Lossless Filter for Finding Long Multiple
Approximate Repetitions Using a New Data
Structure, the Bi-Factor Array

Pierre Peterlongo', Nadia Pisanti? *, Frederic Boyer®, and Marie-France
Sagot34 **

! Institut Gaspard-Monge, Universite de Marne-la-Vallée, France
2 Dipartimento di Informatica, Universitd di Pisa, Italy, and LIPN Université
Paris-Nord, France
3 INRIA Rhoéne-Alpes and LBBE, Univ. Claude Bernard, Lyon, France
4 King’s College, London, UK

Abstract. Similarity search in texts, notably biological sequences, has
received substantial attention in the last few years. Numerous filtration
and indexing techniques have been created in order to speed up the res-
olution of the problem. However, previous filters were made for speeding
up pattern matching, or for finding repetitions between two sequences or
occurring twice in the same sequence. In this paper, we present an algo-
rithm called NIMBUS for filtering sequences prior to finding repetitions
occurring more than twice in a sequence or in more than two sequences.
NIMBUS uses gapped seeds that are indexed with a new data structure,
called a bi-factor array, that is also presented in this paper. Experimen-
tal results show that the filter can be very efficient: preprocessing with
NIMBUS a data set where one wants to find functional elements using a
multiple local alignment tool such as GLAM ([7]), the overall execution
time can be reduced from 10 hours to 6 minutes while obtaining exactly
the same results.

1 Introduction

Finding approximate repetitions (motifs) in sequences is one of the most chal-
lenging tasks in text mining. Its relevance grew recently because of its applica-
tion to biological sequences. Although several algorithms have been designed to
address this task, and have been extensively used, the problem still deserves in-
vestigation for certain types of repetitions. Indeed, when the latter are quite long
and the number of differences they contain among them grows proportionally to
their length, there is no exact tool that can manage to detect such repetitions
efficiently. Widely used efficient algorithms for multiple alignment are heuristic,
and offer no guarantee that false negatives are avoided. On the other hand, ex-
haustive inference methods cannot handle queries where the differences allowed

* Supported by the ACI IMPBio Evolrep project of the French Ministry of Research.
** Supported by the ACI Nouvelles Interfaces des Mathématiques w-vert project of the
French Ministry of Research, and by the ARC BIN project from the INRIA.

among the occurrences of a motif represent as many as 5 — 10% of the length of
the motif, and the latter is as small as, say, 100 DNA bases. Indeed, exhaustive
inference is done by extending or assembling in all possible ways shorter motifs
that satisfy certain sufficient conditions. When the number of differences al-
lowed is relatively high, this can therefore result in too many false positives that
saturate the memory. In this paper, we introduce a preprocessing filter, called
NIMBUS, where most of the data containing such false positives are discarded
in order to perform a more efficient exhaustive inference. Our filter is designed
for finding repetitions in r > 2 input sequences, or repetitions occurring more
than twice in one sequence. To our knowledge, one finds in the literature filters
for local alignment between two sequences [21,17,15], or for approximate pat-
tern matching [19, 3] only. Heuritic methods such as BLAST [1,2] and FASTA
[16] filter input data and extend only seeds that are repeated short fragments
satisfying some constraints. NIMBUS is based on similar ideas but uses differ-
ent requirements concerning the seeds; among the requirements are frequency
of occurrence of the seeds, concentration and relative position. Similarly to [17,
15], we use also a concept related to gapped seeds that has been shown in [4] to
be particularly efficient for pattern matching. The filter we designed is lossless:
contrary to the filter in BLAST or FASTA, ours does not discard any repetition
meeting the input parameters. It uses necessary conditions based on combina-
torial properties of repetitions and an algorithm that checks such properties in
an efficient way. The efficiency of the filter relies on an original data structure,
the bi-factor array, that is also introduced in this paper, and on a labelling of
the seeds similar to the one employed in [8]. This new data structure can be
used to speed up other tasks such as the inference of structured motifs [18] or
for improving other filters [14].

