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Abstract. Output-sensitive data structures result from preprocessing n
items and are capable of reporting the items satisfying an on-line query
in O(t(n) + ℓ) time, where t(n) is the cost of traversing the structure
and ℓ ≤ n is the number of reported items satisfying the query. In this
paper we focus on rank-sensitive data structures, which are additionally
given a ranking of the n items, so that just the top k best-ranking items
should be reported at query time, sorted in rank order, at a cost of
O(t(n) + k) time. Note that k is part of the query as a parameter under
the control of the user (as opposed to ℓ which is query-dependent). We
explore the problem of adding rank-sensitivity to data structures such
as suffix trees or range trees, where the ℓ items satisfying the query form
O(polylog(n)) intervals of consecutive entries from which we choose the
top k best-ranking ones. Letting s(n) be the number of items (including
their copies) stored in the original data structures, we increase the space
by an additional term of O(s(n) lgǫ n) memory words of space, each of
O(lg n) bits, for any positive constant ǫ < 1. We allow for changing
the ranking on the fly during the lifetime of the data structures, with
ranking values in 0 . . . O(n). In this case, query time becomes O(t(n)+k)
plus O(lg n/ lg lg n) per interval; each change in the ranking and each
insertion/deletion of an item takes O(lg n) time; the additional term in
space occupancy increases to O(s(n) lg n/ lg lg n).

1 Introduction

Output-sensitive data structures are at the heart of text searching [13], geometric
searching [5], database searching [28], and information retrieval in general [3,
31]. They are the result of preprocessing n items (these can be textual data,
geometric data, database records, multimedia, or any other kind of data) into
O(npolylog(n)) space in such a way, as to allow quickly answering on-line queries
in O(t(n)+ ℓ) time, where t(n) = o(n) is the cost of querying the data structure
(typically t(n) = polylog(n)). The term output-sensitive means that the query
cost is proportional to ℓ, the number of reported items satisfying the query,
assuming that ℓ ≤ n can be much smaller than n. In literature, a lot of effort has
been devoted to minimizing t(n), while the dependency on the variable cost ℓ
has been considered unavoidable because it depends on the items satisfying the
given query and cannot be predicted before querying.
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In recent years we have been literally overwhelmed by the electronic data
available in fields ranging from information retrieval, through text processing and
computational geometry to computational biology. For instance, the number ℓ
of items reported by search engines can be so huge as to hinder any reasonable
attempt at their post-processing. In other words, n is very large but ℓ is very
large too (even if ℓ is much smaller than n). Output-sensitive data structures
are too optimistic in a case such as this, and returning all the ℓ items is not the
solution to the torrent of information.

Motivation. Search engines are just one example; many situations arising in
large scale searching share a similar problem. But what if we have some pref-
erence regarding the items stored in the output-sensitive data structures? The
solution in this case involves assigning an application-dependent ranking to the
items, so that the top k best-ranking items among the ℓ ones satisfying an on-line
query can be returned sorted in rank order. (We assume that k ≤ ℓ although the
general bound is indeed for min{k, ℓ}.) Note that the overload is significantly
reduced when k ≪ ℓ. For example, PageRank [24] is at the heart of the Google
engine, but many other rankings are available for other types of data. Z-order
is useful in graphics, since it is the order in which geometrical objects are dis-
played on the screen [14]. Records in databases can be returned in the order of
their physical location (to minimize disk seek time) or according to a time order
(e.g. press news). Positions in biological sequences can be ranked according to
their biological function and relevance [13]. These are just basic examples, but
more can be found in statistics, geographic information systems, etc.

Our results for rank-sensitive data structures. In this paper, we study
the theoretical framework for a class of rank-sensitive data structures. They
are obtained from output-sensitive data structures such as suffix trees [30, 27]
or range trees [5], where the ℓ items satisfying the query form O(polylog(n))
intervals of consecutive entries each. For example, string searching in suffix trees
and tries goes along a path leading to a node v, whose descending leaves represent
the ℓ occurrences to report, say, from leaf v1 to leaf v2 in symmetrical order.
In one-dimensional range searching, two paths leading to two leaves v1 and v2

identify the ℓ items lying in the range. In both cases, we locate an interval of
consecutive entries in the symmetrical order, from v1 to v2. In two-dimensional
range trees, we locate O(lg n) such (disjoint) intervals. For higher dimensions,
we have O(polylog(n)) disjoint intervals.

