
Middleware for Distributed Context-Aware

Systems⋆

Karen Henricksen1, Jadwiga Indulska2, Ted McFadden1, and Sasitharan
Balasubramaniam2

1 CRC for Enterprise Distributed Systems Technology (DSTC)
karen@itee.uq.edu.au, mcfadden@dstc.edu.au

2 School of Information Technology and Electrical Engineering,
The University of Queensland

jaga@itee.uq.edu.au, sasib@tssg.org

Abstract. Context-aware systems represent extremely complex and het-
erogeneous distributed systems, composed of sensors, actuators, applica-
tion components, and a variety of context processing components that
manage the flow of context information between the sensors/actuators
and applications. The need for middleware to seamlessly bind these com-
ponents together is well recognised. Numerous attempts to build middle-
ware or infrastructure for context-aware systems have been made, but
these have provided only partial solutions; for instance, most have not
adequately addressed issues such as mobility, fault tolerance or privacy.
One of the goals of this paper is to provide an analysis of the require-
ments of a middleware for context-aware systems, drawing from both
traditional distributed system goals and our experiences with developing
context-aware applications. The paper also provides a critical review of
several middleware solutions, followed by a comprehensive discussion of
our own PACE middleware. Finally, it provides a comparison of our so-
lution with the previous work, highlighting both the advantages of our
middleware and important topics for future research.

1 Introduction

The proliferation of standalone and embedded computing devices in our work
and home environments, combined with a variety of networking technologies, in-
creases the importance of context-awareness in distributed applications. Context-
aware applications adapt to changes in the environment and user requirements.
This dynamic adaptation provides the degree of autonomy needed to free users
from the current computer-centric model of human-computer interaction. For
example, sensor-based “smart home” applications can unobtrusively support el-
derly people in everyday tasks, such as remembering to take medications or
providing early detection of behavioural changes.

⋆ The work reported in this paper has been funded in part by the Co-operative Re-
search Centre for Enterprise Distributed Systems Technology (DSTC) through the
Australian Federal Government’s CRC Programme (Department of Education, Sci-
ence, and Training).

The complexity of developing context-aware applications makes middleware
an essential requirement. The middleware solutions proposed so far for context-
aware systems address basic issues traditionally addressed by middleware for
distributed systems, including paradigms for coordination and communication
between distributed components. They also offer support for gathering and man-
aging context information, in order to simplify application development and pro-
mote sharing of context information and context sensing components. However,
many additional requirements are not met. For instance, most solutions do not
adequately support the deployment and configuration of new components, the
dynamic reconfiguration of components, or user privacy.

In this paper, we evaluate the current state-of-the-art in middleware for dis-
tributed context-aware applications, including the middleware developed in our
PACE (Pervasive, Autonomic, Context-aware Environments) project. Based on
the evaluation, we also highlight a set of open research problems in this area.

The structure of the paper is as follows. In Sections 2 and 3, we characterise
context-aware systems and introduce a set of requirements for middleware for
these systems. In Section 4, we review a set of middleware solutions and anal-
yse them with respect to the requirements. In Sections 5 and 6, we introduce
our PACE middleware and demonstrate how the middleware is used to support
the development of a context-aware vertical handover application. Finally, in
Sections 7 and 8, we provide an analysis of our solution, a discussion of open
research challenges, and a summary of the contributions of this paper.

2 Characteristics of Context-Aware Systems

Context-aware systems consist of a variety of distributed components. Early
systems were relatively simple, and were often constructed simply as distributed
application components communicating directly with local or remote sensors.
Today, it is widely acknowledged that additional infrastructural components are
desirable, in order to reduce the complexity of context-aware applications, im-
prove maintainability, and promote reuse. Figure 1 illustrates the distributed
components that can be found in many current context-aware systems. In ad-
dition to application components, sensors and actuators, shown at the two ex-
tremities in this layered model, these systems include:

– components that (i) assist with processing sensor outputs to produce context
information that can be used by applications and (ii) map update operations
on the higher-order information back down to actions on actuators (layer 1);

– context repositories that provide persistent storage of context information
and advanced query facilities (layer 2); and

– decision support tools that help applications to select appropriate actions
and adaptations based on the available context information (layer 3).

Programming toolkits are often also incorporated at the application layer (layer
4) to support the interactions of the application components with other compo-
nents of the context-aware system.

Layer 0:Layer 0:Layer 0:Layer 0:
Context sensors

and actuators

Layer 1:Layer 1:Layer 1:Layer 1:
Context processing

components

Layer 2:Layer 2:Layer 2:Layer 2:
Context

repositories

Layer 3:Layer 3:Layer 3:Layer 3:
Decision support

tools

Layer 4:Layer 4:Layer 4:Layer 4:
Application
components

Programming toolkits

Fig. 1. Components of a context-aware system.

