
Ontology Transformation and Reasoning for
Model-Driven Architecture

Claus Pahl

Dublin City University
School of Computing

Dublin 9, Ireland
cpahl@computing.dcu.ie

Abstract. Model-driven Architecture (MDA) is a software architecture
framework proposed by the Object Management Group OMG. MDA
emphasises the importance of modelling in the architectural design of
service-based software systems. Ontologies can enhance the modelling
aspects here. We present ontology-based transformation and reasoning
techniques for a layered, MDA-based modelling approach. Different on-
tological frameworks shall support domain modelling, architectural mod-
elling and interoperability. Ontologies are beneficial due to their potential
to formally define and automate transformations and to allow reasoning
about models at all stages. Ontologies are suitable in particular for the
Web Services platform due to their ubiquity within the Semantic Web
and their application to support semantic Web services.

1 Introduction

The recognition of the importance of modelling in the context of software ar-
chitecture has over the past years led to model-driven architecture (MDA) –
a software engineering approach promoted by the Object Management Group
(OMG) [1]. MDA combines service-oriented architecture (SOA) with modelling
techniques based on notations such as the Unified Modelling Language (UML).
Recently, ontologies and ontology-based modelling have been investigated as
modelling frameworks that enhance the classical UML-based approaches. While
formal modelling and reasoning is, to some extent, available in the UML context
in form of OCL, ontologies offer typically full reasoning support, for instance
based on description logic. A second benefit of ontologies is the potential to
easily reuse and share models.

Modelling and developing software systems as service-based architectures is
gaining increasing momentum. Modelling and describing services is central for
both providers and clients of services. Providers need to provide an accurate
description or model for a service that can be inspected by potential clients.
In particular the attention that the Web Services Framework (WSF) [2, 3] has
received recently emphasises the importance of service-orientation as the ar-
chitectural paradigm. Service-oriented architecture (SOA) [4, 5] is becoming a

central software engineering discipline that aims at supporting the development
of distributed systems based on reusable services.

MDA has been developed within the context supported and standardised
by the OMG, i.e. UML as the modelling notation and CORBA as the imple-
mentation platform. It is based on a layered architecture of models at different
abstraction levels. Our focus is the Web Services platform based on techniques
supported by the World-Wide Web Committee (W3C) [2], such as WSDL and
SOAP, but also extensions like WS-BPEL for service processes [6–8]. This spe-
cific area is particularly suitable to demonstrate the benefits of ontology-based
modelling due the distributed nature of service-based software development with
its emphasis on provision and discovery of descriptions and on sharing and reuse
of models and services.

While the OMG has started a process towards the development of an On-
tology Definition Metamodel (ODM) [9] that can support ontological modelling
for particular MDA model layers, we take a more comprehensive approach here
with ontologies for all layers. Our approach will also be more concrete, i.e. based
on concrete ontologies. Other authors, e.g. [10], have already explored OWL
– the Web Ontology Language – for MDA frameworks. We will extend these
approaches by presenting here a layered, ontology transformation-based mod-
elling approach for software services. We will introduce ontology-based mod-
elling approaches for three MDA layers – computation-independent, platform-
independent, and platform-specific. Ontologies will turn out to support a number
of modelling tasks – from domain modelling to architectural configuration and
also service and process interoperability. We will put an emphasis on processes,
which will play an important role in modelling domain activities but also in
modelling interaction processes in software architecture configurations.

Our contribution is a layered ontological transformation framework with dif-
ferent ontologies focussing on the needs of modelling at particular abstraction
layers. We will indicate how such a framework can be formally defined – a full
formalisation is beyond the scope of this paper. We will present our approach
here in terms of an abstract notation, avoiding the verbosity of XML-based
representations for services and ontologies.

We will start with an overview of service-oriented architecture and ontology-
based modelling in Section 2. Service modelling with ontologies is introduced
in Section 3. We will address the transformations between ontological layers in
Section 4. We discuss our efforts in the context of OMG adoption and standard-
isation in Section 5. Related Work is discussed in Section 6. We end with some
conclusions in Section 7.

2 Service Architectures and Models

The context of our work is model-driven architecture (MDA). Our platform is
service-based; our modelling approach is ontology-based. These aspects shall now
be introduced.

2.1 Services and the Web Services Framework

A service provides a coherent set of operations at a certain location [3]. The ser-
vice provider makes an abstract service interface description available that can
be used by potential service users to locate and invoke the service. Services have
so far usually been used ’as is’ in single request-response interactions [11]. How-
ever, the configuration and coordination of services in service-based architectures
and the composition of services to processes is becoming equally important in
the second generation of service technology. Existing services can be reused and
composed to form business or workflow processes. The principle of architectural
composition is process assembly.

