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Abstract. In ubiquitous computing, behavior routine learning is the process of 
mining the context-aware data to find interesting rules on the user’s behavior, 
while preference learning tries to utilize the user’s behavior information to infer 
user interests, intention and desires. An intelligent environment should be 
adaptive, i.e. it is should be able to learn the routine and preference of user, then 
provide user with the suitable service. Developing intelligent ubiquitous 
environment requires not only good learning algorithms but also appropriate 
reusable models of user preference and behavior routine, which are not fully 
covered by current projects. In this paper, we propose a formal and 
comprehensive ontology-based model of user preference and behavior routine. 
The implementation of the ontology using OWL[14] enhances the 
expressiveness, support inference, knowledge reuse and knowledge sharing, 
which we can not achieve by normal models. The main benefit of this model is 
the ability to reason over context data to predict what the user wants the system 
to do. Based on our model, we also present a rule learning mechanism to learn 
the preference and behavior rules from context data. 1 

1   Introduction 

Intelligent ubiquitous computing focuses on merging intelligent and agent-based system 
with the ubiquitous computing paradigm. An intelligent environment is a space where 
ordinary human activities mix seamlessly with computation in a way that enhances the 
functions of both system and user. That means when a user enters a smart-space, the 
system can recognize who the user is, what he is doing, “guess” what he intends to do, 
and how he desires the system to assist him. By other words, the system should be able 
to learn about user preference and behavior routine so that it can provide services to the 
user seamlessly & invisibly without any explicit user intervention.  

There are many methods to learn user preference and user routine. One of them is 
association rule mining. User preference and routine learning is considered as 
associating different contexts to each other. These associations are derived as IF-
THEN rules, or association rules. Furthermore, we can apply Bayesian net, or Hidden 
Markov model for preference and routine learning [7][10]. Many prototyping systems 
and architectures have successfully introduces novel algorithms for learning user 
routine from GPS location [7]. In those approaches, important places are identified by 
                                                           
1  This work was supported by MIC Korea. Dr. S.Y.Lee is the corresponding author. 
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monitoring the user’s travel patterns and learning his frequented locations. Then these 
important places will be named by user.  

However, a formal model to memorize the routines of user has not been defined; or 
by other words, there is no formal model for user routine. Similarly, the term “user 
preference” so far is just related to the user interest for some very specific subjects, 
such as the web links, music, presentation material, etc, as well as situation 
independent [10]. None of current user preference model fully represents the 
preferences of user in a ubiquitous environment, where the user interest, desire and 
intention vary by time and place. The requirement of having a formal model of user 
preference and behavior routine to use in ubiquitous computing systems is obvious. 
SOUPA [5] has already defined a user preference model. Nevertheless, this model is 
specified only for meeting room scenario, and rather simple to be considered as a 
formal and general user preference model.  

Recently, many systems model context data using ontology and semantic web 
technique [6][12]. Web Ontology Language OWL [14] is preferred due to its ability to 
represent explicitly semantics associated with the knowledge, and to provide reasoning 
capabilities used by intelligent systems and agents to infer useful contexts. Our CAMUS 
middleware follows this ontology-based modeling approach. We have already defined 
and used OWL ontologies for basic entities in context-aware systems including agent, 
time, location, device and environment, as well as for domain data representing [1].  

In this paper, to address the issue of user preference and behavior routine formal 
modeling, we propose additional OWL-based user preference ontology includes 
modular component vocabularies to represent user beliefs, desires, and intentions 
related to different times and places, together with the behavior routine ontology 
which is a sequence of location with the expected interval for each location, and 
allows developer to express the recurrence of the routine.  

The rest of this paper is organized as follows. In section 2, we describe the user 
preference and behavior routine model and its ontological structure. Section 3 gives a 
detailed description of our idea by discussing the learning and reasoning mechanism 
with the support of ontology and OWL. We conclude our paper with a summary and 
outlook in section 4. 