3 Middleware Requirements

In this paper, we refer to the components that reside between the layer 4 ap-
plication components and the layer 0 sensors and actuators - together with the
communications framework that binds the distributed components together - as
middleware for context-aware systems. This middleware must address many of
the requirements of traditional distributed systems, such as heterogeneity, mo-
bility, scalability, and tolerance for component failures and disconnections. In
addition, it must protect users’ personal information, such as location and pref-
erences, in accordance with their privacy preferences, and ensure that automatic
actions taken by context-aware applications on behalf of users can be adequately
understood and controlled by users. Finally, the large number of distributed com-
ponents that are present in context-aware systems introduces a requirement for
straightforward techniques for deploying, configuring and managing networks of
sensors, actuators, context processing components, context repositories, and so
on. A detailed summary of these requirements is provided in Table 1.

4 A Survey of Middleware for Context-Aware Systems

In this section, we review and analyse some of the proposed middleware solutions
for context-aware systems. We focus on solutions that span multiple layers of
the system architecture shown in Fig. 1; that is, we exclude single layer solutions

1. Support for Hardware components ranging from resource-poor sensors,
heterogeneity actuators and mobile client devices to high-performance servers

must be supported, as must a variety of networking interfaces and
programming languages. Legacy components may be present.

2. Support for All components (especially sensors and applications) can be mobile,
mobility and the communication protocols that underpin the system must

therefore support appropriately flexible forms of routing. Context
information may need to migrate with context-aware components.
Flexible component discovery mechanisms are required.

3. Scalability Context processing components and communication protocols must
perform adequately in systems ranging from few to many sensors,
actuators and application components. Similarly, they must scale to
many administrative domains.

4. Support for Flows of context information between the distributed components
privacy of a context-aware system must be controlled according to users’

privacy needs and expectations.

5. Traceability The state of the system components and information flows between
and control components should be open to inspection - and, where relevant,

manipulation - in order to provide adequate understanding and
control of the system to users, and to facilitate debugging.

6. Tolerance Sensors and other components are likely to fail in the ordinary
for operation of a context-aware system. Disconnections may also
component occur. The system must continue operation, without requiring
failures excessive resources to detect and handle failures.

7. Ease of The distributed hardware and software components of a context-
deployment aware system must be easily deployed and configured to meet user
and and environmental requirements, potentially by non-experts (for
configuration example, in “smart home” environments).

Table 1. Requirements for middleware for context-aware systems

such as context servers (layer 2) and models for context interpretation (layer 1).
We also exclude solutions that are not general, such as those that deal only with
location sensing and management.

4.1 The Context Toolkit

Dey et al.’s Context Toolkit [1] provides a set of abstractions that can be used to
implement reusable software components for context sensing and interpretation.
The context widget abstraction represents a component that is responsible for
acquiring context information directly from a sensor. Widgets can be combined
with interpreters, which transform low-level information into higher-level infor-
mation that is more useful to applications, and aggregators, which group related

context information together in a single component. Finally, services can be used
by context-aware applications to invoke actions using actuators, and discoverers

can be used by applications to locate suitable widgets, interpreters, aggregators
and services.

The toolkit is implemented as a set of Java objects that represent the abstrac-
tions described above. These provide a basic communication protocol based on
HTTP and XML. The use of these Web standards allows for interoperation with
components implemented in other languages, thereby providing basic support
for heterogeneity. The toolkit’s discoverers address component discovery, which
is one of the requirements for mobility. However, the toolkit does not specif-
ically address scalability, privacy, traceability/control3, component failures, or
deployment/configuration.

4.2 Context Fusion Networks

Chen et al. [3] propose the use of Context Fusion Networks (CFNs) to provide
data fusion services (aggregation and interpretation of sensor data) to context-
aware applications. CFNs are based on an operator graph model, in which con-
text processing is specified by application developers in terms of sources, sinks
and channels. In this model, sensors are represented by sources, and applica-
tions by sinks. Operators, which are responsible for data processing, act as both
sources and sinks.

Chen et al. have implemented the CFN model in the form of Solar, a scalable
peer-to-peer (P2P) platform which instantiates the operator graphs at runtime
on behalf of context-aware applications. The Solar hosts (Planets) support appli-
cation and sensor mobility by buffering events during periods of disconnection;
they also address component failures by providing monitoring and recovery, as
well as preservation of component states. However, Solar does not yet address
heterogeneity, privacy, or monitoring and control of the system by users.

4.3 The Context Fabric

Unlike the previous two solutions, the Context Fabric (Confab) proposed by
Hong and Landay [4] is primarily concerned with privacy rather than with con-
text sensing and processing. Confab provides an architecture for privacy-sensitive
systems, as well as a set of privacy mechanisms that can be used by applica-
tion developers. The architecture structures context information into infospaces,
which store tuples about a given entity. Infospaces are populated by context
sources such as sensors, and queried by context-aware applications.

