predicting the number of requests may be
difficult. This is mostly because the clients place their orders following some
mathematical models which depend from several random variables.

Safety for such kind of systems involves the number of requests that the server
has to deal with at each time. It is essential that the property no-overflow (NO)
holds, i.e. at any point in time the server has to deal with a number of requests
smaller or equal to the size of its data structures (in this case 3 ports).

Now, suppose that the system is expanded and new clients are added to the
bank’s network. Therefore the designer of the system decides to implement some
strategy meant to avoid overflows. The system is upgraded with a buffer using
the following strategy. If the server gets shorter in ports it sends a broadcast
message (BCAST ) to its clients and informs them to address their requests to
the buffer (instead that the server). From that moment the server accepts only
requests from the buffer which forwards client’s orders when the server ask for
one (by the ambient ASK BUF ). When the server has executed enough requests
and its number of free ports get back to normal, the server broadcasts another
message (ADDR to Ser) to the clients to inform them that from that moment
on they can again address their requests directly to the server. The designer
implements this idea in the following new system:

SYS2 = SER | Cl[REQ |to Ser ] | Cl[REQ |to Ser ]
| Cl[REQ |to Ser ]| Cl[REQ |to Ser ]

REQ = !Req [in to Ser .out to Ser .out Cl.in Serv .open P.DATA|inB.DATA]
BUF = Buf [!ReqB[open Ask Buf .open B.out Buf .in Serv .open P ]]

ASK BUF = !Ask Buf [open Ready for req .out Serv .in Buf .in ReqB]
BCAST = BCast [out Serv .in Cl.open to Ser .B[open Req .out Cl.in Buf .in ReqB ]]

ADDR to Ser = open Norm St .to Ser [out Serv .in Cl]
SER = Serv [ASK BUF |PORT |PORT |PORT |BCAST |BCAST |BCAST

|BCAST |ADDR to Ser |ADDR to Ser |ADDR to Ser |ADDR to Ser ]

Now, it should be formally verified that this patch properly avoids any over-
flows, i.e., in this new system the property no-overflow (NO) holds. Note that
(NO) cannot be accurately verified by analyses dealing only with multiplicities
{0, 1, ω} as those found in the literature. Other example properties that this sys-
tem should have and we might wish to verify are: (REQ): any request eventually
reaches the server; and (REQB): an ambient ReqB leaves the buffer only after
the server has asked for a new request by sending the message Ask Buf .

In this paper we are concerned with the verification of the kind of properties
described in these two examples.
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4.1 HABA Modelling Approach

Due to replication, the concrete transition systems of processes are infinite. Since
we want to use model checking as analysis technique for processes it is essential
that their representation in the model is finite. A naive encoding of the process
topology would be hopeless. Therefore, we focus only on essential information
which allow us to infer the properties we need. Along the lines of [8,13,14,18],
the information we retrieve from a mobile ambient process P is: which ambients
may end up in which other ambient. To model P we introduce a classification
among the entities in use. For any ambient a occurring in P we have:

– A special entity aho (called a’s host) is used to record, at any point in the
computation, the ambients (hosted) directly inside any copy of ambient a.
aho is fixed, i.e., during the computation its position within the topology of
the process does not change.

– A special entity ais (called the inactive site of a). It is the repository where
the copies of a are placed when this ambient is inactive. Informally speaking,
inactive means that a cannot yet execute any action (see Section 4.2). As
aho, also ais does not move during the computation.

– All other entities —distinct from aho and ais— represent instances of the
ambient a. A concrete entity can move according to the capabilities of the
particular copy of a it represents. Several instances of a may be represented
by a single multiple or unbounded entity.