2   Spatio-Temporal Ontology of User Preference and User Routine 

2.1   Using OWL Ontologies for Formal Context Modeling 

Within the domain of knowledge representation, the term ontology refers to the 
formal, explicit description of concepts, which are often conceived as a set of entities, 
relations, instances, functions, and axioms, leading to shared and common 
understanding that can be communicated between people and application systems [2]. 
Traditionally, ontologies are only used to describe domains (as mentioned above) but 
in W3C’s OWL (web ontology language) [14], the horizon of ontology has been 
broadened to include instance data as well. 

There are several potential advantages for developing context models based on 
Semantic Web Ontology, such as its expressiveness, the capability of Knowledge 
Sharing and Knowledge Reuse; the support to various existing logic inference 
mechanisms, and lastly, its extensibility.   
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2.2   Spatio-Temporal Ontology of User Preference (STOUP) 

In many personalized e-applications, the preference model is merely a strict partial 
order of a set of attributes, expressing “for attribute A, value y is better than x”. 
However, in a ubiquitous system, not only the pure preference of users, but also the 
interest, desire and intention of the users should be considered. Besides, situation also 
plays an important role, i.e., user preference alternates from time to time and from 
place to place. A formal user preference model should cover all these aspects.  

Our user preference and routine model is an additional part of an existing context 
model for ubiquitous system, Contel, which is already defined by our research group, 
and currently used in CAMUS [1]. In Contel, all the entities in a context-aware 
system are categorized into agents, devices, environment, location and time. These 
categories consist of following main classes (or concepts): Agent, Activity, Devices, 
Environment, Location Description, Place, Time (Time Interval and Time Instant) and 
Event. There are also many auxiliary classes, generalized and specialized classes to 
enrich the semantic capability.  

To represent the user preference model, we add a Preference class, which has 
relationship with all main classes, and its subclasses as illustrated in Fig.1. 

 

Fig. 1. STOUP structure. Preference class and its subclasses are new classes added to Contel. 

An agent (which is a user, group or organization) can have POS or NEG 
Preference, which represents the like and dislike, or the best choice and the worst 
choice. Each preference is related to a certain time and place. Preference also depends 
on what the agent is doing, and/or what it intends to do next. There are 3 sub-classes 
of Preference: ResourceInterest, EnvironmentDesire and IntentionalControlCom-
mand. ResourceInterest represents the interest of agent in some Resources, such as 
MusicGenre or TVChannel. EnvironmentDesire expresses how an agent wants the 
environment to be, for example the desired temperature or the preferred light. 
IntentionalControlCommand specifies the operations which an agent wants the 
devices to perform, such as turning on the television or rolling down the curtain. 

All the properties of Preference class which are related to Agent, Time, Location 
and Activity have minimal cardinality 0. The absence of any specified relationship is 
understood as “for all kind of this”. For example, if a preference is defined without 
any location, it means that this preference can be applied everywhere. Preference 
class also has the noAgent property to make it become a general rule which will be 
applied whenever there is no user around, such as turning off the light or change the 
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software program running on computer into stand-by mode. Similarly, the noActivity 
property denotes the idle state of agents.  

Another significant property of Preference class is the probability property, which 
expresses the importance or the priority of a preference. This property has major 
influence on system decision making process. For example, if the probability of a user 
giving “Light.TurnOff” control command before going to bed is 99%, the system can 
infer that whenever the user is sleeping, the light should be off, i.e. the light intensity 
should be Dark. Or that the equal probability of user watching Music channel or Movie 
channel at night makes the system ask the user before selecting one of those channel.  

2.3   Spatio-Temporal Ontology of User Routine (STOUR) 

There are some requirements for a user routine model in ubiquitous computing systems. 
First, a routine is recursive. It can be a daily routine, or weekly, or monthly routine, etc. 
Second, a user routine includes a sequence of user locations, or user activities, each of 
which has expected time interval, i.e. the average time interval user spends doing an 
activity at a location. Finally, the routine model should support reasoning, which means 
it should help predicting the next location, or the intended activity.  