Hong and Landay have implemented the infospace model using Web tech-
nologies, such that infospaces are identified by URLs and tuples are exchanged in
an XML format. They provide a programming model based on in and out meth-
ods for transferring tuples into and out of infospaces. Privacy can be supported

3 However, Newberger and Dey [2] did later address monitoring and control by pro-
viding an enactor extension to the Context Toolkit.

by adding operators to an infospace to carry out actions when tuples enter or
leave the space; for instance, operators can be used to perform access control,
notify users of information disclosure, and enforce privacy tags that describe how
information can be used after it flows from one infospace to another.

As Confab focuses so heavily on privacy, it does not address traditional dis-
tributed systems requirements such as mobility, scalability, component failures
and deployment/configuration. However, it does partially address heterogene-
ity, as it builds on platform- and language-independent Web standards. It also
provides privacy-related traceability and control via the operator mechanism.

4.4 Gaia

Gaia [5] is designed to facilitate the construction of applications for smart spaces,
such as smart homes and meeting rooms. It consists of a set of core services and
a framework for building distributed context-aware applications. Gaia’s event
manager service enables applications to be developed as loosely coupled compo-
nents, and can provide basic fault tolerance by allowing failed event producers to
be automatically replaced. Gaia’s remaining four services support various forms
of context-awareness, and include: (i) a context service, which allows applications
to find providers for the context information they require, (ii) a presence service,
which monitors the entities entering and leaving a smart space (including people
as well as hardware and software components), (iii) a space repository, which
maintains descriptions of hardware and software components, and (iv) a context
file system, which associates files with relevant context information and dynam-
ically constructs virtual directory hierarchies according to the current context.

As smart spaces are typically small, constrained environments, Gaia does
not address scalability (however, [6] canvasses the issues involved in federating
spaces into large-scale “super spaces”). Similarly, privacy is not addressed by any
of the basic services, but can potentially be provided by additional services [7],
while user monitoring/control is outside Gaia’s scope. Heterogeneity, mobility
and component configuration can all be supported by Gaia in limited forms.

4.5 Reconfigurable Context-Sensitive Middleware

Yau et al. [8] propose a Reconfigurable Context-Sensitive Middleware (RCSM)
for context-aware applications. The RCSM provides application developers with
a novel Interface Definition Language (IDL) that can be used to specify context
requirements, including the types of context/situation that are relevant to the
application, the actions to be triggered, and the timing of these actions. The IDL
interfaces are compiled to produce application skeletons; these interact at run-
time with the RCSM Object Request Broker (R-ORB), which manages context
acquisition, and the Situation-Awareness (SA) processor, which is responsible
for managing triggers.

The R-ORB provides a context manager that uses a context discovery proto-
col to manage registrations of local sensors and discover remote sensors. When

Requirement
Context
Toolkit

CFN/
Solar

Context
Fabric Gaia RCSM

Support for
heterogeneity

√ × √ √ √

Support for mobility
√

√
×

√

×

Scalability ×
√

× × ×

Support for privacy × ×
√

× ×

Traceability and control × × √ × ×

Tolerance for failures ×
√

× √ ×

Ease of deployment/
configuration

× √ × √ √

Table 2. Middleware support for the requirements of context-aware systems.
(Key:

√
= comprehensive, √ = partial, × = none)

a context-aware application starts up, the discovery protocol is used to look for
local or remote sensors that satisfy the application’s context requirements.

The prototype described by Yau et al. does not satisfy the heterogeneity re-
quirement, as it supports only C++ applications for the Windows CE platform;
however, the IDL compiler could potentially be modified to produce skeletons
for a variety of platforms and communication protocols. In addition, the con-
text discovery protocol is not flexible enough to support mobility or component
failure, and Yau et al. do not attempt to address scalability, privacy or traceabil-
ity/control. The main strength of the approach comes from the use of an IDL to
specify context requirements. This makes it possible to incorporate new types of
context and context-aware behaviour by editing and recompiling IDL interfaces,
and partially addresses ease of deployment and configuration.

4.6 Analysis

Table 2 summarises the capabilities of the surveyed solutions and shows that
comprehensive solutions do not yet exist. A further shortcoming, which is not
revealed in the table, is that none of the solutions provide decision support (layer
3 functionality). Our own middleware, which we discuss next, introduces decision
support and addresses a large subset of the requirements listed in Table 1.