Example 3. State qin in Figure 4 depicts how process SYS1 of Example 1 is
represented in our model. Outgoing references define the child/parent relation
µ. Notation e:n says that e denotes an ambient with name n. The host of an
ambient, say a, keeps track of the ambients directly contained in any copy of
a. Thus, ambients m and b are inside the outer-most ambient @, whereas mail
is inside m. Ambients b and mail are empty. Hosts entities are depicted as
squares and inactive sites as patterned squares. msg is inactive since in the
beginning it cannot execute any action. Only when both out m and in b have
been consumed, msg becomes active. Inactive ambients are modelled by having
the copies pointing to their inactive site. Figure 2 (left) shows the use of the
unbounded entity e2 (depicted as patterned circle) to model more than M copies
of the ambient n.

Preliminary notation. We assume the existence of a global function A : Ent →
n(P ) that associates to every entity e a name of the ambient in P represented
by e. For e ∈ Ent , we write e:n as a shorthand for A(e) = n and e:n ∈ E as a
shorthand for e ∈ E ∧ A(e) = n.

We consider two fixed disjoint sets of entities: the set of inactive sites E is
P =

{nis ∈ Ent | n ∈ n(P )} and the set of hosts Eho
P = {nho ∈ Ent | n ∈ n(P )}. For

every ambient n we assume A(nis) = A(nho) = n and in every state of the model
nis points to nho. A HABA state modelling mobile ambients is of the form:

q = 〈γ, P〉 ∈ States
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where States = Conf × (Ent ⇀ 2Proc). The first component γ = (E, µ, C) ∈
Conf is a standard HABA configuration as defined in Definition 3.1. Given
an entity e, the second component P : Ent ⇀ 2Proc associates to e the set of
processes e must execute. In figures the component P(e) is depicted close to e.
It is not written if it is the empty process.

Pre-initial state and Initial state. The pre-initial state is an artificial state added
to the model in order to identify by NTL-formulae which ambient an entity
represents. The pre-initial state of a process P is constructed in such a way that
every entity representing a copy of the ambient n points to the inactive site
nis. The structure of the pre-initial state does not reflect the initial topology
described by P . NTL-formulae exploit the fact that an entity e in the pre-
initial state leads to nis to express that e stands for a copy of the ambient n.
State qpre in Figure 4 illustrates the pre-initial state of the process SYS1 of
Example 1. Although A(e1) = m, this information cannot be exploited in NTL.
However, NTL-formulae can refer to the set X of logical variables in the model
(see Def. 3.1). By having a variables xm for any m ∈ n(P ), and by interpreting
xm into mis (see ϑ in Def. 4.2) NTL-formulae can refer to mis and therefore to
all the other entities. Hence, by the special shape of the pre-initial state, we can
use the formula ∃x : x � xm to express that x as a copy of the ambient m.

The initial-state models the child/parent relation (i.e. the topology) described
by the process in terms of entities and pointers. For example, in Figure 4, qin

is the initial state of the process SYS1 of Example 1. Note that the ambient @
does not have a real instance (it is modelled only by @is and @ho), therefore we
use @is for the execution of capabilities.

Example 4. The security property (UA) of Example 1 is violated if and only if
the following NTL formula is satisfied

ΦUA ≡ ∃x : x � xmsg ∧ �(x �/ xmsg ∧ x↑ �= xmail↑ ∧ x↑ �= xb↑).

ΦUA states that msg eventually will be included inside an ambient different from
mail and b (which are the only trustworthy ones). Note the use of xmsg , xmail , xb

to refer to ambient names.
The property no-overflow (NO) (see Example 2) is violated if there are at

least four distinct requests inside the server at the same time:

ΨNO ≡ ∃x, y, z, w : x � xReq ∧ y � xReq ∧ z � xReq ∧ w � xReq ∧
(x �= y ∧ x �= z ∧ x �= w ∧ y �= z ∧ y �= w ∧ z �= w) ∧
�(x↑ = xServer ∧ y↑ = xServer ∧ z↑ = xServer ∧ w↑ = xServer)

REQ and REQB (see Example 2) are satisfied if the following formulae hold:

ΨREQ ≡ ∀x : x � xReq ⇒ �(x↑ = xServ )
ΨREQB ≡ �(∀x:x � xReqB

∧ x↑ = xBuf ⇒ (x↑ U ∃y:y � xAsk Buf ∧ y↑=xBuf ))

Hence, if HSYS1 and HSYS2 are the HABA modelling SYS1 and SYS2, the
properties are guaranteed to hold if we verify HSYS1 |= ¬ΦUA, HSYS2 |= ¬ΨNO,
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HSYS2 |= ΨREQ and HSYS2 |= ΨREQB. That can be automatically checked using
the model checking algorithm defined in [9,12].

