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Abstract. In this article we will introduce a new approach (and several
implementations) to the task of sentence classification, where pre-defined
classes are assigned to sentences. This approach concentrates on struc-
tural information that is present in the sentences. This information is
extracted using machine learning techniques and the patterns found are
used to classify the sentences. The approach fits in between the existing
machine learning and hand-crafting of regular expressions approaches,
and it combines the best of both. The sequential information present in
the sentences is used directly, classifiers can be generated automatically
and the output and intermediate representations can be investigated and
manually optimised if needed.

1 Introduction

Sentence classification is an important task in various natural language process-
ing applications. The goal of this task is to assign pre-defined classes to sentences
(or perhaps sequences in the more general case). For example, document sum-
marisers that are based on the method of text extraction, identify key sentences
in the original document. Some of these summarisers (e.g. [4, 8]) classify the
extracted sentences to enable a flexible summarisation process.

Sentence classification is also a central component of question-answering sys-
tems (e.g. the systems participating in the question answering track of TREC1).
Different types of questions prompt different procedures to find the answer. Thus,
during a question analysis stage the question is classified among a set of prede-
fined expected answer types (EAT). Classes can be, for instance, “number” or
“location”, but they can also be more fine-grained, such as “number-distance”,
“number-weight”, “location-city”, or “location-mountain”.

Here, we will introduce a novel approach to the problem of sentence classifi-
cation, based on structural information that can be found in the sentences. Re-
occurring structures, such as How far . . . may help finding the correct sentence
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1 See http://trec.nist.gov/ for more information.



class (in this case a question with EAT “distance”). The approach described here
automatically finds these structures during training and uses this information
when classifying new sentences.

In the next section, the main approach will be described, as well as two dif-
ferent systems (with corresponding implementations) based on this idea. To get
a feeling for whether the approach is feasible, we have applied implementations
of the systems to real data in the context of question classification. The results
published here indirectly provide insight in the approach. We will conclude with
an overview of the advantages and disadvantages of these systems and finish
with a discussion of future work.

2 Approach

Past approaches to sentence classification can be roughly divided into two groups:
machine learning and regular expression approaches.

Grouping sentences in a fixed set of classes is typically a classification task
for which “standard” machine learning techniques can be used. In fact, this has
been done in the past [4, 6, 14]. However, an inconvenience of these methods is
that the intermediate data produced by most machine learning techniques is
difficult to interpret by a human reader. Therefore, these methods do not help
to understand the classification task, and consequently the determination of the
features to use by the classifier is usually reduced to a process of trial and error,
where past trials do not help much to determine the optimal set of features.

Also, many features that are or have been used do not allow a description
of the inherently sequential aspect of sentences. For example, bags of words,
occurrence of part-of-speech (POS) tags, or semantically related words, all lose
the sequential ordering of words. The order of words in a sentence contains
information that may be useful for the classification.

The alternative approach, handcrafted regular expressions that indicate when
sentences belong to a certain class do (in contrast to the machine learning ap-
proach) maintain word order information. As an example, one might consider the
regular expression /^How far/ that can be used to classify questions as having
an EAT of “distance”. This method brings fairly acceptable results when there
are specific structures in the sentence that clearly mark the sentence type, as is
the case with question classification into a coarse-grained set of EAT [9, 13]. The
regular expression approach also has the advantage that regular expressions are
human readable and easy to understand. However, creating them is not always
trivial. Having many fine-grained classes makes it extremely hard to manually
create regular expressions that distinguish between closely related classes.

Our method aims at using the advantages of both methods based on machine
learning and methods based on regular expressions. Using machine learning,
patterns are extracted from the training data. The resulting patterns are easy
to read by humans, and we believe they give insight about the structure of the
sentences and the ordering of words therein. These patterns serve as regular



expressions during the classification task. An overview of the approach is given
in Figure 1.
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Fig. 1. Overview of the structure induction classification process

In the next two sections, we will describe two classifiers that fit into this
approach. The alignment-based learning classifier uses a grammatical inference
system to find structure in the sentences explicitly. This structure is converted
into a set of regular expressions that are fed to the classifier. The trie classifier
builds a trie structure that represents the sentences in the training corpus. It
finds regularities in the trie and classifies new sentences using these regularities.

2.1 Alignment-Based Learning Classifier

The structure extraction phase of the first system is done by Alignment-Based
Learning (ABL). ABL is a generic grammatical inference framework, that learns
structure using plain text only. It has been applied to several corpora in dif-
ferent languages with good results [10] and it also compares well against other
grammatical inference systems [12].