2 Necessary Conditions for Long Repetitions

A string is a sequence of zero or more symbols from an alphabet Y. A string s of
length n on X' is represented also by s[0]s[1]...s[n — 1], where s[i] € X for 0 <
i < n. The length of s is denoted by |s|. We denote by s[i, j] the substring, or
factor, sli]s[i+1]...s[j] of s. In this case, we say that the string s[i, j] occurs at
position 7 in s. We call k-factor a factor of length k. If s = wv for v, v € X*,
we say that v is a suffiz of s.

Definition 1. Given r input strings si1,...,S,, a length L, and a distance d, we
call a (L,r,d)-repetition a set {01,...,0,} such that 0 < §; < |s;| — L. For all
i € [1,7] and for all i,j € [1,r] we have that

du (8i[0i, 0it-r.—1], 8505, 05+ 1-1]) < d.

where by dg we mean the Hamming distance between two sequences, that is, the
manimum number of letter substitutions that transforms one into the other.

Given m input strings, the goal is to find the substrings of length L that
are repeated in at least r < m strings with at most d substitutions between

each pair of the r repetitions, with L and d given. In other words, we want to
extract all the (L, r, d)-repetitions from a set of r sequences among m > r input
sequences. The goal of the filter is therefore to eliminate from the input strings
as many positions as possible that cannot contain (L, r, d)-repetitions. The value
for parameter d can be as big as 10% of L. The main idea of our filter is based on
checking necessary conditions concerning the amount of exact k-factors that a
(L, 7, d)-repetition must share. A string w of length & is called a shared k-factor
for s1,...,s,if Vi € [1,r] w occurs in s;. Obviously, we are interested in shared k-
factors that occur within substrings of length L of the input strings. Let p,- be the
minimum number of non-overlapping shared k-factors that a (L, r, d)-repetition
must have. It is intuitive to see that a (L, 2, d)-repetition contains at least % —d
shared k-factors, that is, ps = % — d. The value of p, for r > 2 is given in the
following result whose proof is omitted due to space limitations. However, the
intuition is that the positions where there are substitutions between each pair
of sequences must appear clustered because if two sequences differ in a position,
then a third sequence will, at this position, differ at least from one of the other
two.

Theorem 1. A (L,r,d)-repetition contains at least p, = £ —d — (r — 2) x |]
shared k-factors.

The theorem above applies also to the case where one is interested in finding
(L, r,d)-repetitions in a single string.

3 The Algorithm

NIMBUS takes as input the parameters L, r and d, and m (with m > r) input
sequences. Given such parameters, it decides automatically the best k to apply
in order to filter for finding the (L,r,d)-repetitions either inside one sequence
or inside a subset of r sequences. In the following, we present the algorithm
for finding (L, r, d)-repetitions in 7 sequences. The algorithm can be adapted in
a straightforward way to the case of finding (L, r, d)-repetitions occurring in a
single sequence.

The goal of NIMBUS is to quickly and efficiency filter the sequences in
order to remove regions which cannot contain a (L, r, d)-repetition applying the
necessary conditions described in Section 2 and keeping only the regions which
satisfy these conditions. We compute the minimum number p, of repeated k-
factors each motif has to contain to possibly be part of a (L, r,d)-repetition.
A set of p, k-factors contained in a region of length L is called a p,-set<y.
NIMBUS searches for the p,-sets<y, repeated in r of the m sequences. All the
positions where a substring of length L contains a p,-set<; repeated at least
once in 1 sequences are kept by the filter, the others are rejected. To improve
the search for the p,-set<r, we use what we call bi-factors, as defined below.

Definition 2. A (k, g)-bi-factor is a concatenation of a factor of length k, a
gap of length g and another factor of length k. The factor s[i,i+k — 1]s[i + k +

9,1+ 2 x k+g—1] is a bi-factor occurring at position i in s. For simplicity’s
sake, we also use the term bi-factor omitting k and g.