Canonical form for configurations. As models we use HABA whose configura-
tions are in a special form called canonical. The main advantage of canonical
configurations is that the resulting HABA is proved to be finite-state [9]. Infor-
mally, given a L > 0, a configuration γ is L-canonical (or in L canonical form) if
(a) only concrete entities are closer than L + 1 pointer dereferences from a host;
and, (b) there are no pure chains longer than L + 1. For every configuration γ
its canonical form exists and it is unique (denoted by cf(γ)). cf(γ) is determined
by the unique morphism hcf : γ → cf(γ).

The Parameters M and L. The precision of automaton H is ruled by two para-
meters: L controlling the canonical form; and M defining the minimum number
of copies of an ambient represented by a single unbounded entity. Due to canon-
ical form, non-concrete entities are not direct children of hosts: there are L
concrete entities in between although all of them represent different instances of
the same ambient. In other words, a chain of entities e:b, e′:b . . . pointing to a
host, say aho represents a set of instances of b inside a. By L and M we are able
to distinguish that inside a there are no instances of the ambient b; or there are
precisely i instances of b with 1 ≤ i ≤ L + M ; or there are more than L + M
instances of b. Since L and M are parameters of the model they can be properly
tuned to accomplish a more precise model. For example, assume M = 1 and
L = 3. In q3 of Figure 3, we know that inside a there are exactly two instances
of n and any number of b’s copies strictly greater than 4.2

4.2 Coding Processes into HABA Configurations

In this section we define a function D that codes a given process P into a HABA
state. D returns: (i) a configuration γ that models P ’s topology; and (ii) a
function P that associates to every entity the set of capabilities. We first define
all the auxiliary elements necessary to D’s definition.

Union configuration. For a configuration γ, let Ec
γ = Eγ\(Eho

P ∪ E is
P ) be its set

of non-fixed entities. For configurations γ, γ′ such that Ec
γ ∩ Ec

γ′ = ∅, the union
configuration is γ � γ′ = (Eγ ∪ Eγ′ , µ, C) where: C(e) = Cγ′(e) if e ∈ Eγ′\Eγ and
C(e) = Cγ(e) otherwise; and

µ(e) =

⎧

⎪⎪⎨

⎪⎪⎩

µγ(e) if e ∈ Eγ

µγ′(e) if e ∈ Eγ′\Ec
γ′

first({e′:a ∈ Ec
γ | bho ∈ µ∗(e′)} ∪ {bho}) if e:a ∈ Ec

γ′ and µγ′(e) = bho

µγ′(e) otherwise

2 Between copies of the same ambient, we draw dashed horizontal arrows to stress
that, at the conceptual level, these arrows do not describe a child/parent relation as
the solid vertical ones.
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For e:a ∈ Eγ′ , µ(e) assigns the first entity in the queue of copies of a. If both
configurations have copies of an ambient, say b, inside the same ambient, say a,
the union appends the copies of the second configuration to those of the first
one. The union for P is defined point-wise: let q = 〈γ, P〉 and q′ = 〈γ′, P′〉 and
e ∈ Eγ ∪ Eγ′ , then

(P � P′)(e) =

⎧

⎨

⎩

P(e) ∪ P′(e) if e ∈ Eγ ∩ Eγ′

P(e) if e ∈ Eγ\Eγ′

P′(e) if e ∈ Eγ′\Eγ

Finally the union of states is 〈γ, P〉 � 〈γ′, P′〉 = 〈γ � γ′, P � P′〉.