The discovery and invocation infrastructure of the Web Services Framework
(WSF) [2] – a registry or marketplace where potential users can search for suit-
able services and an invocation protocol – with the services and their clients form
our platform, i.e. a service-oriented architecture. Languages for description are
central elements of a service-oriented architecture. With the second generation
of service technology and efforts such as MDA, the emphasis has shifted from
description to the wider and more comprehensive activity of modelling.

Behaviour and interaction processes are essential parts of modelling and un-
derstanding software system architectures [12–15]. However, the support that
architectural description languages offer with regard to behavioural processes
in architectures is sometimes limited. MDA focuses on UML modelling to sup-
port architectural designs. In [16], scenarios, i.e. descriptions of interactions of a
user with a system, are used to operationalise requirements and map these to a
system architecture.

2.2 Ontologies and the Semantic Web

Making the Web more meaningful and open to manipulation by software appli-
cations is the objective of the Semantic Web initiative. Knowledge representation
and logical inference techniques form its backbone [17, 18]. Ontologies – the key
to a semantic Web – express terminologies and precisely defined semantical prop-
erties and a create shared understanding of annotations of Web resources such
as Web pages or services. Ontologies usually consist of hierarchical definitions
of important concepts in a domain and descriptions of the properties of each
concept, supported by logics for knowledge representation and reasoning.

Ontologies are, however, important beyond sharable and processable annota-
tions of Web resources. Some effort has already been made to exploit Semantic
Web and ontology technology for the software engineering domain in general
and modelling in particular [19]. OWL-S [20] for instance is a service ontology,
i.e. it is a language that provides a specific vocabulary for describing properties
and capabilities of Web services, which shows the potential of this technology
for software engineering.

An ontology is defined in terms of concepts and relationships. An ontology
is a model of a domain made available through the vocabulary of concepts and
relationships. Concepts capture the entities of the domain under consideration.

Domain ontology (OWL-style) – CIM layer

model ::= relationship∗ | constraint∗

concept ::= object | process
relationship type ::= is a | has part | depends
relationship ::= concept relationship type concept
constraint ::= conceptConstraint | relationshipConstraint

Service process ontology (WSPO) – PIM layer

model ::= pre process post
process ::= preState procExpr postState
pre ::= preState preCond condition |

preState inObj syntax
post ::= postState postCond condition |

postState outObj syntax
procExpr ::= process | ! procExpr | procExpr ; procExpr |

procExpr + procExpr | procExpr || procExpr

Service ontology (WSMO) – PSM layer

model ::= service
service ::= interface capabilities
interface ::= messageExchange nonFunctProp
capabilities ::= preCond postCond assumption effect nonFunctProp

Fig. 1. Abstract Syntax of Ontologies.

Instances are concrete objects of a particular concept. Relationships capture
the relationships between concepts and their properties. In this respect, ontolo-
gies are similar to modelling notations such as UML. Ontologies, however, com-
bine modelling with logic-based reasoning. Properties of concepts are specified
in terms of (universal or existential) quantifications over relationships to other
concepts.

Formality in the Semantic Web framework facilitates machine understanding
and automated reasoning. OWL (the Web Ontology Language), in particular
OWL-DL, is equivalent to a very expressive description logic [21]. This fruitful
connection provides well-defined semantics and reasoning systems. Description
logic is particularly interesting for the software engineering context due to a
correspondence between description logic and dynamic logic (a modal logic of
programs).

Information Viewpoint
(using is_a relationships)

balance

account

user

sum of
money

transfer

open

enquire

object

balance
sum of
money

account

monetary
object

bank object

...

Enterprise (Process) Viewpoint
(using dependency relationships)

Fig. 2. CIM-level Excerpts from a Banking Domain Ontology.

2.3 Model-Driven Architecture

Model-driven architecture (MDA) is a software architecture approach emphasis-
ing the importance of modelling for the architectural design of software systems
[1]. The platform targeted by MDA are service-based architectures. MDA sug-
gests a three-layered approach:

– The Computation Independent Model (CIM) describes a system from the
computation-independent viewpoint, addressing structural aspects of the
system. A CIM is often called a domain model.

– The Platform Independent Model (PIM) can be seen as defining a system in
terms of a technology-neutral virtual machine or a computational abstrac-
tion.

– The Platform Specific Model (PSM) usually consists of a platform model
that captures the technical concepts and services that make up the platform
and an implementation-specific model geared towards the concrete imple-
mentation technique.