For example, the (2,1)-bi-factor occurring at position 1 in AGGAGAG is
GGGA. The bi-factors occurring in at least r sequences are stored in a bi-factor
array (presented in Section 4) that allows us to have access in constant time to
the bi-factors starting with a specified k-factor. The main idea is to first find
repeated bi-factors with the biggest allowed gap g that may still contain (p, — 2)
k-factors (g € [(pr — 2)k, L — 2k]). We call these border bi-factors. A border bi-
factor is a 2-set<y, that we then try to extend to a p,-set<r,. To extend a i-set<y,
to a (i + 1)-set<r, we find a repeated bi-factor (called an extending bi-factor)
starting with the same k-factor as the border bi-factor of the i-set<; and having
a gap length shorter than all the other gaps of the bi-factors already composing
the i-set<r. The occurring positions of the (i 4+ 1)-set<z are the union of the
extending bi-factor positions and of the positions of the i-set<. An example of
this a construction is presented in Figure 1.

<L
GG ey
Seq (ACB) 1, 3,5
Step 2 Seq(AC): 1,356
Step 3 H Seq (AD): 2,3,5,8

Fig. 1. Example of the construction of a 4-set<;. At the first step, we find a
bi-factor occurring at least once in at least r = 2 sequences among m = 8 sequences.
During the second step, we add a bi-factor starting with the same k-factor (here called
A), included inside the first one, and we merge the positions. We repeat this once
and obtain a 4-set<; occurring in sequences 3 and 5. Actually not only the sequence
numbers are checked during the merging but also the positions in the sequences, not
represented in this figure for clarity.

Seq (ADCB) 3,5

In order to extract all the possible p,-set<r, we iterate the idea described
above on all the possible border bi-factors: all bi-factors with gap length in
[(pr—2)k, L —2k] are considered as a possible border of a p,-set<r. Furthermore,
while extending a i-set<z, to a (i+1)-set<r, all the possible extending bi-factors
have to be tested. The complete algorithm is presented in Figure 2.

Depending on the parameters, the &k value may be too small (< 4) leading
to a long and inefficient filter. In this case, we start by running NIMBUS with
r = 2, often allowing to increase the k value, improving the sensitivity and the
execution time. At the end, the remaining sequences are filtered using the initial
parameters asked by the user. This actually results in an efficient strategy that
we refer to later as the double pass strategy.

3.1 Complexity analysis

Let us assume NIMBUS has to filter m sequences each of length ¢. The total
input size is then n = £ x m.

NIMBUS_ Initialise()
1. for g in [(pr — 2)k, L — 2k]
2. for all (k, g)-bi-factors bf
3. NIMBUS Recursive(g — k, positions(bf), 2, firstKFactor(bf))
NIMBUS_Recursive (gmax, positions, nbKFactors, ﬁrstKFactor)
1. if nbSequences(positions) < r then return //not in enough sequences
if nbKFactors = p then save positions and return
for g in [(pr — (nbK Factors + 1)) X k, gmazx] // possible gaps length
for (k, g)-bi-factors bf starting with firstKFactor
positions = merge(position, positions(bf))
NIMBUS Recursive (g — k, positions, nbKFactors+1, firstKFactor)

IR ol

Fig. 2. Extract the positions of all the p,-sets<r,

For each possible gap length of the bi-factors considered by the algorithm, a
bi-factor array is stored in memory (taking O(n) as showed in section (4)). The
bi-factor gap lengths are in [0, L — 2k]. The total memory used by NIMBUS
is therefore in O(n x L). Let us assume that the time needed by the recursive
extraction part of the NIMBUS algorithm depends only on a number of factors
denoted by nbKFactors. We call this time T'(nbK Factors). With this notation
NIMBUS takes O (L x ¢ x T'(2)). Furthermore V nbK Factors < p:

T(nbK Factors)= L x min(|X*,¢) x(_n +T(nbK Factors+ 1))
gap length extending bi-factors ~ "M€T9€

replaced by Z in the following

S
—~

N
~

|

Zxn+TB)=Zxn+2ZxT(3)
NXZ+Zx(Zxn+ZxT@4)=nx(Z+2Z*)+2*xT(4)

1_

=nx Y27 4+ 2P 2T (p) =n x £
T(2) = O(n x ZP71)

£t zr? (T(p) = O(1))

The total time is therefore in O(L x £ x n x ZP~1) with Z = L x min(|X|*, ¢).
However, as we shall see later (Fig. 5), we have that this is just a rough upper
bound of the worst-case. For instance, we do not take into consideration the
fact that T'(i) decreases when i increases because of the possible decrease in
the gap lengths. Furthermore, a balance exists between lines 4 and 5 of the
recursion algorithm. For instance, if the sequences are composed only by the
letter A, lines 4 and 5 will do only one merge but for n positions (in time O(n)).
On the other hand, if the sequences are composed by n different letters, lines
4 and 5 will do n merges each in constant time, thus these two lines will be
executed in time O(n) as well. There can thus be a huge difference between the
theoretical complexity and practical performance. The execution time strongly

depends on the sequences composition. For sequences with few repetitions, the
filter algorithm is very efficient. See Section 5 for more details.

Finally, we have that creating the bi-factor arrays takes O(L x n) time which
is negligible w.r.t. to the extraction time.

4 The Bi-Factor Array

Since we make heavy use of the inference of repeated bi-factors, we have designed
a new data structure, called a bi-factor array (BFA), that directly indexes the
bi-factors of a set of strings. The bi-factor array is a suffix array adapted for
bi-factors (with & and g fixed) that stores them in lexicographic order (without
considering the characters composing their gaps). This data structure allows to
access the bi-factors starting with a specified k-factor in constant time. Notice
that the same data structure can be used to index bi-factors where the two
factors have different sizes (say, (k1, g, k2)-factors); we restrict ourselves here to
the particular case of k1 = ko because this is what we need for NIMBUS. For the
sake of simplicity, we present the algorithm of construction of the bi-factor array
for one sequence. The generalisation to multiple sequences is straightforward.
We start by recalling the properties of a suffix array. .

The suffix array data structure. Given a string s of length n, let s[i...] de-
note the suffix starting at position 4. Thus s[i...] = s[¢,n —1]. The suffix array
of s is the permutation 7 of {0, 1, ..., n—1} corresponding to the lexicographic

order of the suffixes s[i...]. If < denotes the lexicographic order between two
l

strings, then s[7(0)...] %s[w(l) .. % . % s[m(n —1)...]. In general, another
information is stored in the suffix array: the length of the longest common
prefix (lcp) between two consecutive suffixes (s[7(i)...] and s[x(i +1)...]) in
the array. The construction of the permutation 7 of a text of length n is done in
linear time and space [12][9][11]. A linear time and space lcp row construction
is presented in [10].

BFA construction. We start by listing the ideas for computing the BFA using
a suffix array and its lcp:

1. Give every k-factor a label. For instance, in a DNA sequence with k = 2, AA
has the label 0, AC has label 1 and so on. A row is created containing, for
every suffix, the label of its starting k-factor. In the remaining of this paper,
we call a (labely, labels)-bi-factor a bi-factor of which the two k-factors are
called label; and labels.

2. For each suffix, the label of the k-factor occurring k + g positions before the
current position is known.

3. Construct the BFA as follows: let us focus for instance on the bi-factors
starting with the k-factor called label;. The predecessor label array is tra-
versed from top to bottom, each time the predecessor label value is equal to

labely, a new position is added for the part of the BFA where bi-factors start
with the label label;. Due to the suffix array properties, two consecutive
bi-factors starting with the label label; are sorted w.r.t. the label of their
second k-factor. The creation of the BFA is done such that for each (label;,
labels)-bi-factor, a list of corresponding positions is stored.