The underlying idea of ABL is that constituents in sentences can be inter-
changed. To give an example, if we substitute the noun phrase the man in the
sentence He sees the man with another noun phrase a woman, we get another
valid sentence: He sees a woman. This process can be reversed (by aligning sen-
tences) and possible constituents, called hypotheses, are found and marked as
such by grouping them. This is called the alignment learning phase. Table 1
shows the structure that would be learned from a sample of four sentences.
Grouping is marked by parentheses.

The ABL framework consists of two more phases: clustering and selection
learning. The clustering phase groups similar non-terminal labels that are as-
signed to the hypotheses during the alignment learning phase. The selection
learning phase resolves a problem of the alignment learning phase. The align-
ment learning phase may introduce overlapping hypotheses. These are unwanted
if the underlying grammar is considered context-free and the resulting structure
is taken as a parse of the sentence using the underlying grammar. However,
we are not interested in this now, we only need the structure that is found.
Therefore, neither clustering nor selection learning are used here and we only
concentrate on the results of the alignment learning phase.



Several methods of the alignment learning phase have been described in the
literature [3, 10]. Due to practical restrictions of time and space (memory) [11],
we have used the suffixtree implementation [3]. Here, the alignments are found
by building a suffixtree, which uncovers re-occurring sequences of words in the
sentences. Using these sequences, the hypotheses are introduced.

Once the structure has been found, it is extracted and used in classifica-
tion. Each training sentence is associated with its corresponding class, so the
structure extracted from a certain sentence provides some evidence that this
structure is related to the class. If a structure occurs with several classes (i.e. it
occurs in multiple sentences that have different classes associated with them),
the structure is stored with all classes and their respective frequencies.

The stored structures can be seen as regular expressions, so during classifica-
tion, all structures can be matched to the new sentence. If a regular expression
matches, its class and corresponding frequency information is remembered and
when all structures have been tried, the class with the highest frequency is se-
lected as output.

We will explain the different implementations by walking through an exam-
ple. For this, we take a look at question classification with a set of four training
questions and two EAT. Consider the questions combined with the structure
found by ABL and their EAT depicted in Table 1.

Table 1. Example questions with ABL structure

“DESC” (What) (is (caffeine) )
“DESC” (What) (is (Teflon) )
“LOC” (Where) is (Milan)
“LOC” What (are the twin cities)

Table 2. Regular expressions found by ABL-based methods

hypo unhypo

caffeine “DESC” 1 What is “DESC” 2
is caffeine “DESC” 1 What “DESC” 2
What “DESC” 2 is caffeine “DESC” 1
Teflon “DESC” 1 is Teflon “DESC” 1
is Teflon “DESC” 1 Where is “LOC” 1
Milan “LOC” 1 is Milan “LOC” 1
Where “LOC” 1 What “LOC” 1
are the twin cities “LOC” 1



The first implementation, which we will call hypo, takes the words in the hy-
potheses (i.e. the words between the brackets), turns them into regular expres-
sions and stores them together with the corresponding EAT of the questions.
The resulting regular expressions can be found in Table 2. For example, the first
two questions both generate the regular expression /What/ combined with EAT
“DESC”, so it has frequency 2.

The second implementation, called unhypo, takes each hypothesis and re-
moves it from the question when it is turned into a regular expression. The
regular expressions extracted from the example questions can also be found in
Table 2. For example, the first two questions would introduce /What/ combined
with EAT “DESC” and frequency 2. The last question would introduce /What/

with class “LOC” and frequency 1.

Once the structures are stored with their class and frequency, the actual
classification can start. We have built two methods that combine the evidence
for classes of the sentence differently. Both start with trying to match each
of the stored regular expressions against the sentence. If a regular expression
matches, the first method (called default) will increase the counts of the classes
of the question with the frequency that is stored with the classes of the regular
expression.

The second method (called prior) will increase the counts of the classes of
the sentence that are related to the regular expression with 1 (where the default
method would increase it with the frequency count of each class).

When all regular expressions are tried, the default method selects the class
with the highest frequency (if there are more with the same frequency, one
is chosen at random), whereas the prior method also selects the one with the
highest count, but if there are more than one, it selects one based on the class
with the highest overall frequency.

2.2 Trie Classifier

The other system we describe here is based on finding structure using a trie.
By searching this data structure, it can be used directly to classify new, unseen
sentences. The work discussed here is an extension of the work in [7].