The archetypical OMG MDA is based on UML for platform independent
modelling and CORBA as the platform with its languages such as IDL as the
platform-specific notation. In our context, the platform is a service-based infras-
tructure. Different platform types can be distinguished. The generic platform is
SOA here, the technology-specific platform is the WSF, and vendor-specific plat-
form technologies are for instance the Apache Axis or Collaxa service engines.

3 Modelling with Ontologies

MDA proposes three modelling layers – each with a distinct focus that, as we
aim to demonstrate, can be supported ontologically.

– The computation-independent layer focuses on domain capture.
– The platform-independent layer focuses on architecture configuration and

service process composition.
– The platform-specific layer focuses on interoperability and discovery support.

A case study from the banking domain will accompany our investigations.

3.1 CIM – Computation Independent Model

The purpose of the Computation Independent Model (CIM) is to capture a
domain with its concepts and properties. Typically, two viewpoints of domain
modelling can be distinguished. Concepts are represented in form of hierarchies –
called the information viewpoint in MDA. Behaviour is represented in a process-
based form – called the enterprise viewpoint in MDA, based on open distributed
processing (ODP) concepts. Our aim is to provide a single ontological notation
that can capture both viewpoints. A process-oriented ontology shall capture both
types of domain entities, see Fig. 1.

– Two types of concepts shall be distinguished: objects, which are static enti-
ties, and processes, which are dynamic entities.

– Three relationship types shall be distinguished: is a (the subclass relation-
ship), has part (the component relationship), and depends (the dependency
relationship).

– Constraints, or properties, on concepts and relationships can be expressed.

The subclass relationship is the classical form of relating concepts in ontologies.
For domain-specific software systems, the composition of objects and processes
from a component perspective is an additional, but also essential information.
Dependencies are useful to describe input-output relationships between objects
and activities that process them. Specific ordering requirements on composed
processes can be expressed through constraints. The abstract syntax of this
ontology language is summarised in Fig. 1, upper part. We will discuss the
semantics at the end of this section.

We need to define or identify an ontology language that can provide the
necessary notational framework. An OWL-based ontology with support for the
component and dependency relationships can form the notational framework
here.

Example 1. The example that we will use to illustrate the modelling and trans-
formation techniques throughout the paper is taken from the banking domain.
We can identify:

– objects such as account and sum (of money),
– activities such as account create, close, lodge, transfer, and balance and

processes such as for instance create; !(balance + lodge + transfer); close
which describes sequencing, iteration, and choice of activities1,

1 The process combinators are ’;’ (sequential composition), ’ !’ (iteration), ’+’ (choice),
and ’||’ (parallel composition).

account

postpre

postcondition
semantics

precondition
semantics

in-object
syntax

transfer

sum of
money

balance =
balance@pre - sum

balance >
account

account
out-object

syntax

Fig. 3. Ontological Service Process Template (WSPO).

– constraints such as a precondition balance ≥ sum on the transfer activity.

The example in Fig. 2 shows a simplified domain ontology for the bank account
example.

Reasoning facilities of an ontological framework can be deployed to check the
consistency of ontologically defined domain models.

Example 2. With instances attached to the entities, an inference engine can, for
example, determine all bank account instances with a negative account balance.
Another example is the satisfaction of a precondition for a money transfer on a
particular account.

3.2 PIM – Platform Independent Model

The Platform Independent Model (PIM) changes the focus from the computation-
independent capture of the domain to a focus on constraints imposed on the
knowledge representation by the computational environment. Architectures and
processes are here the key aspects at this modelling level. The architectural fo-
cus is on services, their architectural configuration, and interaction processes
[13, 22]. Architectural configuration addresses the interaction processes (remote
invocation and service activation) between different agents in a software system.
Again, we will use an ontology to express these aspects.

Services are the components of the system architecture. They form the start-
ing point of architecture modelling. Different approaches for service ontologies
have been proposed. These differ in the way service and processes are represented
in the ontologies – see Section 6 for a more detailed review. Since representing not
only services, but also their configuration and assembly into processes is impor-
tant here, we use the Web Service Process Ontology (WSPO), whose foundations
were developed in [23, 24]. This ontology will bring us closer to the architectural
perspective than more abstract service ontologies such as OWL-S [20], which
however also provides support for service composition. Services (and processes)
in WSPO are not represented as concepts, but as relationships denoting acces-
sibility relations between states of the system. A PIM service process template,
see Fig. 3, defines the basic structure of states and service processes.

The abstract syntax of this ontology is presented in Fig. 1, middle part.

– Concepts in this approach are states (pre- and poststates), parameters (in-
and outparameters), and conditions (pre- and postconditions).

– Two forms of relationships are provided. The processes themselves are called
transitional relationships. Syntactical and semantical descriptions – here pa-
rameter objects (syntax) and conditions (semantics) – are associated through
descriptional relationships.