We now explain in more detail how we perform the three steps above.

Labelling the k-factors. In order to give each distinct k-factor a different label,
the lep array is read from top to bottom. The label of the k-factor corresponding
to the i*" suffix in the suffix array, called label[i], is created as follows:

label[0] =0

. ' 4 [labelli — 1]+ 1if lepli] < k
Vie[l,n—1]: label[i] = {label[i] olse
Giving each suffix a predecessor label. For each suffix the label of the k-factor
occurring k+ g positions before has to be known. Let pred be the array containing
the label of the predecessor for each position. It is filled as follows: V i €

[0,]s| — 1], pred[i] = label {wfl [x[i] — k — g]] (7~ 1[p] is the index in the suffix
array where the suffix s[p...] occurs). Actually, the pred array is not stored in

memory. Instead, each cell is computed on line in constant time. An example of
the label and pred arrays is given in Figure 3.

i ||lcp| 7 |associated suffix||pred|label
00| 2| AACCAC 0 0
1{|1] 6| AC 1 1
22| 0] ACAACCAC 0 1
32| 3| ACCAC 1 1
40| 7|C 4 2
5|11 1| CAACCAC 0 3
6(2| 5| CAC 0 3
71| 4| CCAC 3 4

Fig. 3. Suffix array completed with the label and the pred arrays for £k = 2 and
g = 1 for the text ACAACCAC

Creating the BFA. The BFA contains in each cell a (labely, labels)-bi-factor. We
store the label; and labels values and a list of positions of the occurrences of the
(labely, labels)-bi-factor. This array is constructed on the observation that for all
i, the complete suffix array contains the information that a (pred|[i], label[i])-bi-
factor occurs at position 7[i] — k — g. Let us focus on one first k-factor, say label;.
Traversing the predecessor array from top to bottom each time pred[i] = label,
we either create a new (label; = pred|i], label[i])-bi-factor at position 7 [i]—k—g,
or add 7[i]—k—g as a new position in the list of positions of the previous bi-factor
if the labels of the latter is equal to label[i]. Of course, this is done simultaneously
for all the possible label;. An example of a BFA is given in Figure 4.

position(s)|(labely, labelz)|associated gapped-factor
2 (0,3) AACA
0, 3 (1, 1) ACAC
1 (3, 4) AcCccC

Fig. 4. BFA. Here k = 2 and g = 1. The text is ACAACCAC. One can notice that
the (2, 1)-bi-factor ACAC occurs at two different positions.

Complexity for creating a BFA The space complexity is in O(n), as all
the steps use linear arrays. Furthermore, one can notice that no more than four
arrays are simultaneously needed, thus the effective memory used is 16 x n bytes.
The first two steps are in time O(n) (simple traversals of the suffix array). The
last step is an enumeration of the bi-factors found (no more than n). The last
step is therefore in O(n) as well. Hence the total time construction of the suffix
array is in O(n). With the following parameters: L = 100 and k = 6, NIMBUS
has to construct BFAs for around 90 different g values, which means 90 different
BFAs. This operation takes for sequences of length 1Mb around 1.5 minutes on
a 1.2 GHz Pentium 3 laptop.

5 Testing the Filter

We tested NIMBUS on a 1.2 GHz Pentium 3 laptop with 384 Mb of memory.

Figure 5 shows the time and memory usage in function of the input data
length. We can observe that the memory usage is worse in the case of identical
sequences. This is due to the fact that all the positions contain L repeated bi-
factors stored in memory. Furthermore, when the sequences are identical, all the
positions are kept by the filter, representing the worst time complexity case. On
the other hand, when all the sequences are distinct, the complexity is clearly
linear.