Sub-processes executed by ambients. Given a process P the function ρ : Proc →
2Proc returns the set of sub-processes that the ambient containing P can execute:

ρ(0) = ∅ ρ(M.Q) = {M.Q} ρ(Q | Q′) = ρ(Q) ∪ ρ(Q′)
ρ(m[Q]) = ∅ ρ(!Q) = {!Q} ρ((νn)Q) = ρ(Q)

Processes belonging to nested ambients are not returned. Note that because we
do not distinguish between ν!P and !νP we can delete restriction3.

Enabled and active ambients. An enabled ambient is an ambient which is ready
to perform some action. Syntactically enabled ambients are those not guarded
by a capability. The corresponding semantic notion is being active. In state q,
the ambient n is active if �e ∈ Eγq : µγq (e) = nis. If n is not active it is called
inactive. In the operational model only entities related to active ambients can
execute capabilities.

Constructing the state. We use the following abbreviation for a state composed
only by two entities.

(e1, k1, P1) � (e2, k2, P2) = 〈{e1, e2}, {e1 �→ e2}, {e1 �→ k1, e2 �→ k2},
{e1 �→ P1, e2 �→ P2}〉

The next function Ω(a, P, k, act) returns a HABA state representing the process
P contained inside the ambient a. The parameter k deals with cardinalities.
The parameter act is a boolean that instructs Ω to construct the configuration
with the active or with the inactive representation of its ambients. Formally,

3 However, we assume that names occurring bound inside restriction are all distinct
from each other and from the free names.
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Ω(@, m[mail[out m.in b.msg[out mail.D]]], 1, tt)

e1:m e3:mail e4:msg
out m.in b.msg[out mail.D] out mail.D

@is @ho mis mho mail is mailho msg is msgho

e2:b
open msg

@ho@is bis bho

Ω(@, b[open msg], 1, tt)

Fig. 1. HABA states returned by Ω(@,m[mail [out m.in b.msg [out mail .D]]], 1, tt) and
Ω(@, b[open msg ], 1, tt)
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in n

nis nho
nis nho@is @ho

e2:n*
in n

@is @ho

* e3:n
in n

e2:n

Fig. 2. Left: HABA state returned by Ω(@, !n[in n], 1, tt). Right: Its 1-canonical form.

Ω : N × Proc × M
∗ × B → States is given by:

Ω(a,0, k, act) = (ais, 1,0) � (aho, 1,0)
Ω(a, m[Q], k, act) = Ω(a,0, k, act) � Ω(m, Q, k, act)

�
{

(e, k, ρ(Q)) � (aho, 1,0), if act
(e, k, ρ(Q)) � (mis, 1,0) otherwise

where e:m is fresh
Ω(a, Q1|Q2, k, act) = Ω(a, Q1, k, act) � Ω(a, Q2, k, act)
Ω(a, (νn)Q, k, act) = Ω(a, Q, k, act)

Ω(a, !Q, k, act) = Ω(a, Q, ∗, act)
Ω(a, N.Q, k, act) = Ω(a,0, k, act) � Ω(a, Q, k,ff)

The representation of m[Q] in a comprehends ais, aho, the sub-state of Q inside
m and a configuration with a non fixed entity e standing for the copy of m in
a. Depending on the parameter act, this representation can be either the active
or the inactive one. Ω(a, !Q, k) changes the cardinality from k to ∗. Finally, the
representation of N.Q inside a has the inactive representation for the process Q.

Example 5. Figure 1 shows Ω(@, m[mail [out m.in b.msg[out mail .D]]], 1, tt) and
Ω(@, b[open msg], 1.tt). In the former, note the different representation between
active ambients (@, m, mail) and inactive (msg). The left part of Figure 2 shows
a state involving replication. We have Ω(@, !n[in n], 1, tt) = Ω(@, n[in n], ∗, tt)
therefore, the entity e2 modelling the copies of n, becomes unbounded.