A trie T (S) is a well-known data structure that can be used to store a
set of sentences in an efficient way. It is defined by a recursive rule T (S) =
{T (S/a1), T (S/a2), . . . , T (S/ar)}, where S is a set of sequences (sentences, in
our case). S/an is the set of sequences that contains all sequences of S that start
with an, but stripped of that initial element [2].

In each node, local information extracted during training is stored. This
includes the word, class and frequency information. Since each node represents
part of a unique path in the trie, frequency information is the number of sentences
that use that particular node in a path in the trie.

To get a feeling for what a trie looks like, Figure 2 illustrates the trie con-
taining the questions of Table 1 (without the bracketed structure generated by
ABL). Extra information is stored per node, so for instance, the node that is



reached by following the path What contains “DESC”: 2 and “LOC”: 1 as fre-
quency information, which is similar to the information found by the unhypo
system.
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Fig. 2. The trie containing the example questions

The classification of new sentences is performed by extracting the class in-
formation stored in the trie nodes. The words of the new sentence are used to
find a path in the trie. The class information can then be extracted from the
final node of the path through the trie. To be more concrete, consider a sentence
S = (s1, s2, . . . , sn) and a trie T (S). The classification of the sentence is done by
finding the path T (S/s1/s2/ . . . /sn). The class information stored in the final
node of the path is returned.

Notice that only with the sentences present in the training data, we can find
a complete path in the trie (ending in a final node). To find a path for sen-
tences that have not been seen in the training data, we skip non-matching words
wherever needed to complete the path. This is called the look-ahead process.

The look-ahead process works as follows. Let us say that the words of sen-
tence S match up to sk, k < n, and the next word does not match sk+1. That
is, T (S/s1/s2/ . . . /sk−1/sk) 6= ∅, and T (S/s1/s2/ . . . /sk−1/sk/sk+1) = ∅. The
look-ahead process then builds a set of sub-tries T (S/s1/s2/ . . . /sk−1/sk/β/sk+2),
with β ∈ {x|T (S/s1/s2/ . . . /sk−1/sk/x) 6= ∅}.

One of these sub-tries is selected based on the frequency of the prefix defined
by the sub-trie in the training data. In other words, for each sub-trie in the
set, the prefix is extracted (s1, s2, . . . , sk−1, sk, β, sk+2) and the frequency of this
prefix in the training data is looked up. The sub-trie that has the prefix with
the highest frequency associated to it is selected. This defines β and the process
continues with the next word until all words in the sentence are consumed. In
a sense we are replacing sk with β. This defines a final node for the particular
sentence and the class information present in that node is used to find a class.

Here, we will describe two different implementations of the classification sys-
tem using a trie structure. The first uses a method called strict, where a word can
only be replaced (if needed) by another word if sk+2 in the sentence matches the
information in the trie. If there are several options, the one that has the highest
frequency is selected. If no option is found, the search process stops at that node
and the class information is retrieved from node sk.



The second trie-based implementation, called flex, allows a word in the sen-
tence to be replaced with one or more words in the trie. Initially, it works similar
to the strict method. However, if no β set of sub-tries can be found, because no
match on sk+2 can be found, it considers δ as in T (S/s1/s2/ . . . /sk−1/sk/β/δ),
where β can be anything and δ should match sk+2. If no such δ can be found, it
tries to match δ with the next sentence token, i.e. sk+3. This continues until a
match is found, or the end of the sentence is reached (and the class information
present in T (S/s1/s2/ . . . /sk−1/sk) is used). Again, if at some point multiple
options are introduced, the most frequent is selected.

3 Results

3.1 Data

To get a feeling of the feasibility of the structure-based classification approach,
we have applied the implementations described above to the annotated TREC
questions [6]. This is a collection of 5,452 questions that can be used as training
data and 500 questions testing data. The mean question length is 10.2 words
in the training data and 7.5 words in the testing data. The corpus contains
coarse-grained and fine-grained EAT information for each of the questions. In
total, there are 6 coarse-grained classes and 50 fine-grained classes. Note that
8 fine-grained classes do not occur in the testing data. Some example questions
are:
“NUM:dist” How tall is the Sears Building ?

“NUM:period” How old was Elvis Presley when he died ?

“LOC:city” What city had a world fair in 1900 ?

“LOC:other” What hemisphere is the Philippines in ?