Time and memory used same seqs. Time and memory used diff segs.
10 T T T T T 1200 2 n T T T 450
ol time + | 18 L time +]
memory x S "memory x x 7 400
B -1 1000 B i
8 N X = 1.6 % 3 350 =
? r x Js0 = 7 4T * J300 =
= L X . = L -
z°® S g 2 12 %] 250 8
E 5 N 4600 S E 1+ % 1 200 2
~ > ~ - >
g 4r x 7 - § g os8r % . 5
£ 3l . X n - 400 %E) = 06 - . 4 150 %E)
2+ x + _ 04 F 5 100
x 4t 4 200 : x
S S - 02 x < 50
+
0 X+ 7y I I I I 0 0 X I I I I 0
0 100 200 300 400 500 600 0 200 400 600 800 1000
input data length (kB) input data length (kB)

Fig. 5. Time and memory spent by NIMBUS w.r.t. the input data length. The pa-
rameters are L = 100, k = 6, d = 7, r = 3 which implies ps = 6. The input file contains
10 DNA sequences of equal length. On the left part of the figure the sequences are the
same, whereas on the right part they are randomised.

In Figure 6, we present the behaviour of the filter for four kinds of input DNA
sequences. The first three sequences are randomised and contain respectively 2,
5 and 100 motifs of length 100 distant pairwise by 10 substitutions. For each of
these three sequences we ran NIMBUS in order to filter searching for motifs of
length L = 100 occurring at least » = 2, 3 and 4 times with less than d = 10
substitutions. The last DNA sequence is the genomic sequence of the Neisseria
meningitidis strain MC58. Neisseria genomes are known for the abundance and
diversity of their repetitive DNA in terms of size and structure [6]. The size of
the repeated elements range from 10 bases to more than 2000 bases, and their
number, depending on the type of the repeated element, may reach more than
200 copies. This fact explains why the N. meningitidis MC58 genomic sequence
has already been used as a test case for programs identifying repetitive elements
like in [13]. We ran NIMBUS on this sequence in order to filter the search for
motifs of length L = 100 occurring at least r = 2, 3 and 4 times with less than
d = 10 substitutions.

For r = 2, we used k = 6 which gives a good result: less than 5 minutes
execution time for all the randomised sequences. On can notice that for the
MC58 sequence, the execution time is longer (53 to 63 minutes) due to its high
rate of repetitions.

For r = 3 and 4, we apply the double pass strategy described earlier, and start
the filtration with » = 2 and k¥ = 6. The time results are therefore subdivided
into two parts: the time needed for the first pass and the one needed for the
second pass. The time needed for the second pass is negligible w.r.t. the time
used for the first one. This is due to the fact that the first pass filters from 89
% to 99 % of the sequence, thus the second pass works on a sequence at least
10 times shorter than the original one. This also explains why no extra memory
space is needed for the second pass. For » = 3, the second pass uses k = 5 while
for r = 4, the second pass uses k = 4. With k£ = 4, the efficiency of the filter
is lower than for superior values of k. That is why for MC58, more positions
are kept while searching for motifs repeated 4 times, than for motifs repeated
3 times. Without using the double pass, for instance on MC58, with r = 3 the
memory used is 1435 Mb (instead of 943 Mb) and the execution time is around
12 hours (instead of 54 minutes). The false positive ratio observed in practice
(that is, the ratio, computed on random sequences with planted motifs, of non
filtered data that are not part of a real motif) is very low (less than 1.2 %). In
general, many of the false positives occur around a (L, r, d)-repetition motif and
not anywhere in the sequences.

Efficiency of the filter Although it depends on the parameters used and on the
input sequences, the efficiency of the filter is globally stable. For instance, when
asking for motifs of length L ~ 100 of which the occurrences are pairwise distant
of d =~ 10, NIMBUS keeps also motifs of which the occurrences are pairwise
distant up to d+7 &~ 17. The smaller is d, the more efficient is NIMBUS. When
d = 1 substitution, NIMBUS thus keeps motifs of which the occurrences are
pairwise distant up to d + 3 ~ 4 only instead of d + 7 as for d ~ 10.