As previously said, for this class of output-sensitive data structures, we obtain
the retrieved items as the union of O(polylog(n)) disjoint intervals. We provide
a framework for transforming such intervals into rank-sensitive data structures
from which we choose the top k best-ranking items satisfying a query. We aim
at a cost dependency on the parameter k specified by the user rather than
on the query-dependent term ℓ. Let rank denote a ranking function such that
rank(v1) < rank(v2) signifies that item v1 should be preferred to item v2. We do
not enter into a discussion of the quality of the ranking adopted; for us, it just
induces a total order on the importance of the items to store. Let s(n) be the
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number of items (including their copies) stored in any such data structure D.
Let O(t(n) + ℓ) be its query time and let |D| be the number of memory words
of space it occupies, each word composed of O(lg n) bits. We obtain a rank-
sensitive data structure D′, with O(t(n) + k) query time, increasing the space
to |D′| = |D| + O(s(n) lgǫ n) memory words, for any positive constant ǫ < 1.

We allow for changing rank on the fly during the lifetime of the data struc-
ture D′, with ranking values in the range from 0 to O(n). In this case, query
time becomes O(t(n) + k) plus O(lg n/ lg lg n) per interval and each change in
the ranking takes O(lg n) time per item copy. Our solution operates in real
time as we discuss later. When D allows for insert and delete operations on
the set of items, we obtain an additive cost of O(lg n/ lg lg n) time per query
operation and O(lg n) time per update operation in D′. The space occupancy is
|D′| = |D|+ O(s(n) lg n/ lg lg n) memory words. The preprocessing cost of D′ is
dominated by sorting the items according to rank , plus the preprocessing cost
of D.

Attacking the problem. While ranking itself has been the subject of intense
theoretical investigation in the context of search engines [17, 18, 24], we could not
find any explicit study pertaining to ranking in the context of data structures.
The only published data structure of this kind is the inverted lists [31] in which
the documents are sorted according to their rank order. McCreight’s paper on
priority search trees [19] refers to enumeration in increasing order along the y-
axis but it does not indeed discuss how to report the items in sorted order along
the y-axis. An indirect form of ranking can be found in the (dynamic) rectangular
intersection with priorities [15] and in the document listing problem [21].

For our class of output-sensitive data structures, we can formulate the ranking
problem as a geometric problem. We are given a (dynamic) list L of n entries,
where each entry e ∈ L has an associated value rank(e) ∈ 0 . . . O(n). The list
induces a linear order on its entries, such that ei < ej if and only if ei precedes
ej in L. Let us indicate by pos(e) the (dynamic) position of e in L (but we do
not maintain pos explicitly). Hence, ei < ej if and only if pos(ei) < pos(ej). We
associate point (pos(e), rank(e)) with each entry e ∈ L. Then, given ei and ej ,
let e′ be the kth entry in rank order such that pos(ei) ≤ pos(e′) ≤ pos(ej). We
perform a three-sided or 11

2
-dimensional query on pos(ei) . . . pos(ej) along the

x-axis, and 0 . . . rank(e′) along the y-axis.
Priority search trees [19] and Cartesian trees [29] are among the prominent

data structures supporting these queries, but do not provide items in sorted order
(they can end up with half of the items unsorted during their traversal). Since
we can identify the aforementioned e′ by a variation of [10], in O(k) time, we
can retrieve the top k best-ranking items in O(k + lg n) time in unsorted order.
Improvements to get O(k) time can be made using scaling [12] or persistent data
structures [6, 8, 16]. Subsequent sorting reports the items in O(k lg k) time using
O(n) words of memory.

What if we adopt the above solution in a real-time setting? Think of a server
that provides items in rank order on the fly, or any other similar real-time appli-
cation in which guaranteed response time is mandatory. Given a query, the above
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solution and its variants can only start listing the first items after O(t(n)+k lg k)
time! In contrast, our solution works in real-time by using more space. After
O(t(n)) time, it provides each subsequent item in O(1) worst-case time accord-
ing to the rank order (i.e. the qth item in rank order is listed after c1t(n) + c2q
steps, for 1 ≤ q ≤ k and constants c1, c2 > 0).