This ontological representation in WSPO is actually an encoding of a simple
dynamic logic (a logic of programs) in a description logic format [23, 24], allowing
us to avail of modal logic reasoning in this framework.

WSPO provides a standard template for service or service process descrip-
tion. Syntactical parameter information in relation to the individual activities –
to be implemented through service operations – and also semantical information
such as pre-conditions like are attached to each activity as defined in the PIM
template. Example 4 will illustrate this. WSPO can be distinguished from other
service ontologies by two specific properties. Firstly, although based on descrip-
tion logics, it adds a relationship-based process sublanguage enabling process
expressions based on iteration, sequential and parallel composition, and choice
operators. Secondly, it adds data to processes in form of parameters that are
introduced as constant process elements into the process sublanguage.

Example 3. The architecture- and process-oriented PIM model of the bank ac-
count focuses on the activities and how they are combined to processes. The
process create; !(balance + lodge + transfer); close, which describes a sequence
of account creation, an iteration of a choice of balance enquiry, lodgment, and
transfer activities, and a final account closing activity, can be represented in
WSPO as a composed relationship expression:

create ◦ acc;
! (balance ◦ acc; lodge ◦ (acc, sum); transfer ◦ (from, to, sum));
close ◦ acc

Ontologies enable reasoning about specifications. WSPO enables reasoning
about the composition of services in architectures. In [23], we have presented an
ontological matching notion that can be applied to determine whether a service
provider can be connected to a service user based on their individual service and
process requirements.

Example 4. Assume that in order to implement an account process, a transfer
service needs to be integrated. For any given state, the process developer might
require2

∀preCond . (balance > amount)
∀transfer . ∀postCond .

(balance() = balance()@pre− amount)

2 The @-construct refers to the attribute in the prestate.

transfer
service

nonFctProp

preCond

effect

assumption

postCond

message-
Exchange

nonFctProp

security:
SSL-encrypt

Interface Capabilities

balance > sum

balance =
balance@pre -sum

exists(account)

transfered(sum)

in: acc x acc x sum
out: void

location “address”

Fig. 4. Ontological Service Template (WSMO).

which would be satisfied by a provided service

∀preCond . true
∀transfer . ∀postCond .

(balance() = balance()@pre− amount) ∧
(lastActivity = ’transfer’)

based on a refinement condition (weakening the precondition and strengthening
the postcondition).

The refinement notion used in the example above is based on the consequence
inference rule from dynamic logic integrated into WSPO.

While architecture is the focus of this model layer, the approach we discussed
does not qualify as an architecture description language (ADL) [26], although the
aim is also the separation of computation (within services) and communication
(interaction processes between services). ADLs usually provide notational means
to describe components (here services), connectors (channels between services),
and configurations (the assembly of instantiations of components and connec-
tors). Our approach comes close to this aim by allowing services as components
and process expressions as configurations to be represented.

3.3 PSM – Platform Specific Model

Our platform is the Web Service Framework (WSF) – consisting of languages,
protocols, and software tools. Models for the platform specific layer (PSM) need
to address two aspects: a platform model and implementation specific mod-
els. The platform model is here defined by the Web Services Framework and

its service-oriented architecture principles. The implementation specific models
characterise the underlying models of the predominant languages of the platform.

Interoperability of services is the key objective of the WSF. Two concerns
determine the techniques used at this layer: the abstract description of services to
support their discovery and the standardised assembly of services to processes.
Two different models capturing executable and tool-supported languages are
therefore relevant here:

– Description and Discovery. Abstract syntactical and semantical service inter-
faces shall be supported. The Web Services Description Language (WSDL)
supports syntactical information. WSDL specifications can be created by
converting syntactical information from the WSPO into abstract WSDL el-
ements. We will, however, focus here on semantically enhanced descriptions
enabled through service ontologies specific to the platform.
Services as the basic components of processes can be represented as con-
cepts in ontologies [27]. This approach is followed by widely used service
ontologies such as OWL-S [20] and WSMO [25]. WSMO defines a template
for the representation of service-related knowledge, see Figs. 1 and 4. The
WSMO concepts are the central services concept and auxiliary domains for
descriptional entities, i.e. expressions of different kinds. Relationships in the
template represent service properties of two kinds. Properties such as pre-
Cond, postCond, assumption, and effects are called capabilities relating to
the service semantics. Properties such as messageExchange are syntactically
oriented interface aspects. In addition to these functional aspects, a range of
non-functional aspects is supported.

– Processes and Composition. The Business Process Execution Language for
Web Services (WS-BPEL) is one of the proposed service coordination lan-
guages [6]. WS-BPEL specifications can be created by converting process
expressions from WSPO. We do not discuss this further here as the seman-
tical support required here is already available at the PIM-level.