Sequence filtered 2 Motifs 5 Motifs 100 Motifs MC58
Memory Used 675 675 681 943
Time (Min.) 4.8 4.8 5 53
r = 2||Kept (Nb and Ratio)||406: 0.04 %|1078: 0.10 %|22293: 2.2 %|127782 : 12.7 %
False Positive Ratio 0.02 % 0.08 % 2.0 % unknown
Time (Min.) 484+ 0 4.8 + 0.1 5+ 0.5 53 + 0.9
r = 3||Kept (Nb and Ratio)|| 0: 0 % [1078: 0.10 %|21751: 2.2 %| 92069: 9.21 %
False Positive Ratio 0% 0.11 % 2.0 % unknown
Time (Min.) 1810 | 48+01 | 5+05 53 + 10
r = 4||Kept (Nb and Ratio)|| 0:0 % |1066: 0.11 %|21915: 2.2 %|106304: 10.63 %
False Positive Ratio 0.0 % 0.09 % 1.8 % unknown

Fig. 6. NIMBUS behaviour on four types of sequences while filtering in order to find
r =2, 3 and 4 repetitions

6 Using the filter

In this section we show two preliminary but interesting applications of NIM-
BUS. The first concerns the inference of long biased repetitions, and the second
multiple alignments.

6.1 Filtering for Finding long repetitions

When inferring long approximate motifs, the number of differences allowed among
the occurrences of a motif is usually proportional to the length of the motif. For
instance, for L = 100 and allowing for as many as L/10 substitutions, one would
have d = 10 which is high. This makes the task of identifying such motifs very
hard and, to the best of our knowledge, no exact method for finding such motifs
with r > 2 exists. Yet such high difference rates are common in molecular biol-
ogy. The NIMBUS filter can efficiently be used in such cases as it heavily reduces
the search space. We now show some tests that prove this claim. For testing the
ability of NIMBUS concerning the inference of long approximate repetitions,
we ran an algorithm for extracting structured motifs called RISO [5] on a set
of 6 sequences of total length 21 kB for finding motifs of length 40 occurring
in every sequence with at most 3 substitutions pairwise. Using RISO, this test
took 230 seconds. By previously filtering the data with NIMBUS, the same test
took 0.14 seconds. The filtering time was 1.1 seconds. The use of NIMBUS thus
enabled to reduce the overall time for extracting motifs from 230 seconds to 1.24
seconds.

6.2 Filtering for Finding multiple local alignments

Multiple local alignment of r sequences of length n can be done with dynamic
programming using O(n™) time and memory. In practice, this complexity limits
the application to a small number of short sequences. A few heuristics, such as
MULAN [20], exist to solve this problem. One alternative exact solution could be
to run NIMBUS on the input data so as to exclude the non relevant information

(i.e. parts that are too distant from one another) and then to run a multiple
local alignment program. The execution time is hugely reduced. For instance, on
a file containing 5 randomised sequences of cumulated size 1 Mb each contain-
ing an approximate repetition®, we ran NIMBUS in approximatively 5 minutes.
On the remaining sequences, we ran a tool for finding functional elements using
multiple local alignment called GLAM [7]. This operation took about 15 sec-
onds. Running GLAM without the filtering, we obtained the same results® in
more than 10 hours. Thus by using NIMBUS, we reduced the execution time
of GLAM from many hours to less than 6 minutes.

7 Conclusions and future work

We presented a novel lossless filtration technique for finding long multiple ap-
proximate repetitions common to several sequences or inside one single sequence.
The filter localises the parts of the input data that may indeed present repetitions
by applying a necessary condition based on the number of repeated k-factors the
sought repetitions have to contain. This localisation is done using a new type of
seeds called bi-factors. The data structure that indexes them, called a bi-factor
array, has also been presented in this paper. It is constructed in linear time.
This data structure may be useful for various other text algorithms that search
for approximate instead of exact matches. The practical results obtained show a
huge improvement in the execution time of some existing multiple sequence local
alignment and pattern inference tools, by a factor of up to 100. Such results are
in partial contradiction with the theoretical complexity presented in this paper.
Future work thus includes obtaining a better analysis of this complexity.