5 The PACE Middleware

Our middleware was developed as part of the PACE project, which investi-
gates a variety of issues related to pervasive computing, including the design of
context-aware applications and solutions for modelling and managing context
information. An early form of the middleware was presented in [9]; however,
further tools and components have been added subsequently as we developed
further context-aware applications and uncovered additional requirements. Our
current version of the middleware consists of:

– a context management system (layer 2);
– a preference management system that provides customisable decision-support

for context-aware applications (layer 3);
– a programming toolkit that facilitates interaction between application com-

ponents and the context and preference management systems (layer 4); and
– tools that assist with generating components that can be used by all layers,

including a flexible messaging framework.

These components and tools have been developed according to the following
design principles:

1. The model(s) of context information used in a context-aware system should
be explicitly represented within the system. This representation should be
separate from the application components (layer 4) and the parts of the
system concerned with sensing and actuation (layers 0 and 1), so that the
context model can evolve independently, without requiring any components
to be re-implemented.

2. The context-aware behaviour of context-aware applications should be deter-
mined, at least in part, by external specifications that can be customised
by users and evolved along with the context model (again, without forcing
re-implementation of any components).

3. The communication between application components, and between the com-
ponents and middleware services, should not be tightly bound to the appli-
cation logic, so that a significant re-implementation effort is required when
the underlying transport protocols or service interfaces change.

The following sections provide an overview of the components and tools that
make up the middleware. In Section 6, we illustrate their use in the development
of a context-aware system that supports vertical handover of media streams.

5.1 Context Management System

In our middleware, the context management system fulfils the requirements of
layer 2 as discussed in Section 2: that is, it provides aggregation and storage of
context information, in addition to performing query evaluation. It uses a two-
layered context modelling approach, in which context can be expressed both in
terms of fine-grained facts and higher-level situations which capture logical con-
ditions that can be true, false or unknown in a certain context. All information is
stored in the fact representation, but can be queried by either retrieving specific
facts based on template matching, or evaluating situation definitions over a set
of facts. Our context modelling approach has been well documented in previous
papers [9, 10], and therefore is not described in detail here. However, an example
fact-based context model will be shown later in Section 6.

The context management system consists of a distributed set of context
repositories. Each repository manages a catalog, which is a collection of con-
text models consisting of fact type and situation definitions. Applications may

define their own context models or share them with other applications. Context-
aware components are not statically linked to a single repository, but can discover
repositories dynamically by catalog name (and potentially also other attributes).
Several methods of interacting with a context repository are currently permit-
ted, in order to support a range of client programming languages and platforms;
likewise, a variety of discovery mechanisms can be used, including context-based
discovery, which allows for matching based on context attributes.

Each repository is capable of performing access control, although this fea-
ture can be switched off if it is not required. The access control mechanism
allows users to define privacy preferences that dictate the circumstances (i.e.,
situations) in which context information can be queried and updated. The pri-
vacy preferences are stored and evaluated by the preference management system,
which we describe in the following section.

Our current prototype consists of a context management layer running on
top of a relational database management system. This is written in Java using
JDBC4 to query and manipulate a set of context databases5. It provides clients
with the following interfaces:

– query: supports situation evaluation and retrieval of facts matching supplied
templates;

– update: allows insertion, deletion and modification of facts, as well as inser-
tion of new situation definitions;

– transaction: allows clients to create read-only transactions within which a
sequence of queries can be executed against a consistent set of context in-
formation, regardless of concurrent updates;

– subscription: allows monitoring of situations and fact types, using callbacks
to notification interfaces implemented by clients; and

– metadata: allows clients to discover the fact types and situations that are
defined by models in the catalog.

In addition to invoking methods on repositories using Java RMI, clients can use
a Web interface (based on XML and HTTP) or programming language stubs
generated from a context model specification. The latter method can potentially
accommodate arbitrary programming languages and communication protocols;
currently, we generate stubs for Java and Python, using Elvin [11], a content-
based message routing scheme, as the underlying communication paradigm. One
of the benefits of Elvin is that it allows for complex interactions (including 1:N
and N:M communication, not only 1:1 as supported by RMI and HTTP), which
allows (for example) queries and updates to be simultaneously routed to multiple
context repositories. We discuss the stubs further in Section 5.5.

Currently, our context repositories behave independently of one another;
however, we are developing a model for replicating context information across

4 http://java.sun.com/products/jdbc/
5 Note that this is not the most efficient implementation in terms of query/update

time and throughput, but we have found the performance adequate for all of the
context-aware applications we have developed so far.

several repositories and allowing clients to cache their own context information
for use during disconnections.

5.2 Preference Management System

A preference management system provides layer 3 functionality that builds on
functionality of the context management system. It assists context-aware appli-
cations with making context-based decisions on behalf of users. Its main roles are
to provide storage of user preference information and evaluation of preferences
- with respect to application state variables and context information stored by
the context management system - to determine which application actions are
preferred by the user in the current context. Applications can connect to, and
store their preference information in, one or more preference repositories.