The benefit of using an ontology for description and discovery can easily
be seen when the discovery and matching of OWL-S or WSMO-based service
descriptions is compared with syntax-oriented WSDL descriptions.

Example 5. WSMO descriptions capture syntactical and semantical descriptions
as WSPO does, see Examples 3 and 4. It adds, however, various non-functional
aspects that can be included into the discovery and matching task. Standardised
description and invocation formats enable interoperability. Required functional-
ity can be retrieved from other locations. An example are authentication features
for an online banking system.

3.4 Semantics of the Ontology Layers

The abstract syntax of the ontologies we discussed has already been presented
in Fig. 1. Now, we focus on the semantics of the individual ontology layers.
Ontologies are based on ontology languages, which in turn are defined in terms of

logics. Here, we can exploit the description logic foundation of ontology languages
such as OWL [21]. While a full treatment is beyond the scope of this paper,
we address the central ideas due to the definition of ontology transformations
requires underlying formal semantical models.

Ontology languages are logics defined by interpretations and satisfaction re-
lations on semantical structures such as algebras (sets and relations) and state-
based labelled transitions systems (e.g. Kripke transition systems). A semantical
metamodel for each of the layers can be formulated based on standard approaches
in this context [21]:

– A domain ontology can be defined in terms of sets (for concepts) and relations
(for relationships).

– The architectural and process aspects can be defined in terms of labelled
transition systems, such as Kripke transition systems (KTS), where sets
represent states and relations represent transitions between states.

– The interoperability aspects can be split into interface (defined in terms of
sets and relations) and configuration and process behaviour (defined in terms
of state transition mechanisms).

This shall form the basis for the approach presented here. In the future, we plan
to map our semantics to the OMG-supported Ontology Definition Metamodel
(ODM). This can be expected to be straightforward due to an ODM-OWL map-
ping as part of ODM. We will address this aspect in Section 5.

4 Ontology-based Model Transformations

Without explicitly defined transformations, a layered modelling approach will
not be feasible. The transformations play consequently a central role. Transfor-
mations between the model layers need to be automated to provide required tool
support and to enable the success of the approach. Following the OMG-style of
defining transformation, we define transformation rules based on patterns and
templates.

4.1 Transformation Principles

While it is evident that the transformations we require here are about adding new
structures, for instance notions of state and state transition for the architectural
PIM layer, the original model should be recoverable and additional information
on that layer should not be added. What we aim at is therefore not a refinement
or simulation notion in the classical sense – although these notions will help us
to define the transformations.

Refinements where additional application-specific model specifications are
added can occur within a given layer. Refinement within a model layer can be
based on subsumption, the central reasoning construct of ontology languages
that is based on the subclass relation between concepts or relationship classes,
respectively. In [23], we have developed a constructive refinement and simulation

Rule Aspect Description
CP0 template For each process element in the CIM, create a PIM template.
CP1 process element The PIM process element is the process element of CIM.
CP2 states Create default concepts for pre- and post-states.
CP3 syntax For each in- and out-parameter of processes, create a separate

syntax (object) element.
CP4 semantics Create pre- and postconditions depending on availability of

external additional information in form of constraints.
CP5 process If process expressions available in form of constraints, then

expressions create complex process using relationship expressions in WSPO.

Fig. 5. Transformation Rules for the CIM-to-PIM Mapping.

framework for service processes based on refinement and simulation relations as
special forms of subsumption.

Our focus in this paper is the illustration of the different modelling capa-
bilities of ontology languages and ontologies on the different model layers. Our
objective is to motivate the need for and the benefits of a layered ontological
modelling and transformation approach. A formal model of transformations is
beyond the scope of this paper. Graph transformation and graph grammars pro-
vide suitable frameworks for this task [28, 29].

4.2 CIM-to-PIM Mapping

The CIM-layer supports abstract, computation-independent domain modelling.
This model is mapped to a computation-oriented, but still platform-independent
service-based model. The PIM-layer supports analysis and reasoning for architec-
ture and process aspects, such as configuration and composition, on an abstract
level. Consequently, information needs to be added to a CIM to provide a suffi-
cient level of structure for the PIM-level. A process-specific PIM template, see
Fig. 3 for a template application to the banking context, guides the transforma-
tion process. We have defined the rules for the CIM-to-PIM transformation in
Fig. 5.

In MDA, the transformation steps are defined in terms of model markings
and applications of templates. Marks are annotations (or metadata) of entities in
the original model to support the mapping that indicates how these entities are
used in the target model. Marks can support the determination of the mapping
template to be deployed. The CIM-to-PIM transformation rule, that defines the
creation of a PIM-template for CIM-concepts marked as ’process’, is an example
of this.