Definition 4.1 (Process encoding). The process encoding function D:Proc→
States is given by D(P ) = 〈cf(γ), P[@is �→ ρ(P )]〉 where Ω(@, P, 1, tt) = 〈γ, P〉.

The existence of a unique canonical form is proved in [9,12]. The state in the
left part of Figure 2 is not L-canonical for any L > 0. The canonical form for
L = 1 is shown on the right side. Note that D assigns to @is the set ρ(P ) with
the capabilities to be executed by @. For any process P , its pre-initial state is
given by qpre = Ω(@, P, 1, ff) and the initial state by qin = D(P ). Figure 4 shows
qpre and qin of SYS1.
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Table 2. Functions for moving ambients used in the operational rules

act : Proc × N × Conf → Conf defined by
actQ,a(γ) = (γ\γΩ(a,Q,1,ff)) � γΩ(a,Q,1,tt)

move : Conf × Ent × Ent → Conf defined by
move(γ, e, ê) = (Eγ , µγ [e �→ ê, µ−1

γ (e) �→ µγ(e), e′ �→ e], Cγ)
where µγ(e′) = ê, A(e′) = A(e)

IOUp : (States × Proc × Ent × Ent) → States defined by
IOUp(q, N.Q, e, ê) = 〈actQ,A(e) ◦ move(γq, e, ê), P[e �→ P(e)\{N.Q} ∪ ρ(Q)]〉

diss : (Conf × Ent × Ent) → Conf defined by
diss(γ, aho, e:b) = (Eγ\{e}, µγ [µ−1

γ (e) �→ aho, µ−1
γ (bho) �→ aho], Cγ � Eγ\{e})

OpenUp : (States × Ent × Ent × Proc) → States defined by
OpenUp(q, N.Q, e′:a, e)=〈actQ,a ◦ diss(γq, a

ho, e), P[e′ �→ P(e′)\{N.Q} ∪ ρ(Q) ∪ P(e)]〉
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Ω(@, m[0], 1, tt)

bis bho

bis bhoais ahonis nho

e1:b e4:b e2:n e3:n e5:b e6:b e7:b

@is @ho

mismho

mismho

e1:mΩ(@, m[0], 1, ff)

activate

q1

q2@is @ho

e1:m

ais
nhonis

e1:b e2:n e3:n e4:b e5:b e6:b e7:b

aho

move(γ, e4, nho)

q4

q3

Fig. 3. Left: Rearrangements of pointers performed by actm[0],@(γ). Right: Rearrange-
ments of pointers carried out by move(γ, e4, n

ho).

4.3 Configuration Link Manipulations

In our operational model, the computation of a process P corresponds to specific
pointer manipulations mimicking the movements of P ’s ambients (see Figures 4).
We will now introduce the functions implementing these pointer manipulations.
They will be used in the rules of operational semantics given in Table 3.

State update for in/out. The function IOUp(q, N.Q, e, ê) in Table 2 performs the
overall update of the state q when e moves inside ê because of the execution of
N ∈ {in , out } and continue with Q. There are three kinds of updates to carry
out during the execution of N : (i) First the pointer rearrangements moving e
from its current location to the target location. These updates are performed by
move(γ, e, ê). (ii) Then by applying act , IOUp carries out those rearrangements
needed for the activation of the ambients becoming enabled in Q because of the
execution of N . (iii) Finally, the set of capabilities P(e) is updated to record
that e has executed N and that it must continue with Q. Figure 3 (right part)
shows how the configuration changes when e4 moves inside nho. In Figure 4,
state q1, in b moves e3 inside b by making it point to bho; moreover msg becomes
active and it points to mailho instead of msg is. Figure 3 (left part) depicts the
activation of m by the outer-most ambient @. It corresponds to actm[0],@(γ).
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State update for open. The function OpenUp(q, N.Q, e′:a, e) updates the state
when e′:a executes open of the ambient represented by e. OpenUp(q, N.Q, e′:a, e)
performs the following operations: (i) It dissolves e using diss ; (ii) It activates
the ambients that become enabled; (iii) It updates the set of sub-processes that
remain to be done by the entity executing open. Note that e′ takes the processes
P(e) which were supposed to be executed by e. See the transition between q3
and q4 in Figure 4.