Other important tasks remain, such as filtering for repetitions that present
an even higher rate of substitutions, or that present insertions and deletions
besides substitutions. One idea for addressing the first problem would be to
use bi-factors (and the corresponding index) containing one or two mismatches
inside the k-factors. In the second case, working with edit instead of Hamming
distance implies only a small modification on the necessary condition and on the
algorithm but could sensibly increase the execution time observed in practice.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local
alignment search tool. J. Mol. Biol., 215:403-410, 1990.

2. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25:3389-3402, 1997.

5 Repetitions of length 100 containing 10 substitutions pairwise.

6 Since GLAM handles edit distance and NIMBUS does not, in the tests we have used
randomly generated data where we planted repetitions allowing for substitutions
only, in order to ensure that the output would be the same and hence the time cost
comparison meaningful.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vingron.
g-gram based database searching using a suffix array (quasar). In proceedings of
8rd RECOMB, pages 77-83, 1999.

S. Burkhardt and J. Karkkainen. Better filtering with gapped g-grams. In Proceed-
ings of the 12th Annual Symposium on Combinatorial Pattern Matching, number

2089, 2001.

A. M. Carvalho, A. T. Freitas, A. L. Oliveira, and M-F. Sagot. A highly scalable
algorithm for the extraction of cis-regulatory regions. Advances in Bioinformatics
and Computational Biology, 1:273—-282, 2005.

H. Tettelin et al. Complete genome sequence of Neisseria meningitidis serogroup
B strain MC58. Science, 287(5459):1809-1815, Mar 2000.

M. C. Frith, U. Hansen, J. L. Spouge, and Z. Weng. Finding functional sequence
elements by multiple local alignment. Nucleic Acids Res., 32, 2004.

C. S. Iliopoulos, J. McHugh, P. Peterlongo, N. Pisanti, W. Rytter, and M. Sagot.
A first approach to finding common motifs with gaps. International Journal of
Foundations of Computer Science, 2004.

J. Karkkainen, P. Sanders, and S. Burkhardt. Linear work suffix array construction.
J. Assoc. Comput. Mach., to appear.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Proceedings of
the 12th Annual Symposium on Combinatorial Pattern Matching, pages 181-192.
Springer-Verlag, 2001.

D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-time construction of suffix
arrays. In Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching, june 2003.

P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, to appear.

R. Kolpakov, G. Bana, and G. Kucherov. mreps: Efficient and flexible detection
of tandem repeats in DNA. Nucleic Acids Res, 31(13):3672-3678, Jul 2003.

G. Krucherov, L.No, and M.Roytberg. Multi-seed lossless filtration. In Proceedings
of the 15th Annual Symposium on Combinatorial Pattern Matching.

M. Li, B. Ma, D. Kisman, and J. Tromp. Patternhunter ii: Highly sensitive and
fast homology search. J. of Comput. Biol., 2004.

D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches.
Sci., 227:1435-1441, 1985.

B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440-445, 2002.

L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs using a
suffix tree with application to promoter and regulatory site consensus identification.
J. of Comput. Biol., (7):345-360, 2000.

G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approx-
imate g-grams. In Proceedings of the 11th Annual Symposium on Combinatorial
Pattern Matching, number 1848 in Lecture Notes in Computer Science, pages 350—

363, 2000.

I. Ovcharenko, G.G. Loots, B.M. Giardine, M. Hou, J. Ma, R.C. Hardison,
L. Stubbs, , and W. Miller. Mulan: Multiple-sequence local alignment and vi-
sualization for studying function and evolution. Genome Research, 15:184-194,
2005.

K. R. Rasmussen, J. Stoye, and E. W. Myers. Efficient ¢-gram filters for finding
all e-matches over a given length. In Proceedings of the 16th Annual Symposium
on Combinatorial Pattern Matching, 2005.