Example 6. Fig. 3 represents the result of the transformation of the ’transfer’
process from Fig. 2 using the rules defined in Fig. 5. The ’transfer’ concept in
Fig. 2 is marked as a process, which based on rule CP0 creates a PIM process

template with explicit states (rule CP2). The CIM concept ’transfer’ becomes
the transitional relationship element at the centre of the PIM template (rule
CP1). The input and output elements, associated to ’transfer’ using dependencies
(see Fig. 2), are mapped to syntax descriptions (rule CP2). Equally, additional
constraints in the CIM are mapped to the PIM semantical descriptions (rule
CP4).

Proposals for a mapping language are, similar to the ontology metamodel
proposals, currently being requested by the OMG. Graph transformations and
graph grammars [28, 29] would suit the need here to formalise the transformation
rules. We have used graphs as the visualisation mechanism for ontological mod-
els. Graph-based models and CIM-to-PIM transformation semantics are there-
fore a natural combination. The semantics of a CIM can be seen as a directed
labelled graph with nodes (objects and processes) and edges (relationships). The
semantics of a PIM can be seen directed labelled graph, where descriptional and
transitional roles are distinguished. This is equivalent to a KTS, see Section 3.4.
This can be implemented as a graph expansion, where essentially state concepts
are introduced. The original CIM can be retrieved by projecting on individual
PIMs and then merging all process PIMs into one CIM.

4.3 PIM-to-PSM Mapping

The platform specific model (PSM) is defined in our approach by two separate
models: service ontology descriptions to address service discovery and process
orchestration and choreography descriptions to address service composition. The
corresponding transformation rules for these two aspects – we chose WSMO for
ontology-based description and WS-BPEL for service orchestration to illustrate
this mapping – are presented in Fig. 6.

The WSPO-to-WSMO mapping copies functional properties – both syntax
and semantics – to the PSM. Similar to states that are added to CIMs to provide
the structure to express process behaviour, here we add structure in form of non-
functional aspects to PIMs to add further descriptions for service discovery.

Example 7. The WSMO example in Fig. 4 is the result of mapping the PIM,
presented in Fig. 3, to the WSF platform layer according to rule PP1 defined
in Fig. 6. Syntactical elements for the interface and semantical capabilities such
as pre- and postconditions are directly mapped from the corresponding WSPO
elements according to the transformation rules PP1.1 and PP1.2.

The WSPO-to-WS-BPEL mapping converts process expressions into a BPEL
business process skeleton, see Fig. 6. WS-BPEL is an implementation language.
Process specifications in form of process orchestrations is supported by service
engines available from various providers.

5 OMG-adopted Technologies

Our efforts have to be seen in the context of the OMG approach to MDA. The
OMG supports selected modelling notations and platforms through an adoption

Rule Aspect Description
PP1 WSMO From the WSPO-based PIM, map process relationships to

WSMO service concept and fill messageExchange and pre/
postCond properties accordingly, see WSMO-template in
Fig. 4.

PP1.1 WSMO Map the WSPO in and out objects onto WSMO message-
messageExchange Exchange descriptions.

PP1.2 WSMO Map the WSPO pre- and postconditions onto WSMO pre-
pre-/postconditions and postconditions.

PP2 WS-BPEL The complex WSPO process relationships can be mapped to
BPEL processes.

PP2.1 WS-BPEL For each process create a BPEL partner process.
process partners

PP2.2 WS-BPEL Convert each process expression into BPEL-invoke activities
orchestration and the client side BPEL-receive and -reply activities at the

server side.
PP2.3 WS-BPEL Convert the process combinators ’;’, ’+’, ’ !’, and ’||’ to the

process activities BPEL combinators sequence, pick, while, and flow, resp.

Fig. 6. Transformation Rules for the PIM-to-PSM Mapping.

process. Example of OMG-adopted techniques are UML as the modelling no-
tation and CORBA as the platform [1]. While Web technologies are not (yet)
adopted, the need for a specific MDA solution for the Web context is, due to
the Web’s ubiquity and the existence of standardised and accepted platform and
modelling technology, a primary concern.

The current effort of defining and standardising an ontology metamodel
(ODM) will allow us to integrate our technique further with OMG standards
[9]. ODM will provide mappings to OWL-DL and also a UML profile for ontolo-
gies to make UML’s graphical notation available. This might lead to a ’Unified
Ontology Language’ in the future, i.e. OWL in a UML-style notation [30]. A
UML profile is about the use of the UML notation, which would allow ontologies
to be transformed into UML notation. MOF compliancy for ODM is requested
to facilitate tool support. XMI, i.e. production rules using XSLT, can be used
to export model representations to XML, e.g. to generate XML Schemas from
models using the production rules. We have summarised the MDA framework
and compared it with our proposed extension in Fig. 7.