Persistent data structures can attain real-time performance, in an efficient
way, only in a static setting. Let us denote L’s entries by e0, e1, . . . , en−1, and
build persistent sublists of 2r consecutive entries, for r = 0, 1, . . . , lg n. Namely,
for fixed r, we start from the sublist containing e0, e1, . . . , e2r

−1 in sorted rank
order. Then, for i = 2r, . . . , n − 1, we remove entry ei−2r and add ei using
persistence to create a new version of the sorted sublist. Now, given our query
with ei and ej , we compute the largest r such that 2r ≤ j − i. Among the
versions of the sublists for 2r entries, we take the one starting at ei and the one
ending in ej . Merging these two lists on the fly for k steps solves the ranking
problem. This solution has two drawbacks. First, it uses more space than our
solution. Second, it is hard to dynamize since a single entry changing in L can
affect Θ(n) versions in the worst case. (Also the previous solutions based on
persistence, priority search trees and Cartesian trees suffer similar problems in
the dynamic setting.) We extend the notion of Q-heap [11] to implement our
solution, introducing multi-Q-heaps described in Section 3.

2 The Static Case and its Dynamization

Our starting point is a well-known scheme adopted for two-dimensional range
trees [5]. Following the global rebuilding technique described in [23], we can
restrict our attention to values of n in the range 0 . . . O(N) where n = Θ(N).
Consequently, we use lookup tables tailored for N , so that when the value of N
must double or halve, we also rebuild these tables in o(N) time. Our word size
is O(lg N). As can be seen from [23], time bounds can be made worst-case.

We recall that the interval is taken from the list of items L = e0, e1, . . . , en−1,
indicating with pos(ei) the dynamic position of ei in L (but we do not keep pos
explicitly) and with rank(ei) its rank value in 0 . . . O(N). We use a special rank
value +∞ that is larger than the other rank values; multiple copies of +∞ are
each different from the other (and take O(lg N) bits each).

2.1 Static case on a single interval

We employ a weight-balanced B-tree W [2] as the skeleton structure. At the
moment, suppose that W has degree exactly two in the internal nodes and that
the n items in L are stored in the leaves of W , assuming that each leaf stores
a single item. For each node u ∈ W , let R(u) denote the explicit sorted list of
the items in the leaves descending from u, according to rank order. If u0 and u1

are the two children of u, we have that R(u) is the merge of R(u0) and R(u1).
Therefore, we can use 0s and 1s to mark the entries in R(u) that originate,
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respectively, from R(u0) and R(u1). We obtain B(u), a bitstring of |R(u)| bits,
totalizing O(n lg n) bits, hence O(n) words of memory, for the entire W (see [4]).

Rank query works as expected [5]. Given entries ei and ej in L, we locate
their leaves in W , say vi and vj . We find their least common ancestor w in W
(the case vi = vj is trivial). On the path from w to vi, we traverse O(lg n)
internal nodes. If during this traversal, we go from node u to its left child u0,
we consider the list R(u1), where u1 is the right child of u. Analogously, on the
path from w to vj , if we go from node u to its right child u1, we consider list
R(u0) for its left child. In all other cases, we skip the nodes (including w and its
two children). Clearly, we include vi and vj if needed.

At this point, we reduce the rank-sensitive query for vi and vj to the problem
of selecting the top k best-ranking items from O(lg n) rank-sorted lists R(), con-
taining integers in 0 . . . O(N). Following Chazelle’s approach, we do not explicitly
store the lists R(), but keep only the bitstrings B() and the additional machinery
for translating bits in B() into entries in R(), which occupies O(n lgǫ n) words of
memory, for any positive constant ǫ < 1. (See Lemma 2 in Section 4 of [4].) As
a result, we can retrieve the sorted items of lists R() using Chazelle’s approach.

2.2 Polylog intervals in the dynamic case

In the general case, we are left with the problem of selecting the top k best-
ranking items from O(polylog(n)) rank-sorted dynamic lists R(), containing in-
tegers in 0 . . . O(N). We cannot use Chazelle’s machinery in the dynamic setting.
We maintain the degree b of the nodes in the weight-balanced B-tree W , such that
(β/4) lg n/ lg lg n ≤ b ≤ (4β) lg n/ lg lg n, for a suitable constant in 0 < β < 1. As
a result from [2], the height of the tree is O(lg n/ lg b) = O(lg n/ lg lg n). We also
explicitly store the lists R(), totalizing O(n) words per level of W , and thus yield-
ing O(n lg n/ lg lg n) words of memory. Note that the cost of splitting/merging
a node u ∈ W along with R(u) can be deamortized [2].