Fig. 2 illustrates the structure of our user routine ontology.  

 

Fig. 2. STOUR structure. Routine, RoutineItem class and Routine’s subclasses are new classes 
added to Contel. 

An Agent can have one to many Routine. There are 3 types of routine: 
DailyRoutine, which is the most common, WeeklyRoutine and MonthlyRoutine. For 
WeeklyRoutine, some weekdays are included, for example the user goes to gym every 
Tuesday, Thursday and Saturday. Similarly, MonthlyRoutine comes with some days 
in the month.  

Each Routine has a sequence of RoutineItem. Each item is a state in which user is 
located in a certain place or is doing a certain work, in an expected time interval. 
RoutineItems go in sequence, so each of them can be before of after another.  

Because routine is also an uncertain concept, one routineProbability property is 
attached to each RoutineItem.  

The following example shows the context ontology that describes a preference and 
routine of a user named Bilbo using OWL. 
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Fig. 3. example of user preference and routine data in OWL 

3   OWL-Based Reasoning and Learning Mechanism  

In this session, to show the advantage of ontology-based modeling approach using 
OWL, we will illustrate the OWL-support reasoning mechanism, and how the system 
can learn user routine and preference through the control commands of user and the 
history context database.  

3.1   OWL-support Reasoning Mechanism 

3.1.1   Ontology Reasoning Mechanisms 
High valued ontologies depend heavily on the availability of well-defined semantics 
and powerful reasoning modules. The expressive power and the efficiency of 
reasoning provided by OWL, (the semantics of OWL can be defined via a 
translation into an expressive Description Logics (DL)), make it an ideal candidate 
for ontology constructs. The facts gathered from context entities make a factual 
world in OWL, consisting of individuals and their relationships asserted through 
binary relations.  

Ontology reasoning helps us to find subsumption relationships (between 
subconcept-superconcept), instance relationships (an individual i is an instance of 
concept C), and consistency of context knowledge base. In the design phase of 
formalizing the context entities, OWL reasoning services (such as satisfiability and 
subsumption) can test whether concepts are non-contradictory and can derive implied 
relations between concepts.  

Let us take an example to see how ontology reasoning can help deducing implied 
context. In preference ontology, the class PianoMusic is a subClassOf ClassicalMusic. 
So when knowing that Bilbo is interestedIn ClassicalMusic, and “Hungarian Sonata” 
is a song which has type PianoMusic, the system can deduce that Bilbo is interestedIn 
“Hungarian Sonata”. 
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3.1.2   Context Reasoning Mechanisms 
However, many types of contextual information cannot be easily deduced using only 
ontology inference. In addition to ontology reasoning, we can also use logic inference. 
A set of rules can be defined to assert additional constraints for context entity 
instances when certain conditions (represented by a concept term) are met. 

Over the concepts and relations defined in our ontologies, we can do a lot of 
reasoning based on many types of logics, such as description logic, description 
temporal logic, and spatial logic.  

There are many reasoning engines work over OWL format data, such as Racer[13], 
SWI-Prolog[11], Pellet[9], etc. A list of OWL implementations can be found at [8]. In 
our current implementation, we use Jena library [4] to handle OWL format context 
data and ontologies. Therefore we exploit the Jena generic rule reasoner [4] to make 
inference over our context data.  

Following is an example of Jena rule to infer the control command which user 
intends to give in a certain situation.  