The preferences are defined in terms of our novel preference model, which
allows the description of context-dependent requirements in a form that en-
ables them to be combined on-the-fly to support decisions about users’ preferred
choice(s) from a set of available candidates. For example, the preference model
can be used to decide which mode of input or output should be employed for
particular users according to their requirements and current contexts. A detailed
description of the preference model is outside the scope of this paper, but further
information can be found in earlier papers [9, 10, 12].

The benefits of a preference-based approach to decision-making are that
customisation and evolution of context-aware behaviour can be supported in
a straightforward manner; preferences can be shared and exchanged between
applications; and new types of context information can be incorporated into
decision-making processes simply by adding new preferences, without the need
to modify the application components.

The implementation of the preference management system bears strong re-
sembles to that of the context management system, and therefore we discuss it
relatively briefly. It provides the following interfaces:

– update: allows new preferences to be defined and grouped appropriately into
sets (for instance, by owner and purpose);

– query: provides preference evaluation based on the information stored in the
context management system;

– transaction: allows a set of preference evaluations to occur over a consistent
set of context information, regardless of concurrent updates occurring within
the context management layer; and

– metadata: allows retrieval of preference and preference set definitions.

In a similar manner to the context repositories, the preference repositories
respond to requests from clients over a variety of communication protocols. How-
ever, Java clients need not interact directly with repositories; instead, they are
provided with a Java programming toolkit that assists with discovery of, and
interaction with, repositories. We describe the toolkit in the following section.

5.3 Programming Toolkit

The programming toolkit complements the functionality of the preference man-
agement layer by implementing a simple conceptual model for formulating and
carrying out context-based choices. The model provides a mechanism for link-
ing application actions with candidate choices. It also allows one or more of the
actions to be automatically invoked on the basis of the results of evaluating the
choices with respect to preference and context information, using the services of
the preference and context management systems.

A significant benefit of the toolkit is that it makes the process of discover-
ing and communicating with the preference and context management systems
transparent to applications. It also helps to produce applications that are cleanly
structured and decoupled from their context models, and thus better able to sup-
port changes in the available context information. These changes can result from
evolution of the sensing infrastructure over time, or problems such as disconnec-
tion or migration from a sensor-rich environment to a sensor-poor one.

The toolkit is currently only implemented in Java, using RMI for communica-
tion with remote components; however, it could be ported to other programming
languages and communication protocols in the future.

5.4 Messaging Framework

To facilitate remote communication between components of context-aware sys-
tems - which may be either application components or middleware services such
as the ones described in Sections 5.1 and 5.2 - we provide a flexible messag-
ing framework. In the tradition of middleware such as CORBA, the framework
aims to provide various forms of transparency, such as location and migration
transparency. It maps interface definitions to communication stubs that are ap-
propriate for the deployment environment. These stubs are considerably simpler
for the programmer to work with than the APIs of the underlying transport
layers, and can also be automatically re-generated at a later date, allowing for
substitution of transport layers without modifying the application.

Stubs can be generated for a variety of programming languages and com-
munication protocols (including message-based and RPC-based protocols). To
date, however, we have focused on producing Java and Python stubs for the
Elvin publish/subscribe content-based message routing scheme. Elvin is partic-
ularly appropriate for building context-aware systems because it decouples com-
munication from cooperation. Because it delivers messages based on matches
between message content and the subscriptions of listeners, rather than based
on explicit addressing, it is able to tolerate mobility, support complex inter-
actions (not only 1:1 interactions as in the case of RPC/RMI), and allow for
spontaneous interactions between components without the need for an explicit
discovery/configuration step. The ability to add new listeners into the system
on-the-fly is also useful for debugging and generating traces.

In the future, we plan to extend the messaging framework to other proto-
cols appropriate for context-aware systems (for example, context-based routing
schemes such as GeoCast [13], which performs routing based on location).

5.5 Schema Compiler Toolset

The final piece of our middleware is a set of tools capable of producing cus-
tom components to assist with developing and deploying context-aware systems,
starting from context models specified using the two-layered context modelling
approach that we briefly outlined in Section 5.1. The tools take input in the
form of a textual representation of a context model (a context schema), perform
checks to verify the integrity of the model, and produce the following outputs:

– SQL scripts to load and remove context model definitions from the relational
databases used by our context repositories;

– model-specific helper classes to simplify source code concerned with carrying
out context queries and updates; and

– context model interface definitions compatible with the messaging frame-
work.

The first output simplifies the deployment and evolution of context models. By
automating the mapping of context models into the database structures stored by
the context repositories, errors that might arise during the hand-coding of SQL
scripts or JDBC code to manipulate the repositories can be avoided. Similarly,
updates to context models can be supported simply by re-generating and re-
executing the scripts. In the future, we envision extending the tools to produce
alternative scripts for context repositories that are not SQL-based.