6 Related Work

Service ontologies are ontologies to describe Web services, essentially to support
their semantics-based discovery in Web service registries. WSMO [25] and OWL-
S [20] are the two predominant examples. WSMO is not an ontology, as OWL-S

CIM

PIM

PSM

OWL-DL
domain model

WSPO
architectural configuration

service composition

WSMO/OWL-S
service discovery

WS-BPEL
service interoperability

and coordination

UML2 Profile
CORBA

OWL-DL
mapping

UML2 Profile
ontologies

ODM

MDA with Ontologies MDA Models MDA Metamodels

Fig. 7. Overview of MDA and Ontologies – with transformations between the layers
and the influence of ODM for the ontology layers.

is, but rather a framework in which ontologies can be created. The Web Service
Process Ontology WSPO [23, 24] is also a service ontology, but the focus has
shifted here to the support of description and reasoning about service composi-
tion and service-based architectural configuration. Both OWL-S and WSPO are
or can be written in OWL-DL. WSMO is similar to our endeavour here, since
it is a framework of what can be seen as layered ontology descriptions. We have
already looked at the technical aspects of WSMO descriptions. WSMO supports
the description of services in terms more abstract assumptions and goals and
more concrete pre- and postconditions.

We have already discussed the OMG efforts to develop an ontology defini-
tion metamodel (ODM) in the previous section, which due to its support of
OWL would allow an integration with UML-style modelling. ODM, however, is
a standard addressing ontology description, but not reasoning. The reasoning
component, which is important here, would need to be addressed in addition to
the standard.

Some developments have started exploiting the connection between OWL
and MDA. In [31], OWL and MDA are integrated. An MDA-based ontology
architecture is defined, which includes aspects of an ontology metamodel and a
UML profile for ontologies – corresponding to OMG’s ODM. A transformation
of the UML ontology to OWL is implemented. The work by [10, 31] and the
OMG [1, 9], however, needs to be carried further to address the ontology-based
modelling and reasoning of service-based architectures. In particular, the Web

Services Framework needs to be addressed in the context of Web-based ontology
technology.

7 Conclusions

We have presented a layered ontological modelling and transformation frame-
work for model-driven architecture (MDA). The effort leading towards model-
driven architecture acknowledges the importance of modelling for the architec-
tural design of software systems. We have focused on two aspects:

– Firstly, ontologies are a natural choice to enhance modelling capabilities.
While this is recognised in the community, we have exploited the new degree
of sharing and ubiquity enabled through Web ontology languages and the
reasoning capabilities of logic-based ontology languages.

– Secondly, ontology-based transformations allow the seamless transition from
one development focus to another. These omtology transformations allow
the integration of domain modelling, architectural design, the description
and discovery of services.

Our approach addresses a Web-specific solution, reflecting the current devel-
opment of the Web Services Framework and the Semantic Web. The primary
platform we aim to support is the Web platform with the second Web services
generation focusing on processes, utilising the Semantic Web with its ontology
technology support. A platform of the expected importance in the future, such
as the Web, requires an adequate and platform-specific MDA solution.

A critical problem that has emerged from this investigation is the need for
conformity and interoperability. As MDA and the Web as a platform are devel-
oped and standardised by two different organisations (the OMG and the W3C,
respectively), this can potentially cause problems. The current OMG develop-
ments, such as the Ontology Definition Metamodel (ODM), however, aim to
reconciliate some of these problems. With ODM soon to be available, our pro-
posed ontologies can, due to their grounding in OWL, be expected to fit into the
ODM.

Our aims here were to demonstrate the benefits and the feasibility of lay-
ered ontological modelling and transformation for service-oriented architecture,
but a number of issues have remained open. We have developed a conceptual
modelling and transformation framework. The automation of the transforma-
tion processes – central for the success of the technology – needs to be fully
implemented. While we have developed some basic reasoning support specific
to the architectural modelling activities, more techniques are also possible that
exploit the full range of modal reasoning for service description, discovery, and
composition and architectural configuration.

References

1. Object Management Group. MDA Guide V1.0.1. OMG, 2003.

2. World Wide Web Consortium. Web Services Framework.
http://www.w3.org/2002/ws, 2004. (visited 08/07/2005).

3. World Wide Web Consortium. Web Services Architecture Definition Document.
http://www.w3.org/2002/ws/arch, 2003.

4. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,
Architectures and Applications. Springer-Verlag, 2004.