4.4 The HABA Semantics of Processes

We can now define HABA HP defining the abstract model for process P .

Definition 4.2. The abstract semantics of a process P is the HABA HP =
〈XP , S, →, I, F〉 where

– XP = {xn | n ∈ n(P )} ∪ {x@};
– S ⊆ States such that qpre, qin ∈ S;
– let R ⊆ S×(Ent ×Ent → M)×S be the smallest relation satisfying the rules

in Table 3. Then −→=R∪{(qpre, λpre, qin)}∪{(q, id , q) |¬∃q′, λ : (q, λ, q′)∈R};
– dom(I) = {qpre} and I(qpre) = 〈∅, ϑ〉 where ϑ(xn) = nis (n ∈ n(P )).
– F = {{q ∈ S | (∃q′, λ : q −→λ q′) ⇒ q = q′}}.

XP contains a logical variable for each ambient name in P and x@ for the outer-
most ambient. The transition relation −→ includes a transition from the pre-initial
state to the initial state and an “artificial” self-loop for each deadlocked state in
R. F is defined as the set of states whose only outgoing transition is a self-loop.
The set I contains only the pre-initial state. The interpretation ϑ allows us to
refer to ambient names in NTL-formulae (see discussion at page 409).

Operational rules. The execution of a capability N.Q, in a given state q, ap-
plies the following pattern: γq is first modified with the needed link rearrange-
ments into γ′. This is performed by IOUp (for in and out) or OpenUp (for
open). Because of the rearrangements of the links, γ′ may be not canonical.
Therefore, we consider its safe expansion SExp(γ′)4 and for each of its ele-
ment γ′′ we take the canonical form cf(γ′′). The reallocation is defined as:
λ = hcf ◦ h−1(γ′) where the morphism h is determined by the safe expansion
of γ′ and hcf is the morphism giving the canonical form of h−1(γ′). [12] shows
that this is a good definition of reallocation. In q only concrete non-fixed en-
tities modelling an active ambient and directly pointing to a host can move,
i.e., Em = {e ∈ Ec

q | A(e) is active, µq(e) ∈ Eho
P }. In the rules Em

@ = Em ∪{@is}.
Moreover, siblings(e) is the set of ambients having an instance with the same
parent of e. child(a) returns the entities that are children of the ambient a.
parents(b) is the set of parents of ambients b. In the In rule, if e has in b.Q

4 The safe expansion of a (possibly unsafe) configuration γ′ is a finite set of L-safe con-
figurations γ′′ which are related to γ′ by a morphism (i.e., they represent the same
topological structure). Formally: SExp(γ′) = {γ′′ | γ′′ is L-safe and h : γ′′ → γ′}.
See [12] for an exhaustive treatment.
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Table 3. Operational rules for Mobile ambients

In
e ∈ Em, in b.Q ∈ Pq(e), b ∈ siblings(e)

q −→λ cf(γ′′), P′

where 〈γ′, P′〉 = IOUp(q, in b.Q, e, bho) and γ′′ ∈ SExp(γ′)

Out
e ∈ Em, out b.Q ∈ P(e), µ(e) = bho a ∈ parents(b)

q −→λ cf(γ′′), P′

where 〈γ′, P′〉 = IOUp(q, out b.Q, e, aho) and γ′′ ∈ SExp(γ′)

Open
e ∈ Em

@, open b.Q ∈ P(e), e′:b ∈ child(A(e))
q −→λ cf(γ′′), P′

where 〈γ′, P′〉 = OpenUp(q, open b.Q, e, e′) and γ′′ ∈ SExp(γ′)