The second output is designed to simplify the programming of components
that query or update a context model, and includes classes that represent basic
value types, fact types and situations defined by the model. By programming
with these classes, rather than the generic APIs provided by the context man-
agement layer, type checking becomes possible at compile time and standard
IDE features such as code completion can better be exploited.

The final output is used to produce stubs for transmitting/receiving con-
text information over communications infrastructure such as Elvin. The context
transmitters can be used by layer 0 and layer 1 components (sensors, actuators
and processing components) to transmit context information to one or more con-
text repositories. Similarly, the context receivers can be used at layer 2 to listen
for context updates that require mapping to operations on context repositories.

Further information about the context schema toolset can be found in [14].

6 Case Study: Vertical Handover

We now illustrate how our middleware assists with the development of dis-
tributed context-aware systems, using a vertical handover application as a case
study. This application represents just one of the context-aware applications we
have developed using the middleware; others are described in earlier papers [9,
12]. The application is concerned with adapting the streaming of media to a
mobile user according to the context. The adaptation occurs at the application
layer rather than the network layer (e.g., using Mobile IP) because of strin-
gent Quality of Service (QoS) requirements. The application adapts by handing

over the stream, either between network interfaces on a single computing device
or between interfaces on different devices. A handover can potentially occur in
response to any context change; for example, the user moving into range of a
network that offers higher bandwidth than the current network, or the signal
strength of the current network dropping.

The handover process is managed by adaptation managers and proxies. The
adaptation managers use the context management system to monitor signifi-
cant context changes, in order to determine when a vertical handover should
occur, and to which network interface. The proxies perform the handover pro-
cess. One proxy is co-located with the transmitter, while other proxies are lo-
cated within the same networks as the receivers. The transmitter’s local proxy
(proxy-transmitter) is responsible for redirecting the stream when it receives a
handover instruction from an adaptation manager. During the handover pro-
cess, the proxy-transmitter transmits the stream to both the original and the
new proxy. This is referred to as doublecasting. The proxies within the receivers’
networks are responsible for forwarding the streams to the receiver(s) executing
on the client device(s). When the handover is complete, the proxy-transmitter
stops transmitting to the original receiver proxy.

6.1 Implementation

The architecture of the system, including both application components and sup-
porting middleware components, is shown in Fig. 2. In the remainder of this
section, we demonstrate how our middleware was used to implement the system.

Context Model. The context model used by the vertical handover prototype is
shown in Fig. 3. The main objects described by the model are computing devices,
networks, network interfaces, streams and proxies. The model captures associ-
ations between computing devices and network interfaces, proximity between
devices, mappings of streams to proxies and network interfaces, basic QoS infor-
mation related to network interfaces (current signal strength and bandwidth),
and other type and configuration information. Much of the information is user-
or application-supplied (i.e., static or profiled in the terminology of our context
modelling approach); however, proximity between devices is sensed using wire-
less beacons, and current network connectivity, signal strength and bandwidth
are all sensed by monitors running in the network.

The context model, and its instantiation at run-time with concrete facts, is
managed by a set of context repositories as shown in Fig. 2. Each local network
may contain one or more repositories. In the example system architecture shown
in the diagram, two of the local networks possess their own context repositories,
while the other network does not. However, the design of the system is such that
many other configurations are also possible.

The schema compiler toolset described in Section 5.5 was used to map the
context model to appropriate database structures when the context repositories
were deployed. The toolset was also used to generate context transmitter and

Proxy-TransmitterProxy-Transmitter

Network 3Key

Control receiver stub

Control transmitter stub

5 handover()

Elvin events

Migration

Network 2Network 1

Internet

AV Stream

Java RMI

Programming toolkit

3
notify()

4 rate()

2, 7 update()

Context transmitter stub

Context receiver stub

Proxy-Transmitter

Proxy-Receiver2

AV Transmitter

AV Receiver
AV Receiver

Proxy-Receiver1

Context
Repository

Preference
Repository

Adaptation
Manager

QoS
Monitor

Context
Listener

1
hasSignal
Strength()

Context
Repository

Preference
Repository

Adaptation
Manager

QoS
Monitor

Context
Listener

7 update()

6 streamingTo()

4.1
query()

Fig. 2. Vertical handover architecture.

receiver stubs, which are used by the wireless beacons (not shown in the dia-
gram), network monitors and adaptation managers (shown for networks 1 and 3)
to report context information to the context repositories over Elvin, via context
listeners that map the Elvin notifications to RMI context repository updates.

Adaptation managers. The context-aware functionality of the application is
concentrated within the adaptation managers. These are the components that
are responsible for determining when handover is required, according to the
current context and user preferences. Therefore, the adaptation managers are
the components that interact with the context and preference repositories.