There are some minor errors in the data that will affect the result of the
structural, sequential systems described in this article.2 In addition to an odd
incorrect character, a few questions in the training data have POS tags instead
of words:
Who wrote NN DT NNP NNP ” ?

What did 8 , CD NNS VBP TO VB NNP POS NN .

Why do USA fax machines not work in UK , NNP ?

In [6], some additional problems with the data are described. Firstly, the
training and testing data are gathered from different sources. In initial experi-
ments, we found that this has quite an effect on the performance. The systems
described in this article perform much better during development on the train-
ing data (using ten fold cross-validation) than on the testing data.3 However, to
make the most of the limited amount of data that is available, we have decided
to stick with this division.

Secondly, in [6] it is mentioned that some questions are ambiguous in their
EAT. For example, What do bats eat? can be classified in EAT “food”, “plant”,

2 We have decided to use the original data, without correcting the errors.
3 The difference in performance of the systems displayed here is similar to that during

development.



or “animal”. They (partially) solve this by assigning multiple answers to a ques-
tion. An adjusted precision metric is then needed to incorporate the multiple
answers. We have decided not to do this (even though it is possible to do so),
because we investigate the feasibility of the approach, which is not only depen-
dent on the results of the systems applied to a particular problem. The approach
encompasses many different systems of which only a few are tested here. Instead
of focusing on the actual results, we want to show the validity of the structure
induction approach in general.

Part-of-speech In addition to applying the systems on the plain text, we also
apply them to tokens consisting of the word combined with their POS tag. This
illustrates that the algorithms in the classification framework are not just limited
to plain text. Extra information can be added to the data.

We create the POS information using the Brill tagger [1]. The POS informa-
tion is simply combined with the plain words. However, adjacent words that have
the same POS are combined into one token. Thus, the question Who is Federico

Fellini? is, after POS tagging, divided into three tokens: (Who, WP), (is, VBZ)
and (Federico Fellini, NNP). Federico and Fellini are combined in one unique
token, because Federico and Fellini are adjacent words that have the same POS.

The ABL approach simply uses these complex tokens as elementary units,
so for tokens to be aligned, both the word and its POS tag have to match. The
trie approach is slightly modified. When searching for a matching β (i.e. when
the word and POS tag do not match in the trie), the additional information of
that position in the sub-tries should match. This means that in this case, the
POS tag of the β nodes in the trie should match the POS tag of the word in
that position in the sentence.

3.2 Numerical Results

The different systems are first allowed to learn using the training data, and
after learning, they are applied to the testing data. The output of the systems
is compared against the correct class (as present in the testing data) and the
precision is computed

precision =
# correctly classified questions

total # of questions

The results of all implementations can be found in Table 3. To be able to
compare the results, we have also computed a baseline. This simple baseline
always selects the most frequent class according to the training data. This is the
“HUM:ind” class for the fine-grained data and “ENTY” for the coarse-grained
data. This baseline is, of course, the same for the plain words and POS tagged
data. All implementations perform well above the baseline.

Looking at the coarse-grained results of the implementations using ABL, it
shows that adding POS information to the words helps improving performance.
We suspect that the POS information guides the alignment learning phase in



that the POS restricts certain alignments. For example, words that can be a
noun or a verb can now only be matched when their POS is the same. However,
slightly fewer regular expressions are found because of this.

The trie-based implementations do not benefit from the POS information.
We think that this is because the POS information is too coarse-grained for β
matching. Instead of trying to find a correct position to continue walking through
the trie by finding the right word, only a rough approximation is found, namely
a word that has the same POS.

Overall, it shows that the trie-based approach outperforms the ABL imple-
mentations. We expect that it has to do with how the trie-based implementations
keep track of the sequence of the words in a question, whereas the ABL-based
implementations merely test if word sequences occur in the question.

Table 3. Results of the ABL and Trie systems on question classification

coarse fine
words POS words POS

Baseline 0.188 0.188 0.110 0.110

ABL hypo default 0.516 0.682 0.336 0.628
prior 0.554 0.624 0.238 0.472

unhypo default 0.652 0.638 0.572 0.558
prior 0.580 0.594 0.520 0.432

Trie strict 0.844 0.812 0.738 0.710
flex 0.850 0.794 0.742 0.692

The results on the fine-grained data show similar trends. Adding POS gener-
ally improves the ABL-based system, however, this is not the case for the unhypo
implementation. Again, the performance of the trie-based system decreases when
POS information is added.