To enable the efficient updating of all the lists R(), we use a variation of dy-
namic fractional cascading described in [25], which performs efficiently on graphs
of a non-constant degree. Fractional cascading does not increase the overall space
complexity. At the same time, for a given element e of list R(u), it allows locating
the predecessor (in rank order) of e in R(u′) when u′ is a child or parent of u.
This locating is performed in time O(lg b + lg lg n) which amounts to O(lg lg n)
under our assumption concerning b, the degree of the tree.

Let us consider a single interval identified by a rank query. It is described by
two leaves vi and vj , along with their least common ancestor w ∈ W . However,
we encounter O(lg n/ lg lg n) lists R() in each node u along the path from w to
either vi or vj . For any such node u, we must consider the lists for u’s siblings
either to its left or its right. So we have to merge O((lg n/ lg lg n)2) lists on the
fly. But we can only afford O(lg n/ lg lg n) time.

We solve this multi-way merging problem by introducing multi-Q-heaps in
Section 3, extending Q-heaps [11]. A multi-Q-heap stores O(lg n/ lg lg n) items
from a bounded universe 0 . . . O(N), and performs constant-time search, inser-
tion, deletion, and find-min operations. In particular, searching and finding can
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be restricted to any subset of its entries, still in O(1) time. Each instance of a
multi-Q-heap requires just O(1) words of memory. These instances share common
lookup tables occupying o(N) memory words. We refer the reader to Theorem 2
in Section 3 for more details.

We employ our multi-Q-heap for the rank values in each node u ∈ W . This
does not change the overall space occupancy, since it adds O(n) words, but it
allows us to handle rank queries in each node u in O(1) time per item as follows.
Let d = α lg N/ lg lg N be the maximum number of items that can be stored
in a multi-Q-heap (see Theorem 2). We divide the lists R() associated with
u’s children into d clusters of d lists each. For each cluster, we repeat the task
recursively, with a constant number of levels and O(polylog(n)/d) multi-Q-heaps.
We organize these multi-Q-heaps in a hierarchical pipeline of constant depth. For
the sake of discussion, let’s assume that we have just depth 2. We employ a (first-
level) multi-Q-heap, initially storing d items, which are the minimum entry for
each list in the cluster. We employ further d (second-level) multi-Q-heap of d
entries each, in which we store a copy of the minimum element of each cluster.
To select the top k best-ranking leaves, we extract the k smallest entries from the
lists by using the above multi-Q-heaps: We first find the minimum entry, x, in
one of the second-level multi-Q-heaps, and identify the corresponding first-level
multi-Q-heap. From this, we identify the list containing x. We take the entry, y,
following x in its list. We extract x from the first-level multi-Q-heap and insert y.
Let z be the new minimum thus resulting in the first level. We extract x from
the suitable second-level multi-Q-heap and insert z. By repeating this task k
times, we return the k leaves in rank-sensitive fashion.

This does not yet solve our problem. Consider the path from, say, vi to its an-
cestor w. We have O(lg n/ lg lg n) lists for each node along the path. Fortunately,
our multi-Q-heaps allow us to handle any subset of these lists, in constant time.
The net result is that we need to use just O(lg n/ lg lg n) multi-Q-heaps for the
entire path. For each node u in the path, the find-min operation is limited to the
lists corresponding to a subset of u’s sibling at its right. They form a contiguous
range, which we can easily manage with multi-Q-heaps. Hence, we can apply
the above 2-level organization, in which we have O(lg n/ lg lg n) multi-Q-heaps
in the path from vi to w in the second level. (An analogous approach is for the
path from vj to w.) In this way, we can perform a multi-way merging on the
fly for finding the least k keys in sorted rank order, in O(k + lg n/ lg lg n) time.
Note that the bound is real-time as claimed. In the case of polylog intervals, we
use an additional multi-Q-heap hierarchical organization (of constant depth) to
merge the items resulting from processing each interval separately.