According to the design principles outlined in Section 5, the adaptation man-
agers are not tightly coupled to the context model. The only direct interaction
that occurs between the adaptation managers and the context repositories is
in the form of subscriptions/notifications, which allow the managers to learn
about significant context changes and report new streaming configurations. The

Device
(ID)

Network
Interface

(ID)

Network
Address

(ID)

Network
(name)

Proxy
(ID)

Network Type
(name)

Bandwidth
(nr)+

Signal Strength
(nr)+

has interface

has doublecast
address

has proxy

has direct
address

has address

has address

has type

has type

has signal strength

has bandwidth

connected
to

s

s

streaming...to

Name
(representation)

s

Profiled information

Sensed information

Static information

Uniqueness/key constraint

Object type

textual description

Fact type

Key

located near

Stream
(ID)

Fig. 3. The context model used in the vertical handover application.

subscriptions monitor the state of the sensed fact types. When an adaptation
manager is notified of a change (for example, a drop in signal strength, as shown
in Fig. 2), it uses the programming toolkit described in Section 5.3 to connect to a
preference repository, re-evaluate the user’s preferences, and determine whether
the current network interface is still the preferred one (step 4 in the figure). The
bulk of the context evaluation occurs during this step, as a side-effect of the
preference evaluation (step 4.1). New context information can be easily incor-
porated into the evaluation simply by extending the user preferences (i.e., the
implementation of the adaptation manager does not need to change).

When an adaptation manager determines that a handover is required, it com-
municates with the proxies (step 5) and the context listeners (step 6) using Elvin.
The manager first transmits a handover instruction to the proxies using Elvin
stubs produced by the PACE messaging framework described in Section 5.4.
After instructing the proxies to perform the handover, the adaptation manager
updates the stream state information stored in the context repositories (i.e., the
“streaming...to” fact type shown in Fig. 3), using a context transmitter stub to
transmit the information to the context listeners.

7 Analysis

In this section, we briefly analyse the PACE middleware with respect to the
requirements set out in Table 1 and compare it to the earlier solutions surveyed
in Section 4. Based on the analysis, we also highlight some areas for future work.

Heterogeneity. As the PACE messaging framework can generate stubs for a
variety of programming languages (and, in the future, transport layers), it of-
fers strong support for heterogeneity. The PACE middleware is also capable of
accommodating legacy components, such as the transmitters and receivers in
the vertical handover system. Thus, PACE’s support for heterogeneity is more
comprehensive than the solutions surveyed in Section 4. However, Yau et al.’s
solution bears some similarities to our approach, and could be extended to gen-
erate skeletons for a variety of platforms as discussed in Section 4.5.

Mobility. The use of Elvin within the messaging framework facilitates com-
ponent mobility, as demonstrated in the vertical handover system, and often
removes the need for component discovery. Local context and preference reposi-
tories can be dynamically discovered by mobile context-aware components using
a variety of service discovery protocols. PACE therefore provides a level of mo-
bility support that is comparable to the best solutions surveyed in Section 4. In
the future, we plan to extend PACE’s current support for mobility by introduc-
ing caching/hoarding models for context and preference information, to allow
mobile components to store local copies of information that is relevant to users.

Scalability. Our current implementation of the PACE middleware does not
address scalability or performance, and the same can be said of almost all of the
solutions surveyed in Section 4. This is unsurprising, as all have been developed
as research prototypes. As future work, we intend to develop models for feder-
ating context and preference managers across large scale systems and a large
number of administrative domains.

Privacy. We address privacy by providing access control for sensitive context
information. Thus, our middleware provides more privacy support than all of the
surveyed solutions, with the exception of Confab. However, controlling access
to context information addresses only one aspect of privacy. To address other
aspects, we intend to add access control to our preference management system
and combine this access control with context-based authentication [13]. Further
information about our current work on privacy can be found in [15] and [16].

Traceability and Control. We showed in Section 4 that traceability and con-
trol are not addressed at all by previous middleware except in relation to privacy.
The PACE middleware begins to address this problem. The use of Elvin facil-
itates the generation of traces, as event listeners can be added on-the-fly and

event traces can be tailored by adjusting the Elvin subscriptions. Our preference
model also provides a basic mechanism for user control and customisation. In
the future, we envisage opening up the service layers to clients to allow inspec-
tion (and manipulation) of context and preference evaluations. Traces of these
evaluations can be selectively revealed to users to explain system behaviours.

Tolerance for failures Our solution’s failure tolerance ranks behind that of
Solar but ahead of the remaining solutions surveyed in Section 4. Although our
middleware does not yet detect or repair failed components, its use of Elvin
allows a loose coupling of components, minimising the impact of disconnections
and failures. In addition, our context and preference models were both designed
with the assumption that context information will generally be imperfect. This
introduces some tolerance for failed sensors, sensing errors, and so on.