To get a further idea of how the systems react to the data, we give some ad-
ditional information. Each ABL-based classifier extracts roughly 115,000 regular
expressions when applied to the training data and the trie that contains the set
of training questions consists of nearly 32,000 nodes.

When investigating how the trie-based system works, we noticed that around
90% of the questions that performed β replacement (15% of the total number
of questions) in the strict method (on the POS tagged data) provided correct
results. This indicates that β replacement in this implementations is often per-
formed correctly. However, in the flex method on the same data, the same test
shows a much lower success rate (around 65%). We think that this is due to the
fewer constraints for the β substitution in the latter method, causing it to occur
in more than a half of the questions.

Unfortunately, it is hard to compare these results to other published results,
because the data and corresponding classes (EAT) are often different. Given



that [6] uses more information during classification (among others, chunks and
named entities), the comparison is not reliable. We decided to compare our
results to those in [14], who used the same question data to train various machine
learning methods on bag-of-words features and bag-of-n-grams features. Their
results ranged from 75.6% (Nearest Neighbours on words) to 87.4% (SVM on
n-grams) in the coarse-grained data and from 58.4% (Näıve Bayes on words) to
80.2% (SVM on words) in the fine-grained data. Our results fit near the top on
course-grained and near the middle on fine-grained data.

4 Future Work

The results on the question classification task indicate that classification based
on induced structure is an interesting new approach to the more general task
of sentence classification. However, there are many more systems that fall into
the structure-based classification framework. These systems can be completely
different from the ones described here, but modifications or extensions of these
systems are also possible.

For example, some preliminary experiments show that in the case of the
ABL-based system, it may be useful to retain only the regular expressions that
are uniquely associated with a class. Taking only these regular expressions makes
hand-tuning of the expressions easier and the amount of regular expressions is
reduced, which makes them more manageable.

More complex regular expressions can be learned from the data, incorporating
more information from the structure found by the system. For instance, there
can be further restrictions on the words that are skipped by the systems or even
systems that perform robust partial parsing using the extracted structure can
be envisioned.

Perhaps other grammatical inference techniques are better suited for the
task described here. Alternative trie-based implementations include those using
finite-state grammatical inference techniques such as EDSM or blue-fringe [5].

An interesting characteristic we found in the trie-based system is the discov-
ering of semantic relations between the replaced tokens and their β substitutes.
In Table 4 we give a few subsets of related tokens that have been found. Similar
groups of syntactic/semantic related words or word groups can be found using
the ABL framework as well, as shown in [10, pp. 76–77]. In fact, these are found
using their context only. Words or word groups that tend to occur in the same
contexts also tend to be used similarly, which is found in both systems. We plan
to use this knowledge to place extra restrictions in the regular expressions.

Finally, we suspect that the structure (in the form of a trie or regular ex-
pressions) may help in tasks related to sentence classification, such as finding
the focus of the question, which is another part of the question analysis phase
of question answering systems. The learned structure may give an indication on
where in the question this information can be found. For example, if the regular
expression /How far is .* from .*/ is found, the system can understand that



Table 4. Similar tokens found by the trie-based approach

Galileo triglycerides calculator Milan
Monet amphibians radio Trinidad
Lacan Bellworts toothbrush Logan Airport
Darius dingoes paper clip Guam
Jean Nicolet values game bowling Rider College
Jane Goodall boxcars stethoscope Ocho Rios
Thucydides tannins lawnmower Santa Lucia
Damocles geckos fax machine Amsterdam
Quetzalcoatl chloroplasts fountain Natick
Confucius invertebrates horoscope Kings Canyon

it should find the distance between the values of the variables (.*). This is one
area that we intend to explore further.

5 Conclusion

In this article, we have introduced a new approach to sentence classification.
From the (annotated) training data, structure is extracted and this is used to
classify new, unseen sentences. Within the approach many different systems
are possible and in this article we have illustrated and evaluated two different
systems. One system uses a grammatical inference system, Alignment-Based
Learning, the other system makes use of a trie structure.

The approach falls in between the two existing approaches: “standard” ma-
chine learning techniques and manually created regular expressions. Using ma-
chine learning techniques, regular expressions are created automatically, which
can be matched against new sentences. The regular expressions are human-
readable and can be adjusted manually, if needed.

The results on the annotated questions of the TREC10 data, which stand in
line with the current state-of-the-art results, show that the approach is feasible
and both systems generate acceptable results. We expect that future systems
that fall in the structure induced sentence classification framework will yield
even better performance.
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