We now describe how to handle rank changes of entries in L, as well as
insertions and deletions in L. Changing the rank of entry ei, say in leaf vi ∈ W
is performed in a top-down fashion. It affects the nodes on the path from the root
of W to vi. The list R(u) for each node u along this path contains a copy of ei

but whose rank no longer complies with the ordering of the list. This element
is extracted from the list and inserted into the correct place on this list. Both
the element itself and the new correct place can be located in the list associated
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with the root in O(lg n) time. Next, using the fractional cascading structure, we
can relocate the copy of ei in the list for the next node in the downward path
to vi, having already done it in the current node. This takes O(lg lg n) time per
node, thus yielding O(lg n) total time to relocate the copy of ei in all the lists of
the path. As for the insertions in L (and also in W ), they follow the approach
in [2]; moreover, the input item e has its rank(e) value, in the range 0 . . . O(N),
inserted into the lists R() of the ancestor nodes as described above. Deletions
are simply implemented as weak, changing the rank value of deleted items to
+∞. When their number is sufficiently large, we apply rebuilding as in [23]. If
the original data structure contains multiple copies of the same item (as in the
case of a range tree) then the update in the rank-sensitive structure is applied
separately to the individual copies.

We obtain the following result. Let D be an output-sensitive data structure
for n items, where the ℓ items satisfying a query on D form O(polylog(n))
intervals of consecutive entries. Let O(t(n) + ℓ) be its query time and s(n) be
the number of items (including their copies) stored in D.

Theorem 1. We can transform D into a static rank-sensitive data structure D′,
where query time is O(t(n) + k) for any given k, thus reporting the top k best-
ranking items among the ℓ listed by D. We increase the space by an additional
term of O(s(n) lgǫ n) memory words of space, each of O(lg n) bits, for any posi-
tive constant ǫ < 1. For the dynamic version of D and D′, we allow for changing
the ranking of the items, with ranking values in 0 . . . O(n). In this case, query
time becomes O(t(n) + k) plus O(lg n/ lg lg n) per interval. Each change in the
ranking and each insertion/deletion of an item take O(lg n) time for each item
copy stored in the original data structure. The additional term in space occupancy
increases to O(s(n) lg n/ lg lg n).

3 Multi-Q-Heaps

The multi-Q-heap is a relative of the Q-heap [11]. Q-heaps provide a way to
represent a sub-logarithmic set of elements in the universe [N ] = 0 . . . O(N),
so that such operations as inserting, deleting or finding the smallest element
can be executed in O(1) time in the worst case. The price to pay for the speed
is the need to set up and store lookup tables in o(N) time and space. These
tables, however, need only to be computed once as a bootstrap cost and can be
shared among any number of Q-heap instances. Our multi-Q-heap is functionally
more powerful than Q-heap, as it allows performing operations on any subset of
d common elements, where d ≤ α lg N/ lg lg N for a suitable positive constant
α < 1. Naturally, this could be emulated by maintaining Q-heaps for all the
different subsets of the elements, but that solution would be exponential in d
(for each instance!), while our multi-Q-heap representation requires two or three
memory words and still supports constant-time operations. Our implementation
based on lookup tables is quite simple and does not make use of multiplications
or special instructions (see [9, 26] for a thorough discussion of this topic). We
first describe a simpler version (to be later extended) supporting the following:
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– Create a heap for a given list of elements.
– Find the minimum element within a given range.
– Find an element within a given range of items.
– Update the element at a given position.

In the rest of the section, we prove the following result.

Theorem 2. There exists a constant α < 1 such that d distinct integers in
0 . . . O(N) (where d ≤ α lg N/ lg lg N) can be maintained in a multi-Q-heap sup-
porting search, insert, delete, and find-min operations in constant time per op-
eration in the worst case, with O(d) words of space. The multi-Q-heap requires
a set of pre-computed lookup tables taking o(N) construction time and space.

3.1 High-level implementation

The d elements are integers from [N ]. We can refer to their binary representations
of w = ⌈lg[N ]⌉ bits each. These strings can be used to build a compacted trie on
binary strings of length w. However, instead of labeling the leaves of the compact
trie with the strings (elements) they correspond to, we keep just the trie shape
and the skip values contained in its internal nodes, like in [1, 7]. We store the
d elements and their satellite data in a separate table. To provide a connection
between the trie and the values, we store a permutation which describes the
relation between the order of elements in the trie and the order in which they
are stored in the table.

When searching for an element, we first perform a blind search on the trie [1,
7]. Next we access the table corresponding to the found element and we compare
it with the sought one. Note that this way we only access the table of values in one
place, while the rest of the search is performed on the trie. With an assumption
about the maximum number of elements stored in the multi-Q-heap, we can
encode both the trie and the permutation as two single memory words. The
operations are then performed on these encodings and only the relevant entries
in the value table are accessed, which guarantees constant time. The operations
on the encoded structures are realized using lookup tables and bit operations.