[r1:  (?user agt:personName “Bilbo”), (?x time:currentTime ?t), 
 (?user act:currentActivity ?curact), (?curact rdf:type act:WatchingTV), 
 (?curact act:actionObject ?tv), (?user act:intendedActivity ?intact), 
 (?intact rdf:type act:GoingToWork) AND 520 <=?t AND ?t <= 530  

      ->  [(?cmd dev:cmdObject ?tv), (?cmd dev:cmdTime ?t) 
<- (makeInstance(?user,agt:givesCommand, dev:TVTurnOff, ?cmd) ]]2 (1) 

with agt, time, act, rdf, dev are the aliases for the namespaces of ontologies (agent, 
time, activity, RDF, device) which are currently used to define data models in our 
system. Details of those ontologies are described in [1]. This rule is matched when 
there are OWL markups about user Bilbo watching TV and intending to go to work, 
then a new instance of class TVTurnOff command is created and the properties 
cmdObject and cmdTime of that instance is assigned with the current watched 
television and current time.  

However, most developers find building the rules like this the most difficult task in 
building ubiquitous computing systems, particularly in intelligent environments such 
as smart homes, where the system has to learn a lot about users  preference, behavior, 
routine, etc. In order to minimize the burden for developer in building context-aware 
applications, our middleware architecture provide support to learn the inference rules 
from context data and build reasoning engines using those rules, as described in next 
section.  

3.2   Learning the Rules for Context Reasoning 

In this scenario, the user preference is learned through user control commands and 
responses to the messages from system. User can control the home devices by remote 
controls, or send command messages through some computer software interfaces. The 
commands are stored in the history database together with relevant information i.e. 

                                                           
2  This is a temporal rule. In Jena generic reasoner[3], we can infer about time by continuously 

updating the currentTime property of Time class with current timestamp. The time value is 
converted into minutes (or second, or millisecond, depend on the purpose of system).  
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user location, timestamp, current activity, intended activity (if this information is 
available), environment state. The tuple {user=Bilbo; place=DiningRoom; timestamp 
= 2005/04/01 8:40; currentActivity=WatchingTV; intendedActivity= GoingToWork; 
command= TV.TurnOff} is an example.  

Using this kind of information as the training data, the system can learn rules like:  

personName=Bilbo; currenttime=[8:40-8:50];  
currentActivity=WatchingTV; intendedActivity=GoingToWork  
⇒ command=TV.TurnOff (Utility=0.86) 

The rules can then be converted into suitable format for the reasoning engine 
which is used. In our prototype system, a rule like (1) is produced.  

Moreover, we store the rule into database as a Preference object so that the 
knowledge about user preference can be shared and reused.  

There are many algorithms to learn a rule from example data set. Currently we 
apply two algorithms for two cases: 

- Rule learning when knowing the desired output 
If the output is defined, we learn the rule from example data set by an approach as 

in decision tree learning but by following the branch with best score in terms of 
splitting function.  

The Utility of a new candidate can be computed using information-theoretic 
measures like entropy: 

Utility(r) = entropy(the subset of examples covered by r)  

- Rule learning without knowing the desired output 
If the output is undefined, we can’t use any classification algorithm to learn the 

rule sets. In this case, Apriori association rule mining algorithm [3] is more suitable. 
Among a large number of learned rules, we select the “right” rules by assigning a 
utility function to calculate the value of each rule based on confidence and support.  

( ) ( ) ( )rSuprConfrUtility .. βα +=   

With Conf(r) is the confidence Sup(r) is the support of the rule.  
The α and β coefficients are related to each other by α + β = 1, and define the type 

of rule which is more interested. Normally α = 1 and β = 0, showing that a rule which 
has high confidence will be chosen even if it rarely happens.  

Only the rules with high utility will be selected.  

4   Summary and Outlook 

In this paper, we have presented a formal Spatio-Temporal Ontology of User 
Preference and Behavior Routine. We discussed how it can be used for heterogeneous 
ubiquitous computing environment to support knowledge sharing, reuse, and logical 
reasoning with the help of Smart Home scenario.  

Our next steps include the integration of various machine learning techniques and 
reasoning engines into our framework. Different machine learning techniques have 
different input and output format, and different use. By implementing the wrapper for 
all the techniques and defining a common format for input data, we hope to enable the 
system developers to handle the machine learning techniques more easily.  
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