5. E. Newcomer and G. Lomow. Understanding SOA with Web Services. Addison-
Wesley, 2005.

6. The WS-BPEL Coalition. WS-BPEL Business Process Execution Lan-
guage for Web Services – Specification Version 1.1. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel, 2004. (visited
08/07/2005).

7. C. Peltz. Web Service orchestration and choreography: a look at WSCI and
BPEL4WS. Web Services Journal, 3(7), 2003.

8. D.J. Mandell and S.A. McIllraith. Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. In D. Fensel, K.P.
Sycara, and J. Mylopoulos, editors, Proc. International Semantic Web Conference
ISWC’2003, pages 227–226. Springer-Verlag, LNCS 2870, 2003.

9. Object Management Group. Ontology Definition Metamodel - Request For Proposal
(OMG Document: as/2003-03-40). OMG, 2003.

10. D. Gašević, V. Devedžić, and D. Djurić. MDA Standards for Ontology Development
– Tutorial. In International Conference on Web Engineering ICWE2004, 2004.

11. J. Williams and J. Baty. Building a Loosely Coupled Infrastructure for Web Ser-
vices. In Proc. International Conference on Web Services ICWS’2003. 2003.

12. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transacions on Software Engineering and Methodology, 6(3):213–249, 1997.

13. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. ACM
Transactions on Software Engineering, 28(11):1056–1075, 2002.

14. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd
Edition). SEI Series in Software Engineering. Addison-Wesley, 2003.

15. N. Desai and M. Singh. Protocol-Based Business Process Modeling and Enactment.
In International Conference on Web Services ICWS 2004, pages 124–133. IEEE
Press, 2004.

16. R. Kazman, S.J. Carriere, and S.G. Woods. Toward a Discipline of Scenario-based
Architectural Evolution. Annals of Software Engineering, 9(1-4):5–33, 2000.

17. W3C Semantic Web Activity. Semantic Web Activity Statement, 2004.
http://www.w3.org/2001/sw. (visited 06/07/2005).

18. M.C. Daconta, L.J. Obrst, and K.T. Klein. The Semantic Web. Wiley, 2003.
19. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic Matching of

Web Services Capabilities. In I. Horrocks and J. Hendler, editors, Proc. First
International Semantic Web Conference ISWC 2002, LNCS 2342, pages 279–291.
Springer-Verlag, 2002.

20. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

21. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

22. J. Rao, P. Küngas, and M. Matskin. Logic-Based Web Services Composition: From
Service Description to Process Model. In International Conference on Web Services
ICWS 2004, pages 446–453. IEEE Press, 2004.

23. C. Pahl. An Ontology for Software Component Matching. In M. Pezzè, editor,
Proc. Fundamental Approaches to Software Engineering FASE’2003, pages 6–21.
Springer-Verlag, LNCS 2621, 2003.

24. C. Pahl and M. Casey. Ontology Support for Web Service Processes. In Proc. Eu-
ropean Software Engineering Conference and Foundations of Software Engineering
ESEC/FSE’03. ACM Press, 2003.

25. R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of
WSMO and OWL-S. In L.-J. Zhang and M. Jeckle, editors, European Conference
on Web Services ECOWS 2004, pages 254–269. Springer-Verlag. LNCS 3250, 2004.

26. N. Medvidovic and R.N. Taylor. A Classification and Comparison framework for
Software Architecture Description Languages. In Proceedings European Conference
on Software Engineering / International Symposium on Foundations of Software
Engineering ESEC/FSE’97, pages 60–76. Springer-Verlag, 1997.

27. T. Payne and O. Lassila. Semantic Web Services. IEEE Intelligent Systems, 19(4),
2004.

28. J. Kong, K. Zhang, J. Dong, and G. Song. A Graph Grammar Approach to Soft-
ware Architecture Verification and Transformation. In 27th Annual International
Computer Software and Applications Conference COMPSAC’03. 2003.

29. L. Baresi and R. Heckel. Tutorial Introduction of Graph Transformation: A Soft-
ware Engineering Perspective. In A. Corradini, H. Ehrig, H.-J. Kreowski, and
G. Rozenberg, editors, Proc. 1st Int. Conference on Graph Transformation ICGT
02. Springer-Verlag, LNCS 2505, 2002.

30. D. Gašević, V. Devedžić, and V. Damjanović. Analysis of MDA Support for On-
tological Engineering. In Proceedings of the 4th International Workshop on Com-
putational Intelligence and Information Technologies, pages 55–58, 2003.

31. D. Djurić. MDA-based Ontology Infrastructure. Computer Science and Informa-
tion Systems (ComSIS), 1(1):91–116, 2004.