To support multi-Q-heap operations, we store a single structure containing
all the elements. We implement all the extended operations so as to consider only
the given subset of the elements while maintaining constant time. We assume a
word size of w = O(lg N) bits. We use d to refer to the number of items stored
in the multi-Q-heap. We assume d ≤ α lg N/ lg lg N for some suitable constant
α < 1. We use x0, x1, . . . , xd−1 to refer to the list of items stored in the multi-
Q-heap. For our case, the order defined by the indices is relevant (when using
multi-Q-heaps in the nodes of the weight-balanced B-tree of Section 2).

3.2 Multi-Q-heap: Representation

The multi-Q-heap can be represented as a triplet (S, τ, σ), where S is the array
of elements stored in the structure, τ is the encoding of the compact trie and σ is
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an encoding of the permutation. The array S stores the elements x0, x1, . . . , xd−1

in that order and their satellite data. Each element occupies a word of space.
The encoding of the trie, τ , can be defined in the following fashion. First, let

us encode the shape of the binary tree of which it consists. This tree is binary,
with no unary nodes and edges implicitly labeled with either 0 or 1. We can
encode it by traversing the tree in inorder (visiting first 0 edges and then 1
edges) and outputting the labels of the edges traversed. This encoding can be
decoded unambiguously and requires 4d − 4 bits, since each edge is traversed
twice and there are 2d − 2 edges in the trie. Next, we encode the skip values.
The internal nodes (in which the skip values are stored) are ordered according
to their inorder which leads to an ordered list of skip values. Each skip value is
stored in ⌈lg w⌉ bits, so the encoding of the list takes (d − 1)⌈lg w⌉ bits. For a
suitable value of α the complete encoding of the trie does not exceed 1/4 lg N
bits and hence can be stored in one word of memory.

The permutation σ reflects the array order x0, x1, . . . , xd−1 with respect to
the order of these elements sorted by their values (which is the same as the in-
order of the corresponding leaves in the trie). There are d! possible permutations,
so we choose α so that lg d! < 1/4 lg N and the encoding on the permutation
fits in one word of memory. We use the encoding described in [22], which takes
linear time to rank and unrank a permutation, hence to encode and decode it.

3.3 Multi-Q-heap: Supported operations

The Init operation sets up all the lookup tables required for implementing the
multi-Q-heap. It needs to be performed only once. See section 3.4 for details
concerning the lookup tables. These lookup tables are used in the implementa-
tions of the operations described below. If invoked multiple times, only the first
is effective.

The Create operation takes the array S of values x0, x1, . . . , xd−1 and sets
up the structures τ and σ. It takes the time required to construct the compact
trie for d elements, hence O(d).

The function Findmin returns the smallest element among the elements
xi, . . . , xj stored in the multi-Q-heap. We implement it using the lookup table
Subheap and Index . We use Subheap[τ, σ, i, j] to obtain τ ′ and σ′, the structure
for elements xi, . . . , xj . We then use Index [σ′, 1] to obtain the array index of the
smallest element in the range.

The function Search searches the subset of elements xi, . . . , xj stored in the
multi-Q-heap and returns the index of the element in the multi-Q-heap which
is smallest among those not smaller than y, where y ∈ [N ] can be any value. As
previously, we use Subheap[τ, σ, i, j] to obtain τ ′ and σ′, the subheap for elements
xi, . . . , xj . We then search the reduced trie for x′, the first half (bitwise) of x,
by looking up u = Top[τ ′, x′]. Next, using LDescendant [τ ′, u], we identify one of
the strings descending from u and compare this string with x′ to compute their
longest common prefix length lcp. This computation can be done in constant
time with another lookup table, which is standard and is not described. If lcp <
1/2 lg N , then LDescendant [τ ′, u] identifies the sought element. If lcp = 1/2 lg N ,
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we continue the search in the bottom part of the trie by setting u = Top[τ ′, x′, u].
Also here LDescendant [τ ′, u] provides the answer.

The Update operation replaces the element xr in the array S with y, where
y ∈ [N ] can be any value. It updates τ and σ accordingly. We first simulate the
search for y in τ , as described in the previous paragraph to find the rank i of y
among x0, . . . xd and use this together with the table UpdatePermutation[σ, r, i]
to produce the updated permutation. We then use values obtained during the
simulated blind search for y in τ to obtain values needed to access the UpdateTrie
table. During the search we find the node u at which the search for y ends (in
the second half of the trie in the case the search gets that far) and the lcp
obtained by comparing its leftmost descendant with y. We use Ancestor [τ, u, lcp]
for identifying the node whose parent edge is to be split for inserting. The lcp is
the skip value the parameter c depends on the bit at position lcp + 1 of y. With
this information, we access UpdateTrie.