Bang
e ∈ Em

@, !Q ∈ P(e)
q −→λ cf(γ′), P′

where P′ = Pq [e �→ Pq(e) ∪ ρ(Q)]
and γ′ ∈ SExp(actQ,A(e)(γq))

and there exists a sibling ambient b then e moves inside b. In the Out rule, if e
executes out b.Q and its father is ambient b, i.e. µ(e) = bho then e must move in
every ambient containing a copy of b. In the Open rule, e can execute open b, if
there exists a child(A(e)) e′ modelling a copy of b. Entity e′ is dissolved and the
component P(e) acquires the processes contained in P(e′). In the Bang rule, if
a process !Q is contained in the set of processes that e must execute, then !Q is
expanded using the equivalence !Q ≡ Q|!Q. Note that we do not need structural
rules for parallel composition, restriction, ambients since those constructs are
implicitly represented in the configuration of a state.

Example 6. The HABA modelling SYS1 of Example 1 is depicted in Figure 4.
For SYS1 we want to check the secrecy property (UA) “no untrusted ambients
can access D” expressed by the NTL-formula ΦUA in Example 4. No runs of the
HABA satisfies ΦUA therefore in SYS1 only b can access the secret data D.

Theorem 1. If P → Q then there exists Q′ and a finite sequence of λ1, λ2, . . . ,λk

such that D(P ) →λ1 · · · →λk
D(Q′) and Q′ ≡ Q.

This theorem ensures that the HABA semantics of a process P provides a safe ap-
proximation of all P behaviours. Although for many processes it provides rather
precise information, some limitations occur on processes which combine name re-
striction and replication. Like other analyses based on static analysis [8,13,14,18],
our semantics does not distinguish between processes !(νn)P and (νn)!P . How-
ever, our model is able to capture precise information on the number of copies of
the same ambients that may be inside another ambient. Therefore it is able to
distinguish between P and !P . The precision can easily be increased by increasing
the parameters L and M .
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msgho
mhomis bis msg is

msgho

mail is@ho

e1:m
e2:b

open msg
0
e3:mail

@is

open msg

bho

mailho

e4:msg
D

@is

@ho

mail is

e3:mail

mailho

msg is

e4:msg
out mail.D

msgho
mis

e1:m

bis

mho bho

qpre

open msg
e2:b

out m.in b.msg[out mail.D]

mhomis bis mail is
q2

@ho

e1:m
e2:b

open msg
0
e3:mail

open msg

@is

bho mailho

msg is

e4:msg

out mail.D

q3

mhomis bis mail is msg is

e4:msg

msgho

out mail.D

out mq1

@ho

e1:m
e2:b

open msg

e3:mail
in b.msg[out mail.D]

open msg

@is

bho mailho

bis

bho

mail is

out m.in b.msg[out mail.D]

mhomis bis mail is
out mail

msgho

λpre

qin

@ho

e1:m
e2:b

open msg

mho

e3:mail

mis

open msg

@is

mailho

msg is

e4:msg

msgho

out mail.D

q4

in b

open msg id

@ho

e1:m
e2:b

D

e3:mail
0

open msg

@is bho

mailho

msg is

Fig. 4. HABA modelling the system described in Example 1 by the process SYS 1 =
m[mail [out m.in b.msg [out mail .D]]]|b[open msg ]|open msg

5 Conclusions

The analysis we have developed in this paper represents an alternative approach
which goes beyond the analyses for MA found in the literature. A strong point of
our technique seems to rely on its power of counting occurrences of ambients, as
well as its flexibility on tuning the precision. Another advantage of our approach
w.r.t. static analysis is that the model can be used to investigate properties
of the evolution of the computation (via NTL). Beside the information “which
ambient end up in in which other ambient” our model is able to answer other
involved questions which cannot be answered by existing analyses. For example,
properties like “it is always the case that whenever a and b are inside n, a exit
n before b”. Or, ”a copy of a does not leave b until another copy of a enters b”.
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