Deployment and Configuration. Finally, the PACE middleware provides
more advanced support for component deployment and configuration than pre-
vious solutions. Specifically, the messaging framework simplifies the deployment
of components on top of a variety of platforms, while the schema compiler toolset
facilitates the deployment of new context models. However, further extensions
to the middleware are needed to facilitate the scalable deployment and configu-
ration of infrastructural components such as sensors.

8 Conclusions

In this paper, we showed that middleware is essential for building context-aware
systems and introduced a list of requirements that this middleware must address.
We also analysed the current state-of-the-art in the area and provided a compre-
hensive discussion and evaluation of our own PACE middleware. Our solution
ranked the best or equal best for the majority of the requirements (heterogeneity,
mobility, traceability/control and deployment/configuration), and above average
for two of the remaining three requirements (privacy and tolerance for failures).
A further advantage of the PACE middleware is that it provides decision sup-
port (i.e., layer 3 functionality), unlike the other solutions we surveyed. However,
many problems have not yet been adequately addressed by our work or that of
the broader research community - for example, scalable deployment, configura-
tion and management of sensors, caching and hoarding of context information
to support mobility, and mechanisms for revealing aspects of the system state
to facilitate user understanding and control.

References

1. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction 16 (2001) 97–166

2. Newberger, A., Dey, A.: Designer support for context monitoring and control.
Technical Report IRB-TR-03-017, Intel Research Berkeley (2003)

3. Chen, G., Li, M., Kotz, D.: Design and implementation of a large-scale context
fusion network. In: 1st Annual International Conference on Mobile and Ubiquitous
Systems (MobiQuitous), IEEE Computer Society (2004) 246–255

4. Hong, J.I., Landay, J.A.: An architecture for privacy-sensitive ubiquitous com-
puting. In: 2nd International Conference on Mobile Systems, Applications, and
Services (MobiSys), Boston (2004)

5. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrst-
edt, K.: Gaia: A middleware infrastructure for active spaces. IEEE Pervasive
Computing, Special Issue on Wearable Computing 1 (2002) 74–83

6. Al-Muhtadi, J., Chetan, S., Ranganathan, A., Campbell, R.: Super spaces: A
middleware for large-scale pervasive computing environments. In: Workshop on
Middleware Support for Pervasive Computing (PerWare), PerCom’04 Workshop
Proceedings, Orlando (2004) 198–202

7. Al-Muhtadi, J., Ranganathan, A., Campbell, R., Mickunas, M.D.: Cerberus: A
context-aware security scheme for smart spaces. In: 1st IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom), Fort Worth (2003)
489–496

8. Yau, S.S., Huang, D., Gong, H., Seth, S.: Development and runtime support
for situation-aware application software in ubiquitous computing environments.
In: 28th Annual International Computer Software and Application Conference
(COMPSAC), Hong Kong (2004) 452–457

9. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: 2nd IEEE International Conference on Pervasive Com-
puting and Communications (PerCom), IEEE Computer Society (2004) 77–86

10. Indulska, J., Henricksen, K., McFadden, T., Mascaro, P.: Towards a common con-
text model for virtual community applications. In: 2nd International Conference on
Smart Homes and Health Telematics (ICOST). Volume 14 of Assistive Technology
Research Series., IOS Press (2004) 154–161

11. Segall, B., Arnold, D., Boot, J., Henderson, M., Phelps, T.: Content based routing
with Elvin4. In: AUUG2K Conference, Canberra (2000)

12. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a disciplined
approach to the development of a context-aware communication application. In:
3rd IEEE International Conference on Pervasive Computing and Communications
(PerCom), IEEE Computer Society (2005) 300–306

13. Navas, J.C., Imielinski, T.: Geographic addressing and routing. In: 3rd ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom), Bu-
dapest (1997)

14. McFadden, T., Henricksen, K., Indulska, J.: Automating context-aware application
development. In: UbiComp 1st International Workshop on Advanced Context
Modelling, Reasoning and Management, Nottingham (2004) 90–95

15. Henricksen, K., Wishart, R., McFadden, T., Indulska, J.: Extending context models
for privacy in pervasive computing environments. In: 2nd International Workshop
on Context Modelling and Reasoning (CoMoRea), PerCom’05 Workshop Proceed-
ings, IEEE Computer Society (2005) 20–24

16. Wishart, R., Henricksen, K., Indulska, J.: Context obfuscation for privacy via
ontological descriptions. In: 1st International Workshop on Location- and Context-
Awareness. Volume 1678 of Lecture Notes in Computer Science., Springer (2005)
276–288