3.4 Multi-Q-heap:Lookup tables

This section describes the lookup tables required to perform the operations de-
scribed in the previous section. The number of tables can be reduced, but at the
expense of the clarity of the implementation description.

The Index table provides a way for obtaining the array index of an element
given the inorder position of its corresponding leaf in the trie (let us call this the
trie position). It contains the appropriate array index entry for every possible
permutation and trie position. The space occupancy is 21/4 lg N × d × lg d =
N1/4 × d × lg d = o(N).

The Index−1 table is the inverse of Index in the sense that it provides a way
of obtaining a trie position from an index, by containing a position entry for
every possible permutation and index. The space occupancy is the same as for
Index .

The Subheap table provides a means of obtaining a new subheap structure,
(S, τ ′, σ′), from a given one (S, τ, σ). The new subheap structure uses the same
array S, but takes into account only the subset xi, . . . , xj of its items. Note
that only τ , σ, i, and j are needed to determine τ ′ and σ′ and not the val-
ues stored in S. The new trie τ ′ is obtained from the old trie τ by removing
leaves not corresponding to xi, . . . , xj (these can be identified using σ). The
new permutation σ′ is obtained from the old one σ by extracting all the ele-
ments with values i, . . . , j and moving them to the beginning of the permutation
(without changing their relative order) so that they now correspond to the ap-
propriate j − i+1 leaves of the reduced trie. The space occupancy of Subheap is
21/4 lg N ×21/4 lg N ×d×d×1/4 lg N×1/4 lg N = N1/2×d2×(1/4 lg N)2 = o(N).

The Top and Bottom tables allow searching for a value in the trie. The
searching for a value must be divided into two stages, because a table which in
one dimension is indexed with a full value, one of O(N) possible, would occupy
too much space. We therefore set up two tables: Top for searching for the first
1/2 lg N bits of the value and Bottom for the remaining. The table Top contains
entries for every possible trie τ and x′, the first 1/2 lg N bits of some sought
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value x. The value in the table specifies the node of τ (with nodes specified
by their inorder position) at which the blind search [1, 7] for x′ (starting from
the root of the trie) ends. The table Top contains entries for every possible
trie τ , x′′ (the second 1/2 lg N bits of some sought value x) and an internal
node of the trie v. The value in the table specifies the node of τ at which the
blind search [1, 7] for x′′ ends, but in this case the blind search starts from v
instead of from the root of the trie. The space occupancy of Top is 21/4 lg N ×
21/2 lg N × lg d = N3/4 × lg d = o(N) and the space occupancy of Bottom is
21/4 lg N × 21/2 lg N × d × lg d = N3/4 × d × lg d = o(N).

The UpdateTrie table specifies a new multi-Q-heap and permutation which
is created from a given one by removing the leaf number i from τ and inserting
instead a new leaf. The new leaf is the c child of a node inserted on the edge
leading to u. This new node has skip value s. The space occupancy is 21/4 lg N ×
d × 2 × 2lg lg N × d × 1/4 lg N × 1/4 lg N = N1/4 × d2 × 1/8 lg3 N = o(N).

The UpdatePermutation table specifies the permutation obtained from σ if
the element with index r is removed and an element ranking i among the original
elements of the multi-Q-heap is inserted in its place. The space occupancy is
21/4 lg N × d × d × 1/4 lg N = N1/4 × d2 × 1/4 lg N = o(N).

The LDescendant table specifies the leftmost descending leaf of node u in τ .
Its space occupancy is 21/4 lg N × d × lg d = N1/4 × d × lg d = o(N).

The Ancestor table specifies the shallowest ancestor of u having a skip value
equal to or greater than s. The space occupancy is 21/4 lg N × d× 2lg lg N × lg d =
N1/4 × d × lg N × lg d = o(N)

We will describe the general case of multi-Q-heap and discuss an example in
the full version. Here we only say that we need also to encode a permutation π
in a single word since x0, . . . , xd−1 can be further permuted due to the insertions
and deletions. An arbitrary subset is represented by a bitmask that replaces the
two small integers i and j delimiting a range. The sizes of the lookup tables in
Section 3.4 increase but still remain o(N).
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